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Comparison between Minimum
Direct and Indirect Jerks

of Linear Dynamic Systems

Abstract

Both the minimum energy consumption and smoothness, which is quantified as
a function of jerk, are generally needed in many dynamic systems such as the
automobile and the pick-and-place robot manipulator that handles fragile equip-
ments. Nevertheless, many researchers come up with either solely concerning on the
minimum energy consumption or minimum jerk frajectory. This research paper proposes
a simple yet very interesting relationship between the minimum direct and indirect jerks
approaches in designing the time-dependent system yielding an alternative optfimal
solution. Extremal solutions for the cost functions of direct and indirect jerks are found
using the dynamic optimization methods together with the numerical approximation.
This is to allow us to simulate and compare visually and stafistically the time history of
control inputs employed by minimum direct and indirect jerk designs. By considering
minimum indirect jerk problem, the numerical solution becomes much easier and yields

to the similar results as minimum direct jerk problem.
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1. Introduction

Most of the robots and advanced
mobile machines nowadays are designed
so that they are either optimized on their
energy consumption or on their greatest
smoothness of motion, (3). Consequently,
the frajectory planning and designs of
these robots are done exclusively through
many approaches such as the minimum
energy and minimum jerk, (4). Neverthe-
less, in some applications, the robot is
needed to work very smoothly in order to
avoid damaging the specimen that the
robot is handling while consuming least
amount of energy at the same time. In
other words, we may want to minimize the
jerk of the movement of the robot as to
give it the smoothest motion as well as
optimize that robot in the energy consump-
fion issue.

The general format of the dynamic
problems is consisting of the equation of
motion, the initial conditions and the bound-
ary conditions. The area of interest in this
paper will involve the problems with two-
point-boundary-value conditions. Each of
the problems may contain many possible
solutions depending on the objective of
application. Obviously, the robot that aims
to run at lowest cost of energy wil be
designed to have the lowest actuator
inputs during the motion. This is basically
the optimization problem of the dynamic
systems. Research shows that many of the

researchers pay a lot of their attention on
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the minimization of energy while many
tend to seek for the smoothness of the
system. According to the second law of
Newton’s laws, there is a relationship be-
tween acceleration and summation of all
forces including the control inputs of any
linear dynamic system. By taking derivative
with respect to time, there is a relationship
between derivative of the acceleration
called Jerk and derivative of all forces
including the derivative of the conftrol
inputs of the dynamic system. In this
paper, the derivative of the control inputs
with respect to time are called indirect
jerks.

Therefore, this research paper aims to
search for the relationship between the
minimum direct jerk and indirect jerk by
using the optimization method so that this
new alternative can be put info applica-

tions.

2. Problem Statement

Dynamic systems can be described
as the first order derivative function of state
as
X, = fi(X e X, U, 1) T=1,.,0,(])
where x € R", u € R™ and t are state,
control input and time respectively, (5).
The problem of interest is to find the states
x(t) and control inputs u(t) that make our

system operates according to the desired

objective of minimum energy or minimum



jerk. Note that this paper is focusing on the
system with fixed end time and fixed end
points. Therefore, states and control inputs
that serve the necessary condition must
also be able to bring the system from initial
conditions x(z,) af initial time z, fo the end
point x(tf) at fime tf

The optimization problem of minimum

energy will take the form of
Y om
J = .[Zufdt, ©
1 =1

where u; is the confrol input, which can be
force or torque applied to the system, and
i =1,..m.J is the cost function of the
energy consumed by the system from initial
fime 7, fo end time tp

The same kind of concept is used to
the minimum jerk problem. It is well known
that jerk is the change of input force
with respect to time. It is, thus, the third
derivative with respect to time of x, or first

order derivative of conftrol input u There-

fore,
Jerk=Xccu . ©))
Defining
u=iu, @

so that (1) becomes

X, = (X s X oty el , 1)y D =Loun+m (5)

From now on, # is freated as a variable
and as the control input of our dynamic
system. Consequently, (2) can be rewritten
for the objective function of the minimum

indirect jerk problem as

fom

t
J = IZﬁizdt. 6)
i=]

ty @

Similarly, (2) also can be rewritten for the
objective function of the minimum direct

jerk problem as

J = i[i:)'c'izdt . )
i=1

fy 1

This time, J is the cost function of the jerks.

3. Necessary Conditions

In this paper, we use the calculus of
variations in solving for the extremal solu-
tions of the dynamic system, (1). Represent-
ing the control input with u, the principle of
calculus of variations helps us solve the
optimization problem by finding the time
history of the control input that would

minimize the cost function of the form
If
J = ¢(t,xl,...,xn),f + jL(l,xl,...,xn,ul,...,um )dt

Iy
®

where

o(t, xl,...,xn)tf , )
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is the cost based on the final time and the

final states of the system, and

;
J.L(t,xl,...,xn,ul,...,um)dt, (10
4
is an integral cost dependent on the time
history of the state and control variables.
Since the cost of the final states would be
equal in all feasible fime histories of the
control input; therefore, the first tferm of (8)
is omitted.
To find the extremum of the function,
the dynamic equations are augmented via
Lagrange Multipliers to the cost functional

as follow:

Iy
P Xy ttity) = (LK Xyt gty Y (1)

Where "
LX) s X, Uy s lhy,) = Lk DA+ (12)

i=1
and ll. (1) are Lagrange multipliers. Conse-
quently, (11) becomes:

J' (X X

Uy yoorsUl, )=

n*

lf
J.[L(t, Xpseees X,y Uy e U))
+Z/1i Ox, — f, (X, e X, Uy estd, )] 12 (13)
i=1

Since the problem with fixed end time
and end points are considered, initial time
ty, end fime I initial state x(z,) and final
state x(tf) must be set prior to solving the
problem. The differentiable functions are

dependent on the boundary condition of
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X(tp)= Xy, x(tf =Xp u(ty)=uyand u(tf =y where
time used falls in the interval ¢, <¢ Stf.
Let function L(t,x],...,xn,u],...um,x],...,xn)

be represented as a functional
J[xl,...,xn,ul,...,um]:

J.L(t,xl,...,xn,ul,...,u )'cl,...,)'cn)dt a4

Iy

m?

Let x(t)) be incremented by hxj(to),
u(t,) be incremented by &, (1)), and sfil
satisfy the boundary conditions, then
hxj(to) h, (t) = h,(t) = uk(tf =0. So, the

change in functional AJ will be

Al = Jlx1 +h X, Fhou +h .0, +hukJ

- ][xl,..., Xy ol s U,

gVl

. 10+ g X, H R X+ R X+,
J L X
= .[ ul +hul""’ tm +huk’u1 +h’ul’ um +h dt
4 . . .
—L(t,xl,...,xn,xl,...,xn,ul,...,um,ul,...,um)
15)

Applying Taylor’s Series to (15), disre-
gard the higher order terms, and apply it

to the problem results in

S J'="& oL d oL

1(—(;;—:[;—)@
TS
3 gl 2yl
+_i<%hxj l, —%hxj l.) (16



JaL’
i hx/ In. =0 and a_itk: 0,
the last two terms of (16) become zero. In

Since h_. |

6=
order that the cost functional of jerk in (13)
can be solved for minimal solution, the
condition that make & J’= 0 at arbitrary
variation of hxj and h,, are needed. From
(16), obviously the mentioned conditions

are as follow:

aw_dov_ ap
axj dt 6)%_]' '

and
o _daov_ o a9

Oup,  dt Ouj o

forj=1,..,nand k=1, ..., m.

Equations (17) and (18) are the nec-
essary conditions that will lead to solve for
Lagrange multipliers /lj(t), and conftrol
inputs u,(1). Alternatively, we can use the
derived relationship below to solve for the
unknowns necessary conditions:

For

X, = (X e X, Uyt 1), T=10,0 (19)

Necessary conditions are (19) and

. 0L &, o .
Aj=———=> ;2L j=1,..n, (0
Iy By T

oL Zz,-%:o, k=1..,m. @D
oup, ‘= Ouy

As of above the necessary conditions
are in the form of differential and alge-
braic equations which are known as two-

point boundary valued problem, (2).

I-—. x1 l-—. x2
k1 k2 k3

cl ml “icii

+

m2

Figure 1 Two degree of-freedom of spring

mass and damper system.

4. Example

The procedure outlined in this paper
for dynamic optimization is illustrated with
the following example of a two degree-of-
freedom spring-mass-damper system

sketched in equation as

Ax = Bu 22)

The matrices A and B for this system is as

follows:
-1 -1
I, 0
o _
— 0
m
1
B= 0 —
m,
0 0 @5
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where the matrices M, C and K are:

m,_ 0 o+e, -
M = ,C = (25)
0 m, —c, Cytey

ki+k, -k,
K = (26)
-k, ky+k,

The equation (22) can also be rewritten in
the second order differential equation ac-
cording to the second law of Newton. The
parameters used in the model in MKS units
are: my=my=10,c;=c3=10,c,=2.0,k; =k,
= ky = 3.0. The boundary conditions are x(t,) =
(1200)7 and x(1) = (0000)7, where 7, =0 and f=
1.0.

4.1 Minimum Direct Jerk Problem
The cost function of minimum direct

jerk is defined as
1
vee? el
J= in + X5 dt . 27)
0

In order for the cost function in (27) to
be minimized, the Calculus of Variations as

stated in previous section has been used.

4.2 Minimum Indirect Jerk Problem
The cost function of minimum indirect
jerk is also defined as
1
J = i} +1ii, dt. (28)
0
Similarly for (28) to be minimized, the
Calculus of Variations must be applied

here.
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4.3 Numerical Results

The minimum jerk problem has the
exact same format as the minimum energy
problem in (2). However, since the time
derivative of control inputs are considered,
the (22) must be rewritten as fo include the

consideration of jerk info the system:

X, +3%, —2%, +6x,-3%, =—L =10,
dt
.. .. . . du,
X, —2X%, + 3%, —3x, +6x, =72=u2.
1

Therefore, the extra boundary condi-
tions can be applied at both ends that are
u(ty) = (00)" and u(ty) = (00)T. These conditions
can be applied in the numerical scheme
through the original dynamic equations as

follow:

X, +3% —2x, +6x, —3x, =y,

X, —2x, +3x, —3x, +6x, =u,

By using software developed by
Tawiwat Veeraklaew, (6), the problems of
minimum direct and indirect jerks can be
solved to obtain the optimal solutions. The
idea behind this soffware is fo fransform
the necessary conditions of the dynamic
optimization to static optimization. Then
one kind of the well known methods called
nonlinear programming or linear program-
ming has been used fo solve for all
parameters that are parameterized through
collocation technique. The comparison for

each variable such as state and control



variables of the dynamic systems in this
example are shown in figure below as Fig.

2 to Fig. 7.
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Figure 2 Solutions of the first state variables
from minimum direct and indirect

jerk.
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First derivative of X from minimum direct and indirect jerk
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Figure 3 Solufions of the first derivative of
the first state variables from

minimum direct and indirect jerk.
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Figure 4 Solutions of the second state
variables from minimum direct and

indirect jerk.
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First derivative of><2 from minimum direct and indirect jerk
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Figure 5 Solutions of the first derivative of
the second state variables from

minimum direct and indirect jerk.
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U, from minimum direct jerk

Uy from minimum indirect jerk

0 02 04 06 08 1
time

Figure 6 Solutions of the first control
variables from minimum direct and

indirect jerk.

U, from minimum direct jerk

U, from minimum indirect jerk

0 02 04 06 08 1
time

Figure 7 Solutions of the second control
variables from minimum direct and

indirect jerk.

From the solutions above x,(1), x,(1),
Xy(1), )Ez(t), uy(t) and u,(t) from both mini-
mum direct and indirect jerks have exactly
the same solutions which can be seen

obviously.
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In conclusion, the numerical solution
of minimum indirect jerk problem becomes
much easier and yields to the same results
as minimum direct jerk problem since the
number of control inputs in dynamic sys-
tfems must be less than or equal to the
number of state variables. Therefore, the
variables used in the cost function of the
minimum indirect jerk problem will be less
than the minimum direct jerk problem
when considering the under actuator dy-
namic or robotic systems.

The results in this paper show that the
minimum indirect jerk can be used instead
of minimum direct jerk strongly for the
linear dynamic systems. However, the
nonlinear dynamic problems could be used
to compare for the future work which very
high expectation that both problems will

have the same results.
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