
118 «“√ “√∑“ß«‘™“°“√ æ.». 2550

°Õß«‘™“«‘»«°√√¡‰øøÑ“ à«π°“√»÷°…“

‚√ß‡√’¬ππ“¬√âÕ¬æ√–®ÿ≈®Õ¡‡°≈â“

Scorpion :
A Prototype Solution for Solving

Software Crisis

Lt.Col.Dr. Phaderm Nangsue

Abstract

Scorpion is a web-based application

software that attempts to help solving the

on-going problem of software crisis. It

supports management of custom-made

application life cycle from procurement

to retirement. Procurement of custom-made

software is much harder than procurement

of its hardware counterpart because

custom-made software procurement involves

the full cycle of software engineering

process. This process includes planning,

system analysis, system design, system

implementation, testing and maintenance.

The required level of technical difficulties

is often above the skill level available in

the procuring organization. This problem

has caused software projects to fail at

a frightening rate, which is often referred

to as çsoftware crisisé. According to the

research paper from the Standish Group

[1] there is only 16% successful software

project. The rest is either a failure (31%)

or required additional time/resource on the

project (53%). This is where Scorpion comes

into play. It combines the arts and science

of software engineering into a single non-

abstract tool that can guide the project

to success by utilizing many tools such

as risk analysis, brain-storming, feasibility

study and knowledgebase of proven facts.

1. Introduction

 In a software procurement process,

the procuring organization hires a software

house to build custom-made software. It

may seem like a simple process: the

organization pays the software house and

the software house then submits the

desired software to the organization.

 ¿“Õ“®“√¬å à«π°“√»÷°…“ ‚√ß‡√’¬ππ“¬√âÕ¬æ√–®ÿ≈®Õ¡‡°≈â“ 119

However; in reality, it is quite difficult for

this deal to complete satisfactorily. In a

software project, the goal is to get quality

software within the planned time frame

and budget. As shown in Figure 1, a

software project may be any dot in the

figure. For project A, the quality is obtained

but it is over-budget and exceeds the

given time frame. Project B is even worse;

it does not achieve any goal. Project

C is the ultimate goal where the quality

is obtained within the planned budget

and time frame. Because it is not so easy

to be at the desire position in the figure,

there are so many failed software projects.

Statistics [1] shows that the chance of

getting this deal to complete satisfactorily

is only 16%. 31% of the software projects

is terminated before its completion. 53%

is over budget or requiring additional time

to complete. These figures are from the

surrey of 23,000 projects in the U.S.A. during

1994-1998. It is quite frightening that

software project fails at this rate. Moreover,

the bigger the project is, the higher

chance that it will fail. A one-year project

has a success rate of 25%. For two-year

project, the rate is dropped to 8%. For

three-year project the success rate is zero!

This is understandable because large projects

require many people and the commu-

nication overhead for n people is

n(n-1) = O(n2) which grows very quickly.

Figure 1 Project management goals.

1.1 Why software projects fail

According to [2], there are 6 major

factors that cause software project to fail.

These causes are 1) lack of planning 2)

unclear scope of work 3) lack of com-

munication 4) lack of skilled personnel 5)

lack of collaboration and 6) under estimated

project size. As can be seen, these causes

are not that serious. It is not the lack

of budget or the lack of technology to

complete the project. All of these causes

can be summarized to one issue: project

management. Thus it is a good chance

to solve this problem by creating a project

management tool that addresses all of

these causes. This kind of software pro-

curement support system has never been

created. The present so-called project

management software is intended for

software project manager in the developer

side. The organization which pays for the

project is usually not allowed to use the

software and therefore collaboration is not

achieved.

120 «“√ “√∑“ß«‘™“°“√ æ.». 2550

2. Philosophies in designing

a solution for solving

software crisis

Because we are building a new kind

of system, we have three design philoso-

phies as follow.

2.1) The system must be able to

manage all stages of software life cycle.

In each stage of software life cycle there

are tools to support management of the

software being built. For example, in the

planning stage, there are tools for plan

management, plan collaboration and plan

checklist.

2.2) The system must have a ready-

to-use knowledgebase. The first design

philosophy is a program, which will need

accompanied data. This data must be

a high level data that has been proven

that it is useful for project management.

This proven data is our knowledge and

many kinds of knowledge are accumu-

lated into a knowledgebase. Examples of

items in the knowledgebase are checklists,

risks, non-functional requirements, templates

and styles.

Checklists are lists of items that should

be verified at a certain stage. For example,

if a plan is created, it should be checked

against the checklist for plan. If any item

in the checklist is identified as çno-goé,

the issue must be solved before the plan

is employed. A good set of checklist can

prevent project failure by making sure that

certain operations have not been

unintentionally omitted.

Risks in the knowledgebase are a

set of known risk factors that may affect

project success. Examples of risks are late

required hardware shipment and the need

to shift project members to another project.

When we manage a project, we do not

need to identify all risks by ourselves- it

is preconfigured for the system.

Non-functional requirements are a set

of requirements that are not directly related

to the function of the software. Function

requirements are application-specific but

non-functional requirements are relatively

application-independent. Non-functional

requirements include usability (user-friend-

liness), efficiency, reliability, security,

maintainability and portability. A procuring

organization may not be technical enough

to express these requirements in a clear

and complete manner. Therefore these

initial non-functional requirements in the

knowledgebase is really essential on

specifying the scope of the software.

Document templates are structures of

document to be generated. For example,

if a user manual is to be written, the

writer does not need to start writing from

scratch. He can utilize a standard user

manual template and fill in the desired

information. This approach has the ad-

vantage of getting rid of the chance that

an important issue is omitted. There are

 ¿“Õ“®“√¬å à«π°“√»÷°…“ ‚√ß‡√’¬ππ“¬√âÕ¬æ√–®ÿ≈®Õ¡‡°≈â“ 121

about 30 document templates in the

program.

Coding styles are formatting styles for

source code in a particular language.

When a procuring organization hires a

software house to write software, the

software house may divide the project

into several pieces and assign each piece

to a subcontractor. If the source code

is to be submitted to the procuring

organization, there would be many for-

matting styles, which is hard to maintain.

Specifying coding style at the beginning

of the project can prevent this problem.

2.3) The system must place empha-

size on utilizing full potential of all team

members. The procuring organization and

the software house must be combined

into a single team with a common goal

of driving the project to success. Sometime,

we have experts in the procuring orga-

nization and experts in the development

team but there is no channel of com-

munication that can bring expertise from

individuals to the project. The system must

serve as a channel of communication that

is available anytime and anywhere and

promote freedom of expression. Also, seniority

in Thai culture is very strong. This can

adversely affect freedom of expression. For

example, if a senior says çI want to do

it this wayé, no subordinates will dare to

resist even though there is a better way

to do it. The system must be able to

handle this issue.

3. Architecture of Scorpion

From the three design philosophies

of Scorpion, its architecture is laid out

as shown in Figure 2.

Figure 2 Scorpion Architecture

In the planning phase, Scorpion

supports management of project objec-

tives, benefits, feasibility study and project

plans. Setting clear project objectives is

important because it will direct the design

and implementation of the software.

Feasibility study allows team members to

analyze the feasibility of the project in

different aspects such as technical,

timeframe, economics, legality, politics,

marketing and actual utilization of the

system. If there is an aspect with low

feasibility, the project might be terminated

at the present time to prevent future loss

of time and resources on the project.

Benefits to the projects allow us to analyze

the worth of the project. Expensive projects

with unclear benefits may be subjected

to deduction or merging with other projects.

Project plans specify the date of various

project activities.

122 «“√ “√∑“ß«‘™“°“√ æ.». 2550

In the analysis phase of software

development lift cycle, the program

manages requirements. Requirements of

the software are formulated as a list of

requirement items. Each item must be

discussed to determine whether it is really

needed. Some requirement items might

be deducted at this phase, while others

might be merged with other requirement

items. Requirements that truly meet the

need of the organization will eventually

emerge through the process of brainstorm-

ing that can be done anywhere and

anytime.

In the design and implementation

phase, the system supports management

of project document, user interface design

and database design. Project documents

include design specification, UML diagrams,

coding styles and document templates.

Any type of documents (such as Microsoft

word, Excel, PDF, ZIP, photo images or

scanned documents) can be shared and

discussed conveniently. The system supports

user interface design by allowing devel-

opers to show their design of a user

interface screen. Each screen is then

discussed to search for the best possible

design. For the database design, the team

will try to specify what items are to be

stored by the program. In relational database

management model, data items are stored

as tables with associated columns. Scor-

pion supports design of database by keeping

track of what tables and fields are needed.

Each field is associated with an access

right. Only users with certain rights can

access the data of the system. Access

right included viewing, adding, modifying

and deleting. All team members will have

a chance to specify their needs before

the program is built.

In the testing phase of the software

life cycle, Scorpion supports submission of

bug report and improvement request. Bug

reports are submitted by a team member

to indicate that there is a miss-behavior

in the system. The member can specify

details such as when and where the bug

happens along with any related informa-

tion that can help fixing the bug. Im-

provement request of the project is a

request from a team member to the

developer to specify improvement that

can be done on certain issues. Scorpion

classifies improvement request into 4 groups

: çRequestedé, çDeniedé, çDevelopingé and

çDoneé.

For the maintenance phase, Scorpion

supports management of the lessons learned

in addition to bug report and improvement

request that exist the testing phase. Team

members can keep tracks of what they

learned in each project and accumulate

this knowledge to get better in their field

of interest.

Scorpion also supports management

of items that are applicable to any phase

of software development life cycle. These

items include application and application

 ¿“Õ“®“√¬å à«π°“√»÷°…“ ‚√ß‡√’¬ππ“¬√âÕ¬æ√–®ÿ≈®Õ¡‡°≈â“ 123

group, checklists, risks, issues and meetings.

Applications that are in the same budget

allocation may be considered as being

in the same group. Usually all applications

in the same group have the same start-

of-project and end-of- project dates.

Checklists are managed so that items in

the list can be added or removed as

needed. An issue can be raised by a

team member at any time if there is

a concern about the project. Each issue

is discussed until a clear solution is evolved.

If a face-to-face meeting is conducted,

the user can record the meeting for future

reference.

4. Features

Scorpion has a large set of features.

There are a total of 228 users interface

screens written in various languages such

as SQL, VB.Net, HTML, JavaScript, CSS and

XML. The followings are major features of

the program:

1) Support for setting clear objectives

of the project. Each objective can

also be assessed to determine the

level of achievement.

2) Support for analyzing the worth of

the project. All benefits of the

projects can be openly discussed

and determined whether the ben-

efits are worth the cost of the

project.

3) Support for feasibility study. All

feasibilities are statistically summa-

rized and presented to determine

whether the project is feasible in

all aspects (technical, timeframe,

marketing, legal or actual utiliza-

tion).

4) Support for risk analysis. Each risk

has an associated probability of

occurrence and a level of con-

sequence when the risk happened.

Risks that have high probability of

occurrence and severe conse-

quences require extra attention to

prevent it from happing or mitigate

its severity.

5) Support for making use of existing

similar systems. In some cases, near

by organizations may be running

a system that is similar to the one

that is being built. Large volume

of knowledge can be readily trans-

ferred from the existing systems to

the new system.

6) Support for planning process. Each

plan can be discussed and checked

against related checklist to make

sure that the obtained plan is the

best possible one.

7) Support for database design. Each

item to be stored by the application

being built can be managed and

discussed. Access right of each

item can be specified in this phase

of the application life cycle.

124 «“√ “√∑“ß«‘™“°“√ æ.». 2550

8) Support for keeping tracks of all

the functional and non-functional

requirements of the application.

Each requirement can be ana-

lyzed and tracked. Some require-

ments may not be approved to

be included in the system specifica-

tion; while other requirements may

be in a development or verified

stage.

9) Support for management of next-

phase features. Scorpion promotes

all team members to think ahead.

If the second or third phase of

the project is to be built, what

should be their features. The current

system can be designed to allow

smooth transition to the next phase.

10) Support for checklist management.

Checklists are classified into group

with clear indication of when the

checklist is applicable.

11) Support for bug reports and

improvement requests. All bug and

requests are tracked. Developers

can discuss on issues concerning

the bug or request with the

submitter.

12) Support for management of meeting

records. All face-to-face meeting

can be recorded for reference

purpose.

13) Support for discussion of project-

related issues. A team member

can raise an issue that requires

particular attention or clarification.

The issue is then discussed until

it is clear.

14) Support for management of lesson

learned. A team member can keep

track of what he has learned from

a project. These are valuable

knowledge that might be useful

in the future.

15) Support for application and ap-

plication group management.

Application can be classified by

its group, development stage, or

warning level. A warning level is

a system-wide indicator that speci-

fies the overall condition of the

project. Examples of warning levels

include çOKé, çCautioné and

çDangeré

5. Summary

Scorpion is an attempt to bring theories

in software engineering textbooks along

with the art and science of project

management into one complete software

package that can guide the project to

success. Experienced or novice project

managers can start using the program

for their project immediately at their preferred

location or time of day. All known causes

 ¿“Õ“®“√¬å à«π°“√»÷°…“ ‚√ß‡√’¬ππ“¬√âÕ¬æ√–®ÿ≈®Õ¡‡°≈â“ 125

of project failure have been analyzed and

tackled by various tools, knowledgebase

and collaboration. Moreover, it supports

management of the procured applicationsû

life cycle until its retirement phase. It is

our goal to solve software crisis of this

era and bring the software project failure

rate down to a more reasonable figure.

References

[1] Standish Group Report, The Chaos Report, http://www.standishgroup.com/sample_research/chaos_1994_1.php

[2] Al Neimat, Taimour, Why IT Projects Fail, http://www.projectperfect.com.au/info_it_projects_fail.php 2005

[3] Roger S. Pressman, Software Engineering: A Practitionerûs Approach, McGraw-Hill Science/Engineering/Math;

6 edition, 2004

[4] Hoffer, Jeffrey, Modern Systems Analysis and Design (4th Edition), Prentice Hall; 2004.

