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Abstract:
In this paper we address issues in the

numerical solution of differential - algebraic
equations (DAEs) arising from the direct
approach o f  Genera l  Dynamic  op t ima l
control. First the dynamic equation of motion
is solved by using Runge - Kutta technique
which is one of the method of the numerical
integrat ion. Next,  result ing of state and
costate variables arising from the numerical
integration can be used to transform the
direct opt imal control  problem into the
nonl inear programming form. Then the
a lgor i thm used to  so lve  the  resu l t ing
parameterized optimization problem with an
emphasis on its interaction to the collocation
method is  the  non l inear  p rogramming
method. Finally, the general optimal control
software based on this direct approach is
developed in order to test problems and
compare the result with a similar technique
developed by K.E.BRENAN ( Brenan, 1993).

Key  words :  Opt im iza t ion ,  Numer ica l ,
Nonlinear Programming, Dynamics.
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1. Introduction
In the problem of optimal control, the

trajectory is determined which sat isf ies
s imu l taneous ly  equat ions  o f  mot ion ,
boundary conditions, inequality constraints,
equality constraints, and a performance index
(or cost functional) must be minimized or
maximized. There are many criteria in order
to be used to solve the opt imal control
problems such as calculus of var iat ions,
minimum principle, matrix exponential, and
Hamilton - Jacobi equations. However, these
are considered as indirect procedures since the
necessary and sufficient conditions must be
derived and result in the differential - algebraic
equations (DAEs). In this paper, we focus on
a direct procedure which is known that the
optimal control problems will be converted
to a parameter optimization problems. In
Section 2, the statement of the problem is
described along with a technique that
developed by K.E.BRENAN (Brenan, 1993)
which is called Hermit - Simpson collocation
method. We are proposing a similar technique



in Section 3 namely Runge - Kutta collocation
method. We believe that by using collocation
method, the Hermit technique is not an only
one that is necessary to be used for such an
accuracy solution. In addition, using Runge -

Kutta method that is a forward integrating tool
can help in term of how to providing initial
guesses. In Section 4, we describe how the
general optimal control software is developed.
Finally, an example is illustrated in Section

2. Statement of the Problem
The statement of the problem is to find

an opt imal t rajectory in both state and
cont ro l  var iab les  to  min imize  the  cos t
functional.
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Methods for solving optimal control
problems can be divided into two basic classes:
indirect and direct methods. In the indirect
approach, the optimal control problem is
transformed into a boundary value problem
by formulat ing the f i rst  order necessary
conditions for optimality, thereby obtaining
the Euler - Lagrange system (Bolza, 1931),
(Bryson&Ho, 1975),  (Kirk,  1970).  In the
direct approach, the optimal control problem
is approximated by a parameter optimization
problem in which the first order optimality
conditions are not explicitly included. The
Hermit - Simpson formula is used to discretize
the  op t ima l  con t ro l  p rob lem to  be  a

parameter optimal control problem, then the

nonlinear programming algorithm is used to

obtain solution (Brenan, 1993).

We now descr ibe the HS (Hermi t -

S impson )  me thod  as  imp lemen t  i n
(Brenan, 1993). Suppose the interval [tn, t,]

is partitioned into N subintervals such that

t o (  t , (  " ' (  f * =  t f  . D e f i n e  h , = t , - t , . , f o r i =

I ,..., N. Let x and u represent the approxi-

mate state and control values respectively at

the nodes t . Introduce variables c, to repre-

sent weighted derivatives of the controls at

the nodes.

o Using Hermit cubic interpolation

to represent the solution on each

subinterval, and letting f  ̂ (t,x,u)
= f  ( t ,x ,u,P) ,  est imate the values

of the states at the segment centers.
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and the controls at the segment centers,
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o  Eva lua te  t he  d i f f e ren t i a l
equations at the center of each
segment using the interpolated

center values, f ,(t,, ),, u,), where

t , = ( t , - , + t t ) 1 2 .
o Integrate across the segment

using Simpson's quadrature rule:
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o Evaluate the path constraints at

the nodes and midpoints:
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Equa t i ons  (9 )  t h rough  (13 )  f o rm  a

non l i nea r  sys tem o f  equa t i ons  fo r  t he

unknown variables x,, u., and w at the nodes

as well as for the final time rr. The parameter

optimization problem can now be stated as

nonlinear programming.

3. Runge . kutta Collocation
Method

I n  t h i s  sec t i on ,  t he  Runge  -  Ku t ta

collocation method is described in a similar

procedure as Hermit - Simpson collocation

techn ique  s ince  the  Herm i t  -  S impson

collocation technique and Runge - KLltta are

known as the numerical integrating tools.

Suppose the interval fro, r,J is partitioned into

N subintervals such that rn < tr< .. '  ( f- = 1, .

D e l i n e  h , = t , - t , , f o r i -  1 , . . . ,  N .  L c t  x , a n d u ,

represent the approximate state and control

values respectively at the nodes t.. x from

equation (2) in the neighborhood of x can

be expressed in terms of the Thylor series.

Letting the time increment beh= At, we have

f a . . ) ,  ( a ' * \ t , '
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Instead of using these expressing, it is

possible to replace the first derivative by an

average slope and ignore higher - derivatives

If we used Simson's rule, the average
slope in the interval h becomes, i.e.

( a ' )
\ d r  l

The Runge - Kutta method is very
similar to the preceding computations, except
that the center term of the given equation is
split into two terms and four values of t, x and

f are computed for each point i as follows:
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These quantities are then used in the
following recurrence formula:

. r i . r  = . f ,  n l i p "  + ? F 2 + 2 r 3  + F  l  G 4 )'  6 '

where it is recognized that the four values of

F divided by 6 results in an average of d1 | dt

as defined. At this step, we can evaluate all

the path constraints i.e., equations (3), (4),

(5), and (6) at the node points as a parameter
p instead of x.. These form a nonlinear system

o f  equa t i ons  as  pa rame te r  op t im iza t i on

problems as

min -r(l) (1s)

subject to a set ofequation (14) and
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The equat ions (15) through (19) are
known as nonlinear programming problem
that the parameter p must be determined in
order to obtain the feasible solut ion to
dynamic optimization problem.
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Fig. 1. The Front page

4. General Optimal Control
Software

The general - purpose program has been
cleveloped using Matlab software. Furthermore,
we design it as visual inputs and outputs for
an  easy  imp lement  and use.  F i rs t ,  the
problem has been divided into 3 categories as
(i) Flxed end time, (ii)Variable end time, and
(iii) Minimum time as shown in Figure 1.

All three categories are designed in the
f ron t  page as  push bu t ton ;  there fore ,
whenever  user  pushes  the  bu t ton ,  the
appropriate second window is opened as
shown in Figure 2,3, and 4.

Fig. 3. The Second Page (Variabl.e End Time)

Fig. 4. The SecondPase (MinimumTime)

In each category, user must provide the
considering problem. Also, this software is
divided into two steps. First, the software
parameterizes the input problem by the user
into the form of nonlinear programming
symbol ical ly and stores al l  the algebraic
equations as data files. Similarly for the cost
funct ional (  1) which represented in the
integral  form is parameter ized by using
Simpson rule. The second step is called on -

line computation that solves the nonlinear
programming problem described in Section 3.
In the problem of nonlinear programming, it
is very well known that the gradients of both
the objective function and the constrained
algebraic equation have the effective on how
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Fig. 2. The Second FaSe (FkedEndTime)
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fast the solution could be obtained. Therefoie,
we propose this gradient as an option in each
category as a simple click then the code
provides al l  the gradients automatical ly.
Finally, if the optimal control solutions are
obtained, user can observe all the optimal
trajectories by pushing the plot button. Note
that the results plotted in this software are all
the state and control variables respect to time.

r F l

). Dxamples

Fig. 5. Two degree - of - freedomof Spring. mcss
' dmnper System

5.1 Example 1: Spring. moss . damper
Svstem

The procedure out l ined in this
paper for dynamic optimization is illustrated
with the following example of a two degree -

of - freedom spring - mass - damper system
sketched in equation as

where the matrices M, C, and K are:

l^ ,
M = l

L 0
(23)

(24)

The parameters used in the model
in MKS units are: f f i r=f f i  2= 7 .0,  C t  = Ct= 7 .0,
c ,  =  2 . 0 , k ,  -  k ,  =  k t  =  3 . 0 .  T h e  c o s t
functional in equation (1) is L = LLt + 1.12
The boundary conditions specified for the
problem are X(t,,) = (5 10 0 0)r and. X (t) =
(0 0 0 0)r , where t,,= 0 atd tr= 2.0 . The state
and control trajectories obtained from the
opt imizat ion procedure described in this
paper and the technique proposed in (Brenan,

1993 ) are overlap within the accuracy of the
drawings shown in Figure 6 and 7.

Fig. 6. The Optimal State Solution
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The matrices A and B for
are as follows:
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rhis system

(2r)

B = 0 l
m 2

0 0

0 0

Fig, 7. The Optimal Control solution
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5.2 Flexible Link Robot

In the problem of nonlinear systems,
the example is of a single link manipulator
rotating in a vertical plane driven through a
flexible drive train (Spong & Vidyasaga, 1986)
shown in Figure 8. The system has two
degree - of - freedom and the equations of
motion are

Iq ' ,  +  Mgt  s inq ,  *  kb ,  -  q  r )  =  0
J i i r - k ( q ' - q r ) = u ,  

( 2 5 )

where I and J is respectively the hnk and ac-
tuator moment of inertia, M is the mass of
the link with mass center at a distance lfrom
the joint, k is the stiffness of the drive train, g
is the gravity constant, and u is the actuator
torque. Let the objective be to steer the
system from a given set of initial conditions
orr e,, 42, 4,, and 4, at t0 to a specified goal
point at t, while minimizing a cost .

Fig. 8. Flexible Link Robot

I lmr

Fig. 9. The Optimal State Solutiott

,,  r  , ,
J = lu2dt . The trajectory must satisfy the

to

constraint -50 < u < 50 during motion. The
parameters used in the model (in MKS units)
a r e :  I  = J  = 1  . 0 , k =  1 . 0 , g =  9 . 8 ,  M =  1 . 0 ,  a n d
I = 0 . 5 .

The boundary conditions at both ends
aret q(\) = (0.03 0.04 - 0.0215 0.008)rand
q(t") = (0.06 0.08 - 0.429 - 0.0639)r. The state
and control trajectories obtained from the
opt imizat ion procedure described in this
paper and the technique proposed in (Brenan,
1993) are overlap within the accuracy of the
drawings shown in Figure 9 and 10.

Fig. 1 0. The Optimal Control Solution

6. Conclusion
It is known from the literatures that

there  are  many dynamic  op t im iza t ion
theories for direct approach have been
developed for the dynamic systems. This
paper was aim to applied a simple technique
for a general - purpose program; therefore, the
Runge - Kutta collocation method has been
used. Similarly in one literature developed by
BRENAN, K.E., the approach is quite similar
namely  Hermi t  -  S impson co l loca t ion
method. However, the solutions from both
methods Are compared within the accuracy of
the drawing in this paper. As a result, the
general - purpose program has been developed
by using Runge - Kutta collocation method.
Finally, the nonlinear algorithm is used since
the dynamic opt imizat ion problems are
conver ted  to  a  parameter  op t im iza t ion
problems when the Runge - Kutta collocation
technique is applied. .tS
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