Lt.Col.Dr. Phaderm Nangsue

novdg1dddnssulwiln ounsdnun

IsuiSauungsSosws=gavouinal

Scorpion

A Prototype Solutfion for Solving

Software Crisis

Abstract

Scorpion is a web-based application
software that attempts to help solving the
on-going problem of software crisis. It
supports management of custom-made
application life cycle from procurement
to retirement. Procurement of custom-made
sofftware is much harder than procurement
of its hardware counterpart because
custom-made software procurement involves
the full cycle of software engineering
process. This process includes planning,
system analysis, system design, system
implementation, festing and maintenance.
The required level of technical difficulties
is offen above the skill level available in
the procuring organization. This problem
has caused software projects to fail at
a frightening rate, which is often referred

to as “soffware crisis”. According to the

118 5 1 smenms w.a. 2550

research paper from the Standish Group
(1) there is only 16% successful software
project. The rest is either a failure (31%)
or required additional time/resource on the
project (63%). This is where Scorpion comes
intfo play. It combines the arts and science
of sofftware engineering info a single non-
abstract tool that can guide the project
to success by utilizing many tools such
as risk analysis, brain-storming, feasibility

study and knowledgebase of proven facts.

1. Introduction

In a software procurement process,
the procuring organization hires a soffware
house to build custom-made software. It
may seem like a simple process: the
organization pays the software house and
the soffware house then submits the

desired software to the organization.

However; in reality, it is quite difficult for
this deal to complete satisfactorily. In a
software project, the goal is to get quality
software within the planned time frame
and budget. As shown in Figure 1, a
software project may be any dot in the
figure. For project A, the quality is obtained
but it is over-budget and exceeds the
given time frame. Project B is even worse;
it does not achieve any goal. Project
C is the ultimate goal where the quality
is obtained within the planned budget
and time frame. Because it is not so easy
to be at the desire position in the figure,
there are so many failed software projects.
Statistics (1) shows that the chance of
getting this deal to complete satisfactorily
is only 16%. 31% of the software projects
is terminated before its completion. 53%
is over budget or requiring additional time
to complete. These figures are from the
surrey of 23,000 projects in the U.S.A. during
1994-1998. It is quite frightening that
software project fails at this rate. Moreover,
the bigger the project is, the higher
chance that it will fail. A one-year project
has a success rate of 25%. For two-year
project, the rate is dropped to 8%. For
three-year project the success rate is zero!
This is understandable because large projects
require many people and the commu-
nication overhead for n people is

n(n-1) = O(nh2) which grows very quickly.

AN,

Budget v

Figure 1 Project management goadls.

1.1 Why software projects fail

According fo (2), there are 6 major
factors that cause soffware project to fail.
These causes are 1) lack of planning 2)
unclear scope of work 3) lack of com-
munication 4) lack of skiled personnel 5)
lack of collaboration and 6) under estimated
project size. As can be seen, these causes
are not that serious. It is not the lack
of budget or the lack of fechnology to
complete the project. All of these causes
can be summarized to one issue: project
management. Thus it is a good chance
to solve this problem by creating a project
management tool that addresses all of
these causes. This kind of software pro-
curement support system has never been
created. The present so-called project
management software is infended for
soffware project manager in the developer
side. The organization which pays for the
project is usually not allowed to use the
software and therefore collaboration is not

achieved.

. . - y .
memsd wumsdne Tsadeuneieanszgaaaun 119

2. Philosophies in designing
a solution for solving
software crisis
Because we are building a new kind

of system, we have three design philoso-

phies as follow.

2.1) The system must be able ftfo
manage all stages of software life cycle.
In each stage of software life cycle there
are tools to support management of the
soffware being built. For example, in the
planning stage, there are tools for plan
management, plan collaboration and plan
checklist.

2.2) The system must have a ready-
to-use knowledgebase. The first design
philosophy is a program, which will need
accompanied data. This data must be
a high level dafta that has been proven
that it is useful for project management.
This proven data is our knowledge and
many kinds of knowledge are accumu-
lated info a knowledgebase. Examples of
items in the knowledgebase are checklists,
risks, non-functional requirements, templates
and styles.

Checklists are lists of items that should
be verified at a certain stage. For example,
if a plan is created, it should be checked
against the checklist for plan. If any item
in the checklist is identified as “no-go”,
the issue must be solved before the plan
is employed. A good set of checklist can

prevent project failure by making sure that

120 15 1smenms w.a. 2550

certain operations have not been
unintentionally omitted.

Risks in the knowledgebase are a
set of known risk factors that may aoffect
project success. Examples of risks are late
required hardware shipment and the need
to shift project members to another project.
When we manage a project, we do not
need to identify all risks by ourselves- it
is preconfigured for the system.

Non-functional requirements are a set
of requirements that are not directly related
tfo the function of the software. Function
requirements are application-specific but
non-functional requirements are relatively
application-independent. Non-functional
requirements include usability (user-friend-
liness), efficiency, reliability, security,
maintainability and portability. A procuring
organization may not be technical enough
to express these requirements in a clear
and complete manner. Therefore these
initial non-functional requirements in the
knowledgebase is really essential on
specifying the scope of the software.

Document templates are structures of
document fo be generated. For example,
if a user manual is to be written, the
writer does not need fo start writing from
scratch. He can ufilize a standard user
manual template and fill in the desired
information. This approach has the ad-
vantage of getting rid of the chance that

an important issue is omitted. There are

about 30 document templates in the
program.

Coding styles are formatting styles for
source code in a particular language.
When a procuring organization hires a
software house to write software, the
sofftware house may divide the project
info several pieces and assign each piece
to a subcontractor. If the source code
is to be submitted to the procuring
organization, there would be many for-
matting styles, which is hard to maintain.
Specifying coding style at the beginning
of the project can prevent this problem.

2.3) The system must place emphao-
size on utilizing full potential of all team
members. The procuring organization and
the software house must be combined
info a single team with a common goal
of driving the project to success. Sometime,
we have experts in the procuring orgo-
nization and experts in the development
team but there is no channel of com-
munication that can bring expertise from
individuals to the project. The system must
serve as a channel of communication that
is available anytime and anywhere and
promote freedom of expression. Also, seniority
in Thai culture is very strong. This can
adversely affect freedom of expression. For
example, if a senior says "I want to do
it this way”, no subordinates will dare to
resist even though there is a better way
to do it. The systemm must be able to

handle this issue.

3. Architecture of Scorpion

From the three design philosophies
of Scorpion, its architecture is laid out
as shown in Figure 2.

| LesonLearned |
Tmprovement Request

Testing

Figure 2 Scorpion Architecture

In the planning phase, Scorpion
supports management of project objec-
tives, benefits, feasibility study and project
plans. Setting clear project objectives is
important because it will direct the design
and implementation of the software.
Feasibility study allows team members to
analyze the feasibility of the project in
different aspects such as technical,
tfimeframe, economics, legality, politics,
marketing and actual utilization of the
system. If there is an aspect with low
feasibility, the project might be terminated
at the present time to prevent future loss
of time and resources on the project.
Benefits to the projects allow us to analyze
the worth of the project. Expensive projects
with unclear benefits may be subjected
to deduction or merging with other projects.
Project plans specify the date of various

project activities.

. . - y .
mamsd umsdnw TsaGeuneiesnszgaaauing 121

In the analysis phase of software
development lift cycle, the program
manages requirements. Requirements of
the soffware are formulated as a list of
requirement items. Each item must be
discussed to determine whether it is really
needed. Some requirement items might
be deducted at this phase, while others
might be merged with other requirement
items. Requirements that tfruly meet the
need of the organization will eventually
emerge through the process of brainstorm-
ing that can be done anywhere and
anytime.

In the design and implementation
phase, the system supports management
of project document, user interface design
and database design. Project documents
include design specification, UML diagrams,
coding styles and document templates.
Any type of documents (such as Microsoft
word, Excel, PDF, ZIP, photo images or
scanned documents) can be shared and
discussed conveniently. The system supports
user interface design by allowing devel-
opers to show their design of a user
inferface screen. Each screen is then
discussed to search for the best possible
design. For the database design, the team
will try to specify what items are to be
stored by the program. In relational database
management model, data items are stored
as tables with associated columns. Scor-
pion supports design of database by keeping

track of what tables and fields are needed.

122 M5 1IMHPIMT WA, 2550

Each field is associated with an access
right. Only users with certain rights can
access the data of the system. Access
right included viewing, adding, modifying
and deleting. All tfeam members will have
a chance to specify their needs before
the program is built.

In the tfesting phase of the software
life cycle, Scorpion supports submission of
bug report and improvement request. Bug
reports are submitted by a feam member
to indicate that there is a miss-behavior
in the system. The member can specify
details such as when and where the bug
happens along with any related informa-
fion that can help fixing the bug. Im-
provement request of the project is a
request from a fteam member to the
developer to specify improvement that
can be done on certain issues. Scorpion
classifies improvement request into 4 groups
: "Requested”, "Denied”, "Developing” and
“Done”.

For the maintenance phase, Scorpion
supports management of the lessons learned
in addition to bug report and improvement
request that exist the testing phase. Team
members can keep fracks of what they
learned in each project and accumulate
this knowledge to get better in their field
of interest.

Scorpion also supports management
of items that are applicable to any phase
of software development life cycle. These

items include application and application

group, checklists, risks, issues and meetings.
Applications that are in the same budget
allocation may be considered as being
in the same group. Usually all applications
in the same group have the same start-
of-project and end-of- project dates.
Checklists are managed so that items in
the list can be added or removed aos
needed. An issue can be raised by a
team member at any time if there is
a concern about the project. Each issue
is discussed until a clear solutfion is evolved.
If a face-to-face meeting is conducted,
the user can record the meeting for future

reference.

A. Features

Scorpion has a large set of features.
There are a ftotal of 228 users inferface
screens written in various languages such
as SQL, VB.Net, HTML, JavaScript, CSS and
XML. The followings are major features of
the program:

1) Support for setting clear objectives
of the project. Each objective can
also be assessed fo determine the
level of achievement.

2) Support for analyzing the worth of
the project. All benefits of the
projects can be openly discussed
and determined whether the ben-
efits are worth the cost of the

project.

3) Support for feasibility study. All
feasibilities are statistically summao-
rized and presented to determine
whether the project is feasible in
all aspects (technical, timeframe,
marketing, legal or actual utiliza-
fion).

4) Support for risk analysis. Each risk
has an associated probability of
occurrence and a level of con-
sequence when the risk happened.
Risks that have high probability of
occurrence and severe conse-
quences require extra attention to
prevent it from happing or mitigate
its severity.

5) Support for making use of existing
similar systems. In some cases, near
by organizations may be running
a system that is similar to the one
that is being built. Large volume
of knowledge can be readily trans-
ferred from the existing systems to
the new system.

6) Support for planning process. Each
plan can be discussed and checked
against related checklist to make
sure that the obtained plan is the
best possible one.

7) Support for database design. Each
item to be stored by the application
being built can be managed and
discussed. Access right of each
item can be specified in this phase

of the application life cycle.

. . - y .
memsd wumsdne Tsadeuneieanszgaaaun 123

124

8)

9)

10)

IR

12)

Support for keeping tfracks of all
the functional and non-functional
requirements of the application.
Each requirement can be ana-
lyzed and tracked. Some require-
ments may not be approved to
be included in the system specifica-
tion; while other requirements may
be in a development or verified
stage.

Support for management of nexi-
phase features. Scorpion promotes
all team members to think ahead.
If the second or third phase of
the project is to be built, what
should be their features. The current
system can be designed to allow
smooth fransition to the next phase.
Support for checklist management.
Checklists are classified into group
with clear indication of when the
checklist is applicable.

Support for bug reports and
improvement requests. All bug and
requests are tracked. Developers
can discuss on issues concerning
the bug or request with the
submitter.

Support for management of meeting
records. All face-to-face meeting
can be recorded for reference

purpose.

M3 1WMAMI W.A. 2550

13) Support for discussion of project-
related issues. A feam member
can raise an issue that requires
particular attention or clarification.
The issue is then discussed until
it is clear.

14) Support for management of lesson
learned. A team member can keep
frack of what he has learned from
a project. These are valuable
knowledge that might be useful
in the future.

15) Support for application and ap-
plication group management.
Application can be classified by
its group, development stage, or
warning level. A warning level is
a system-wide indicator that speci-
fies the overall condition of the
project. Examples of warning levels

“OK”, and

include “Caution”

“Danger”

5. Summary

Scorpion is an attempt to bring theories
in software engineering textbooks along
with the art and science of project
management info one complete software
package that can guide the project to
success. Experienced or novice project
managers can start using the program
for their project immediately at their preferred

location or time of day. All known causes

of project failure have been analyzed and life cycle until its refirement phase. It is

tfackled by various tools, knowledgebase our goal to solve software crisis of this
and collaboration. Moreover, it supports era and bring the software project failure
management of the procured applications’ rate down fo a more reasonable figure.
References

(1) Standish Group Report, The Chaos Report, http://www.standishgroup.com/sample_research/chaos_1994_1.php
(2) Al Neimatf, Taimour, Why [T Projects Fail, http://www.projectperfect.com.au/info_it_projects_fail.php 2005

(3) Roger S. Pressman, Software Engineering: A Practitioner’s Approach, McGraw-Hill Science/Engineering/Math;
6 edition, 2004

(4) Hoffer, Jeffrey, Modem Systems Analysis and Design (4" Edition), Prentice Hall; 2004.

. . - y .
memsd wumsdne Tsadeuneieanszgaaaun 125

