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Abstract
Both the minimum energy consumption and smoothness, which is quantified as

a function of jerk, are generally needed in many dynamic systems such as the

automobile and the pick-and-place robot manipulator that handles fragile equip-

ments.  Nevertheless, many researchers come up with either solely concerning on the

minimum energy consumption or minimum jerk trajectory. This research paper proposes

a simple yet very interesting relationship between the minimum direct and indirect jerks

approaches in designing the time-dependent system yielding an alternative optimal

solution.  Extremal solutions for the cost functions of direct and indirect jerks are found

using the dynamic optimization methods together with the numerical approximation.

This is to allow us to simulate and compare visually and statistically the time history of

control inputs employed by minimum direct and indirect jerk designs.  By considering

minimum indirect jerk problem, the numerical solution becomes much easier and yields

to the similar results as minimum direct jerk problem.
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1. Introduction
Most of the robots and advanced

mobile machines nowadays are designed

so that they are either optimized on their

energy consumption or on their greatest

smoothness of motion, [3]. Consequently,

the trajectory planning and designs of

these robots are done exclusively through

many approaches such as the minimum

energy and minimum jerk, [4].  Neverthe-

less, in some applications, the robot is

needed to work very smoothly in order to

avoid damaging the specimen that the

robot is handling while consuming least

amount of energy at the same time.  In

other words, we may want to minimize the

jerk of the movement of the robot as to

give it the smoothest motion as well as

optimize that robot in the energy consump-

tion issue.

The general format of the dynamic

problems is consisting of the equation of

motion, the initial conditions and the bound-

ary conditions.  The area of interest in this

paper will involve the problems with two-

point-boundary-value conditions.  Each of

the problems may contain many possible

solutions depending on the objective of

application.  Obviously, the robot that aims

to run at lowest cost of energy will be

designed to have the lowest actuator

inputs during the motion. This is basically

the optimization problem of the dynamic

systems.  Research shows that many of the

researchers pay a lot of their attention on

the minimization of energy while many

tend to seek for the smoothness of the

system.  According to the second law of

Newtonûs laws, there is a relationship be-

tween acceleration and summation of all

forces including the control inputs of any

linear dynamic system.  By taking derivative

with respect to time, there is a relationship

between derivative of the acceleration

called Jerk and derivative of all forces

including the derivative of the control

inputs of the dynamic system.  In this

paper, the derivative of the control inputs

with respect to time are called indirect

jerks.

Therefore, this research paper aims to

search for the relationship between the

minimum direct jerk and indirect jerk by

using the optimization method so that this

new alternative can be put into applica-

tions.

2. Problem Statement
Dynamic systems can be described

as the first order derivative function of state

as

(1)

where x ∈ Rn, u ∈ Rm and t are state,

control input and time respectively, [5].

The problem of interest is to find the states

x(t) and control inputs u(t) that make our

system operates according to the desired

objective of minimum energy or minimum
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jerk. Note that this paper is focusing on the

system with fixed end time and fixed end

points.  Therefore, states and control inputs

that serve the necessary condition must

also be able to bring the system from initial

conditions x(t0) at initial time t0 to the end

point x(tf) at time tf.

The optimization problem of minimum

energy will take the form of

(2)

where ui is the control input, which can be

force or torque applied to the system, and

i = 1,...,m. J is the cost function of the

energy consumed by the system from initial

time t0 to end time tf.

The same kind of concept is used to

the minimum jerk problem.  It is well known

that jerk is the change of input force

with respect to time.  It is, thus, the third

derivative with respect to time of x, or first

order derivative of control input u There-

fore,

(3)

(5)

From now on,   is treated as a variable

and as the control input of our dynamic

system.  Consequently, (2) can be rewritten

for the objective function of the minimum

indirect jerk problem as

(6)

Similarly, (2) also can be rewritten for the

objective function of the minimum direct

jerk problem as

(7)

This time, J is the cost function of the jerks.

3. Necessary Conditions
In this paper, we use the calculus of

variations in solving for the extremal solu-

tions of the dynamic system, [1]. Represent-

ing the control input with u, the principle of

calculus of variations helps us solve the

optimization problem by finding the time

history of the control input that would

minimize the cost function of the form

(8)

where

(9)

Defining

                                 (4)

so that (1) becomes

 u~
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˙

is the cost based on the final time and the

final states of the system, and

(10)

is an integral cost dependent on the time

history of the state and control variables.

Since the cost of the final states would be

equal in all feasible time histories of the

control input; therefore, the first term of (8)

is omitted.

To find the extremum of the function,

the dynamic equations are augmented via

Lagrange Multipliers to the cost functional

as follow:

(11)

Where

(12)

and λi (t) are Lagrange multipliers.  Conse-

quently, (11) becomes:

x(t0)= x0, x(tf)= xf, u(t0)= u0 and u(tf)= uf  where

time used falls in the interval

Let function L(t,x1,...,xn,u1,...um,x1,...,xn)

be represented as a functional

       (14)

Let x(t0) be incremented by hxj(t0),

u(t0) be incremented by huk (t0), and still

satisfy the boundary conditions, then

hxj (t0) = hxj (tf) = huk (t0) = huk (tf) = 0. So, the

change in functional ΔJ will be

(13)

Since the problem with fixed end time

and end points are considered, initial time

t0, end time tf, initial state x(t0) and final

state x(tf) must be set prior to solving the

problem. The differentiable functions are

dependent on the boundary condition of

˙

(15)

Applying Taylorûs Series to (15), disre-

gard the higher order terms, and apply it

to the problem results in

(16)

ti ≤ t ≤ tf .
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(20)

(21)

Since hxj |tf = hxj |ti = 0 and    = 0,

the last two terms of (16) become zero.  In

order that the cost functional of jerk in (13)

can be solved for minimal solution, the

condition that make δ J’= 0 at arbitrary

variation of hxj and huk are needed. From

(16), obviously the mentioned conditions

are as follow:

As of above the necessary conditions

are in the form of differential and alge-

braic equations which are known as two-

point boundary valued problem, [2].

∂L’

∂uk
·

(17)

and

(18)

for j = 1, ..., n and k = 1, ..., m.

Equations (17) and (18) are the nec-

essary conditions that will lead to solve for

Lagrange multipliers λj(t), and control

inputs uk(t).  Alternatively, we can use the

derived relationship below to solve for the

unknowns necessary conditions:

For

 (19)

Necessary conditions are (19) and

Figure 1 Two degree of-freedom of spring

mass and damper system.

4. Example
The procedure outlined in this paper

for dynamic optimization is illustrated with

the following example of a two degree-of-

freedom spring-mass-damper system

sketched in equation as

                                    (22)

The matrices A and B for this system is as

follows:

                (23)

(24)
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where the matrices M, C and K are:

(25)

(26)

The equation (22) can also be rewritten in

the second order differential equation ac-

cording to the second law of Newton.  The

parameters used in the model in MKS units

are: m1 = m2 = 1.0, c1 = c3 = 1.0, c2= 2.0, k1 = k2

= k3 = 3.0. The boundary conditions are  x(t0) =

(1200)T and x(tf) = (0000)T, where t0 = 0 and tf =

1.0.

4.1 Minimum Direct Jerk Problem

The cost function of minimum direct

jerk is defined as

(27)

In order for the cost function in (27) to

be minimized, the Calculus of Variations as

stated in previous section has been used.

4.2 Minimum Indirect Jerk Problem

The cost function of minimum indirect

jerk is also defined as

(28)

Similarly for (28) to be minimized, the

Calculus of Variations must be applied

here.

4.3 Numerical Results

The minimum jerk problem has the

exact same format as the minimum energy

problem in (2). However, since the time

derivative of control inputs are considered,

the (22) must be rewritten as to include the

consideration of jerk into the system:

Therefore, the extra boundary condi-

tions can be applied at both ends that are

u(t0) = (00)T and  u(tf) = (00)T. These conditions

can be applied in the numerical scheme

through the original dynamic equations as

follow:

By using software developed by

Tawiwat Veeraklaew, [6], the problems of

minimum direct and indirect jerks can be

solved to obtain the optimal solutions.  The

idea behind this software is to transform

the necessary conditions of the dynamic

optimization to static optimization. Then

one kind of the well known methods called

nonlinear programming or linear program-

ming has been used to solve for all

parameters that are parameterized through

collocation technique.  The comparison for

each variable such as state and control
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variables of the dynamic systems in this

example are shown in figure below as Fig.

2 to Fig. 7.

Figure 4 Solutions of the second state

variables from minimum direct and

indirect jerk.
Figure 2 Solutions of the first state variables

from minimum direct and indirect

jerk.

Figure 3 Solutions of the first derivative of

the first state variables from

minimum direct and indirect jerk.

Figure 5 Solutions of the first derivative of

the second state variables from

minimum direct and indirect jerk.



42 «“√ “√∑“ß«‘™“°“√  ¿“Õ“®“√¬å  °».√√.®ª√., ªï∑’Ë 6 (2551)

Figure 6 Solutions of the first control

variables from minimum direct and

indirect jerk.

Figure 7 Solutions of the second control

variables from minimum direct and

indirect jerk.

From the solutions above x1(t), x1(t),

x2(t), x2(t), u1(t) and u2(t) from both mini-

mum direct and indirect jerks have exactly

the same solutions which can be seen

obviously.

In conclusion, the numerical solution

of minimum indirect jerk problem becomes

much easier and yields to the same results

as minimum direct jerk problem since the

number of control inputs in dynamic sys-

tems must be less than or equal to the

number of state variables.  Therefore, the

variables used in the cost function of the

minimum indirect jerk problem will be less

than the minimum direct jerk problem

when considering the under actuator dy-

namic or robotic systems.

The results in this paper show that the

minimum indirect jerk can be used instead

of minimum direct jerk strongly for the

linear dynamic systems.  However, the

nonlinear dynamic problems could be used

to compare for the future work which very

high expectation that both problems will

have the same results.
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