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NG AND
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Abstract:

In this paper we address issues in the
numerical solution of differential - algebraic
equations (DAEs) arising from the direct
approach of General Dynamic optimal
control. First the dynamic equation of motion
is solved by using Runge - Kutta technique
which is one of the method of the numerical
integration. Next, resulting of state and
costate variables arising from the numerical
integration can be used to transform the
direct optimal control problem into the
nonlinear programming form. Then the
algorithm used to solve the resulting
parameterized optimization problem with an
emphasis on its interaction to the collocation
method is the nonlinear programming
method. Finally, the general optimal control
software based on this direct approach is
developed in order to test problems and
compare the result with a similar technique

developed by K.E.BRENAN ( Brenan, 1993).
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1. Introduction

In the problem of optimal control, the
trajectory is determined which satisfies
simultaneously equations of motion,
boundary conditions, inequality constraints,
equality constraints, and a performance index
(or cost functional) must be minimized or
maximized. There are many criteria in order
to be used to solve the optimal control
problems such as calculus of variations,
minimum principle, matrix exponential, and
Hamilton - Jacobi equations. However, these
are considered as indirect procedures since the
necessary and sufficient conditions must be
derived and result in the differential - algebraic
equations (DAEs). In this paper, we focus on
a direct procedure which is known that the
optimal control problems will be converted
to a parameter optimization problems. In
Section 2, the statement of the problem is
described along with a technique that
developed by K.E.BRENAN (Brenan, 1993)
which is called Hermit - Simpson collocation
method. We are proposing a similar technique



in Section 3 namely Runge - Kutta collocation
method. We believe that by using collocation
method, the Hermit technique is not an only
one that is necessary to be used for such an
accuracy solution. In addition, using Runge -
Kutta method that is a forward integrating tool
can help in term of how to providing initial
guesses. In Section 4, we describe how the
general optimal control software is developed.
Finally, an example is illustrated in Section

5.

2. Statement of the Problem

The statement of the problem is to find
an optimal trajectory in both state and
control variables to minimize the cost
functional.
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Methods for solving optimal control
problems can be divided into two basic classes:
indirect and direct methods. In the indirect
approach, the optimal control problem is
transformed into a boundary value problem
by formulating the first order necessary
conditions for optimality, thereby obtaining
the Euler - Lagrange system (Bolza, 1931),
(Bryson&Ho, 1975), (Kirk, 1970). In the
direct approach, the optimal control problem
is approximated by a parameter optimization
problem in which the first order optimality
conditions are not explicitly included. The
Hermit - Simpson formula is used to discretize
the optimal control problem to be a

parameter optimal control problem, then the
nonlinear programming algorithm is used to
obtain solution (Brenan, 1993).

We now describe the HS (Hermit-
Simpson) method as implement in
(Brenan, 1993). Suppose the interval [t,, tf]
is partitioned into N subintervals such that
<t <<t =t . Defineh=t-t fori=
I,..., N.Letx andu, represent the approxi-
mate state and control values respectively at
the nodes ¢t . Introduce variables w, to repre-
sent weighted derivatives of the controls at
the nodes.

e Using Hermit cubic interpolation
to represent the solution on each
subinterval, and letting fp (t,x,u)
=f(t,x,u,p), estimate the values
of the states at the segment centers.
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and the controls at the segment centers,

vy =—12—(u‘»_1 +u,‘)+";'<wi~l +wi) (8)

® Evaluate the differential
equations at the center of each
segment using the interpolated
center values, fp (t,y, v.), where
t=(t,+t)/2.
¢ Integrate across the segment
using Simpson’s quadrature rule:
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¢ Evaluate the path constraints at
the nodes and midpoints:
c(t;,x;,u;)$0 (10)
C(fi,yi,vi)SO (11)
gt xu)=0 (12)
g(fisy;s"[) =0 (13)
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Equations (9) through (13) form a
nonlinear system of equations for the
unknown variables x , u, and w, at the nodes
as well as for the final time t.. The parameter
optimization problem can now be stated as
nonlinear programming.

3. Runge - kutta Collocation
Method

In this section, the Runge - Kutta
collocation method is described in a similar
procedure as Hermit - Simpson collocation
technique since the Hermit - Simpson
collocation technique and Runge - Kutta are
known as the numerical integrating tools.
Suppose the interval [z, tj.] is partitioned into
N subintervals such that t, <t < -~ <t = t .
Define h =t -t fori=1,...,N. Let x and u,
represent the approximate state and control
values respectively at the nodes ¢t . x from
equation (2) in the neighborhood of x. can
be expressed in terms of the Taylor series.
Letting the time increment be h = At, we have

(dxj d?x Vh*
X =x;+|— |+ T |+
dt ; dt 2

Instead of using these expressing, it is
possible to replace the first derivative by an
average slope and ignore higher - derivatives

If we used Simson’s rule, the average
slope in the interval h becomes, i.e.

(9':‘_) =.‘.(‘_’X.) 4l D NEa
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The Runge - Kutta method is very
similar to the preceding computations, except
that the center term of the given equation is
split into two terms and four values of t, xand
f are computed for each point i as follows:
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These quantities are then used in the
following recurrence formula:

I
Xig =X, +é[F1 +2F2+2F3+ F4)  (14)

where it is recognized that the four values of
F divided by 6 results in an average of dy / dt
as defined. At this step, we can evaluate all
the path constraints i.e., equations (3), (4),
(5), and (6) at the node points as a parameter
p instead of x. These form a nonlinear system
of equations as parameter optimization
problems as

min J{(p) (15)

subject to a set of equation (14) and

Sx) <0 (16)
px) <0 (17)
c(x () u(t)t)<0 (18)
gx()u()t)=0 (19)

The equations (15) through (19) are
known as nonlinear programming problem
that the parameter p must be determined in
order to obtain the feasible solution to
dynamic optimization problem.
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4. General Optimal Control
Software

The general - purpose program has been
developed using Matlab software. Furthermore,
we design it as visual inputs and outputs for
an easy implement and use. First, the
problem has been divided into 3 categories as
(i) Fixed end time, (ii) Variable end time, and
(iii) Minimum time as shown in Figure 1.
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Fig. 4. The Second Page (Minimum Time)

All three categories are designed in the Other mstructon pieese sea the manel
front page as push button; therefore,
whenever user pushes the button, the
appropriate second window is opened as

shown in Figure 2, 3, and 4.

In each category, user must provide the
considering problem. Also, this software is
divided into two steps. First, the software
parameterizes the input problem by the user
into the form of nonlinear programming
symbolically and stores all the algebraic
equations as data files. Similarly for the cost
functional (1) which represented in the
integral form is parameterized by using
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Fig. 2. The Second page (Fixed End Time)

Simpson rule. The second step is called on -
line computation that solves the nonlinear
programming problem described in Section 3.
In the problem of nonlinear programming, it
is very well known that the gradients of both
the objective function and the constrained
algebraic equation have the effective on how
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fast the solution could be obtained. Therefore,
we propose this gradient as an option in each
category as a simple click then the code
provides all the gradients automatically.
Finally, if the optimal control solutions are
obtained, user can observe all the optimal
trajectories by pushing the plot button. Note
that the results plotted in this software are all
the state and control variables respect to time.

5. Examples
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Fig. 5. Two degree - of - freedom of Spring - mass
- damper System

5.1 Example 1: Spring - mass - damper
System

The procedure outlined in this
paper for dynamic optimization is illustrated
with the following example of a two degree -
of - freedom spring - mass - damper system
sketched in equation as

Ax =Bu (20)

The matrices A and B for this system
are as follows:

PR AT
o, 0 (21)
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where the matrices M, C, and K are:

M=[m, ()‘],C=[c,+c2 -cz] (23)
0 m, —-Cy €y +Cy

K= ki +k, -k,
ky +k,

-k,

The parameters used in the model
in MKS unitsare:m =m,=1.0,¢,=¢,=1.0,
c, =20,k =k, =k =3.0. The cost
functional in equation (1) is L = u, + u, .
The boundary conditions specified for the
problem are X(t) = (5 100 0)" and X (tf) =
(0000)7, wheret =0and t= 2.0. The state
and control trajectories obtained from the
optimization procedure described in this
paper and the technique proposed in (Brenan,
1993) are overlap within the accuracy of the
drawings shown in Figure 6 and 7.

24)

Fig. 7. The Optimal Control solution



5.2 Flexible Link Robot

In the problem of nonlinear systems,
the example is of a single link manipulator
rotating in a vertical plane driven through a
flexible drive train (Spong & Vidyasaga, 1986)
shown in Figure 8. The system has two
degree - of - freedom and the equations of
motion are

1q, + Mgl sing, +klg, —g,)=0
.. (25)
Jq, "k(‘h "‘h)"“x
where [ and ] is respectively the link and ac-
tuator moment of inertia, M is the mass of
the link with mass center at a distance [ from
the joint, k is the stiffness of the drive train, g
is the gravity constant, and u is the actuator
torque. Let the objective be to steer the
system from a given set of initial conditions
onq,, q,, 4,, and 4, att, to a specified goal
point at t, while minimizing a cost .

o LM

7]

Fig. 8. Flexible Link Robot

Fig. 9. The Optimal State Solution

Y

] = j u’dt . The trajectory must satisfy the
t

o

constraint -50 < u < 50 during motion. The
parameters used in the model (in MKS units)
are:1=]=1.0,k=1.0,g=9.8 M=1.0, and
[=0.5.

The boundary conditions at both ends
are: q(t) = (0.03 0.04 - 0.0215 0.008)T and
q(t) =(0.060.08 - 0.429 - 0.0639)". The state
and control trajectories obtained from the
optimization procedure described in this
paper and the technique proposed in (Brenan,
1993) are overlap within the accuracy of the
drawings shown in Figure 9 and 10.

Fig. 10. The Optimal Control Solution

6. Conclusion

It is known from the literatures that
there are many dynamic optimization
theories for direct approach have been
developed for the dynamic systems. This
paper was aim to applied a simple technique
for a general - purpose program; therefore, the
Runge - Kutta collocation method has been
used. Similarly in one literature developed by
BRENAN, K.E., the approach is quite similar
namely Hermit - Simpson collocation
method. However, the solutions from both
methods are compared within the accuracy of
the drawing in this paper. As a result, the
general - purpose program has been developed
by using Runge - Kutta collocation method.
Finally, the nonlinear algorithm is used since
the dynamic optimization problems are
converted to a parameter optimization
problems when the Runge - Kutta collocation
technique is applied.
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