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Abstract

This paper deals with the problem of

finding the external solutions of nonlinear

dynamic systems by using the minimum

energy and minimum jerk. Both the minimum

energy consumption and smoothness, which

is quantified as a function of jerk, are

generally needed in many dynamic sys-

tems. This research paper proposes a simple

yet very interesting relationship between

the minimum jerk and minimum energy

approaches in designing the time-depen-

dent system yielding an alternative optimal

solution. Morever, this objective is needed

in nonlinear dynamic systems. Extremal

solutions for the cost functions of jerk and

energy are found using the dynamic
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optimization methods together with the

numerical approximation. After comparison,

the conclusion is that both results from the

minimum jerk and energy are quite similar

when the total energy comsumptions are

compares.

1. Introduction

Nowadays advanced mobile machines

are designed so that they are either

optimized on their energy consumption or

on their greatest smoothness of motion.

Consequently, the trajectory planning and

designs of these mobile machines and

robots are done exclusively through many

approaches such as the minimum energy

and minimum jerk.  Nevertheless, in some
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applications, the robot is needed to work

very smoothly in order to avoid damaging

the specimen that the robot is handling

while consuming least amount of energy

at the same time. In other words, we

may want to minimize jerk of the movement

of the robot as to give a smoothest motion

as well as optimize that robot in the energy

consumption issue.

The general form of the dynamic

problems is consists of the equation of

motion, the initial conditions, and the

boundary conditions.  The problems consider

the two-point-boundary-value problem is

considered. Each of the problems may

contain many possible solutions depending

on the objective of application.  Obviously,

the robot that aims to run at mininum

energy will be designed to have the lowest

actuator inputs during the motion. This is

basically the optimization problem of the

dynamic systems.

The object of this research is to

searching for the relationship between the

minimum jerk and minimum energy by

using the optimization method so that this

new alternative can be put into appli-

cations. We know that the minimum energy

is the function of the acceleration so we

expect the minimization of jerk to reveal

relatively similar result concerning the energy

consumption issue.

2. Problem Statement

Dynamic systems can be described

as the first order derivative term of state

as

(1)

where, χ ∈ Rn, u ∈ Rm and t are

state, control inputs, and time respectively.

The problem of interest is to find

the states x(t) and control inputs u(t) that

make our system operates according to

the desired objective of minimum energy

or minimum jerk with fixed end time and

fixed end points. Therefore, states and

control inputs that serve the necessary

condition must also be able to bring the

system from initial conditions x(t0 ) at initial

time t0 to the end point x(tf ) at time

tf.

The optimal control problem of

minimum energy will take the form of

(2)

where ui is the control inputs, which

can be force or torque applied to the

system, J is the cost function of the energy

consumption

The same kind of concept is used

in the minimum jerk problem. It is well

known that jerk is the change of input

force with respect to time. It is, thus, the

third derivative with respect to time of
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x, or first order derivative of control input

u. Therefore,

(3)

or

(4)

so (1) becomes

(5)

We will treat  as a variable and

as the control input of our dynamic system.

Consequently, (2) can be rewritten for the

objective function of the minimum jerk

problem as

(7)

where J is the cost function of the

jerk.

3. Necessary Conditions

In this research paper, we use the

calculus of variations in order to solve

for the optimum solutions of the dynamic

system. Representing the control input with

u, the principle of calculus of variations

helps us solve the optimization problem

by finding the time of the control input

that would minimize the cost function in

the form

(8)

where

(9)

is the cost based on the final time and

the final states of the system, and

(10)

is an integral cost dependent on the time

history of the state and control variables,

therefore, the first term of (8) is omitted.

The dynamic equations is then equal

to Lagrange Multipliers of the cost func-

tional as follow:

(11)

where

(12)

and λi(t) are Lagrange multipliers. Con-

sequently, (11) becomes:

(13)
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The problem with fixed end time and

end points are considered. Initial time t0,

end time tf, initial state x(t0), and final

state x(tf) must be set prior to solve the

problem.  The differentiable functions are

dependent on the boundary condition of

x(t0)=x0, x(tf)=xf, u(t0)=u0 and u(tf)=uf where

time used falls in the time interval ti ≤ t ≤ tf.

Let function

be represented as a functional

(14)

Let χ(t0) be incremented by hχj(t0),

u(t0) be incremented by huk(t0), and still

satisfy the boundary conditions, then hχj(t0)

= hχj(tf) = huk(t0) = huk(tf) = 0. So, the

change in functional ∆J will be

(15)

Applying Taylorûs Series to (15), dis-

regard the higher order terms, and apply

it to the problem results in

(16)

Since hχj|tf = hχj|ti = 0 and     = 0,

the last two terms of (16) become zero.

In order that the cost functional of jerk

in (13) can be solved for minimal solution,

the condition that make δJ´ = 0 at arbitrary

variation of hχj and huk are needed. From

(16), obviously the mentioned conditions

are as follow:

(17)

and

(18)

for j = 1,...,n and k = 1,...,m.

Equations (17) and (18) are the

necessary conditions that will lead to solve

for Lagrange multipliers χj(t), and control

inputs uk(t). Alternatively, we can use the

derived relationship below to solve for the

unknowns necessary conditions:

For

(19)
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Necessary conditions are

(20)

(21)

4. Example Problem

The system of non-linear equation of

mobile machines is given as

(22)

From equation (22) can be rewritten as

the first order differential equation of the

form

(23)

where the states of the rest-to-rest system

at fixed initial time (t=0) and final time

(t=1) is specified as

4.1 Minimum Energy Problems

The cost function of the form

(24)

In order for the cost function in (24)

to be minimize, using the Calculus of

Variation, a new functional J´[χ] in (13)

is defined. Representing the L´ with F,

we will have

(25)

After (17) and (18) to the problem

gives the resulting necessary conditions are

(26)

4.2 Minimum Jerk Problems

The minimum jerk problem has the

exact same format as the minimum energy

problem in (23). However, since the time

derivative of control inputs are considered,

the (23) must be rewritten as to include

the consideration of jerk into the system

as shown below:

(27)

where the boundary condition from

the initial (t=0) and final time (t=1) is

the same as the minimum energy problem.

The jerk cost function in this problem

is defined as

(28)

Following the same procedure as

used in minimum energy problem, F is
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given as

(29)

Following is the necessary condition

derived from (17) and (18) for the minimum

jerk problem:

(30)

4.3 Numerical Results

Fig.1 is a plot of the time history

of the control input derived from the two

problems: minimum energy and minimum

jerk. For the minimum energy problem,

the time-dependent control input can be

solved and found to have a non-linear

equation problem.

At initial time (t=0), the control input

rises very sharply thus its jerk is also

tremendous. As time passes, the control

input linearly decreases. In term of

application, the considerable force and

its jerk at initial time may result in the

damage of specimen handled by robot

or uncomfortable feeling of the passenger

in the mobile machine.

Figure 1 Comparison of the result from
minimum energy and minimum jerk
problem

5. Conclusion

The use of non-linear programming

provides us with a numerical method that

helps solving the control profile. From the

visual observation, it is obviously shown

that the plots of control input u(t) and

(t) are closely related. However, the

minimum jerk problem has an advantage

that the boundary conditions of the control

inputs can be assigned to the problem.
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