
A Self-Tuning Controller

Abstract- rhis article describes the design steps for 
"", #'::"rHtffiil:i""*0"r,

called a self-tuning controller. The adaptive control algorithms used are the least-square
direct adaptive pole assignments with constant and variable foryettngfactors. The use of
a variable forgetting factor can avoid one of the major difficulties associated with constant
forgetting factor-namety, blowing-up of the covariance matrix of the estimates and
subsequent unstable control. Furthermore, anti-reset windup technique is incorporated
into frre adaptive regulators in order to avoid "summing up" of the integrator if the control
si$al saturates when there is a control effor. Performance comparisons in controlling
angrrlar positions of the time-varying-inertia system with the adaptive and the non-adaptive
(Proportional-htegral-Derivative or PID) controllers are implemented in both simulations
and real-time experimentations. The adaptive control schemes both with constant and
variable forgetting factors show better performance in controlling position of the time-
varying-inertia system than the non-adaptive counterpart does. This is due to the abilities
in adapting the controllem' parameters of both adaptive control schemes to the change in
dynamic of the controlled system.

l. Introduction

Controllers can be designed following any one of a number of procedures available [11.
Geirerally', most control sy'stems design procedures invotve the following steps:

1) Deril'e a nonlinear or linear mathematical model based on the physical
properties of the process.

2) Iclenti$ the parameters of the model from off-line experiments on the process.
3) Design the controller and establish its parameters based on the process model

identified in the above steps.
4) Implement the controller.
5) Tune the controller by repeating steps 3 and 4 until satisfactory performance is

achieved.
It is usually desirable to repeat the above procedrues if the system dynamics or disturbance
characteristics change significantly.

The classical Proportional-lntegral-Derivative (PID) conholler is widely used in industry.
It is often necessary to adjust the controller according to the changing process requirement.
In practice, tuning and readjustment of this type of controller is highly subjective because it
depends upon practical experience and familiarity with the process of the individual
involved. Values of the parameters for a fixed paf,ameter controller are normalylL chosen
on the basis of the best compromise for one operating pqint.

For the systun to operate optimal$ as the operating point changes, it is desirable that ttre
controller parameters be tuned to the operating conditions. Alailability of the modern
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digital dwices with on-board on-line computational capabilities moke this possible using the

foltowing procedures:
f-)-tvtoOel the complicated nonlinear process by a low-order model with time-

varying Parameters.
Zl On-tine identification of the parameters of such a model will track the

operating conditions.
3) Tie coniol algorithm can use the estimated (identified) values of the model

paf,af,net€rs to generate the required confol on-line'

,\n adaptive controller CesigneA according to the above procedures is called a self-tuning

re gulator or controller.

The original self-hrning regulator was designed to operate on a process with constant but

unknown parametefs tlt; tfr. pfocess parameters are estimated on-line by recursive least-

sq*are esiimation 6gL5; *d tSttt estimates are then used in designing a minimum

variance controller. As the parameter converges, better control is achieved and it has been

shown that the optimal contol hw will tr*olt wen in the case of convergence to biased

estimates of the process pmameters. The above algorithm is called an indirect adaptive

algorithm because the regulator parameters are not updated direct$, but rather indirectty

via the estimation of the process model. It is, howwer, sometimes possible to

reparameterizethepfocess so that the model can be expressed in terms of the regUlator

parameters. This gives a significant simplification of the algorithrn, because the design

calculations are eliminated and the regulator parameters are updated direct$. This give a

direct adaptive algorithm. Anatysis of the asymptotic properties of a direct self-tuning

regulator was also first given in 1973 by Astr<im and Wittenmark [2].

Howwer, typical procosses extribit some degree of time varying and nonlinear dynamics;

these may arise, for example, by nonlinearities in actuators and other gradual drifts of the

system, jl of whichviolate the assumption of linear, time invariant systern. An example of

a nonlinear system is.a robot shown in Figure 1'

Figure 1. .A,n industrial robot
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The motor turning at the olbow moves the wrist ttnough the foreann, which has some
flexibility. Variations in the moment of insrtia are also cofirmon in current industial
robots. The momeirt of inertia usually depends on the geomotry of the robot and on the
toad it handles. Withvariations in these two vmiables during the operatioq the momeirt of
inertia may change significantly from one position to arlother. This makes it necessary to
incorporate some adaptive mechanism in the estimator to make it able to adjust the
estimates to follow these changes. One way to solve this problem is to pretaent the
recursive estimator from converging by introducing a forgetting factor [3] and many
applications show that this algorithm beha'ves well for wide range of plants. Some other
methods are reviewed by Goodwin and Payne [4].

Nwertlreless, a problem often referred to as an estimator windup can arise when the
algorithm vnth constant forgetting factor is used in steady-state regulation of the plant. Old
information is continualty forgotte,n while there is very litfle new dynamic information
coming from the plant. If the forgeuing factor is not careful$ choserq this may lend to an
exponential growth of the covariance matrix and a systern which is exhemely sensitivo to
disnrbances and susceptible to numerical and computational difficulties. One way to sohze
this problem is to vary the forgetting factor at each step such that a ,neasure for the
information content in the estimator is kept constant [5]. With a reasonable choice of
information measur€, it was strown that the algorithm withvariab/e forgetting factor could
prrevent the covariance matix from blowing up while still retaining tho adaptability of the
algorithm.

This Article describes the design steps for the direct adaptive control algorithm. To
demonstate the behavior of the adaptive control schcme, a series of simulation results are
given. fuid to waluate and exhibit the features of the simulations done, real-time
experimontation results are also givsn in this article.

2. Adaptive control algorithms
The adaptive confiol algorithm discus$ed in thi$ section is a self-tuning type since it
automaticafly tunes the confioller to the desired performance. T\e Self-tuning regtlator
(,SIR) is based on the idea of separating the estimation of unknown parameters of the plant
from the design of the controller. Figrre 2 illustrates the basic idea of the STR {71.

tr'iorrre 2- The self-tunino requlator (STR) block diaoram.
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The unknown parameters are estimated on-line, using recrusive estimation schemes such

as:
r kast square (LS)
r Extended and genetahzedleast square
' Stochastic aPProximation
r Instf,umental variable
I Manimum likelihood'

The underlying design problem, which is represented by the block Design in Figue 2'

g.rnr"ro * oi-ti"r iolution to the design problem for a system with known parameters'

the design methods that can be used are:
' Pole Placernont
'Modslfollowing
I Minimumvatiance
r Linear quadratic'

The STR is very flexiUte with respect to choices of the desrgn and estimation methods'

Df[erent combinations of the estimation and design methods lead to sTR with ffierent

properties.

For the self-hner shown in Figure 2, the regulator pafamete'fs are updated indirectly ia

design calcnlations. This gives an indirecl adaptive algorithm' It is, howwef' often

possible to reparameterize ttre plant model in the regulator parameters so that the regulator

paramersrs are update d direitfu. This gives a direct adaptive algorithm' This direct

approach results in a significant simpffication 
"-f 

ft:-- algorithm because the design

calculation is etiminated. ihe direct adaptive algorithm wirl be discussed in this section.

2.1 Process model
In the direct self-tuning regulator, the idea is to use the specifications, i" t:*t* of the

desired locations of tn 
-polus 

and zefos' to reparameterize the process model so that the

;;-,gt step is fiivial tl7l. Consider a process described by the difference equation in the

delay oPerator q'':

.q( n-L\r(,\= r-d a(q-l)r(r) (2.1)
- ' \ 7  

) r \ - /  
,  

\ '  /  
"

where d : deg(A) - deg(B), is called the pole etccess or the prediction horizon' It

represents the number of ti*t steps befoie the input z affocts the output y' The

specifications the process output is to mimic ttt osttulty gven in the form of the desired

closed-loopresPonse: 
/ r\, \

d *(e-r)tQ) 
= q- d t ou 

"(t)
where A^ is the
chosen such that:

desired closed-loop characteristic polynomial'

u"t{o *)> deg(l ) - deg(; )

A pole placerneirt design, which gives the above desifed respollso' is obtained by sotving

tlrc enrrelinn'

Q.2)

The degree of A* ts

(2.3)
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,a('-t)n(u-') * r-o tlu-')'('-') = o,(o-')o-(n-r)'('-') e.4,)
wherc Aois the desired observer po$nomial. Tltr dggree of Aois chosen such that:

drsla") >zdeg(A) - d"g(.ar)- aeg(r)- r (2.s)

The observer polynomial should be stable and faster than the desired closed-loop response
determined by A*. h (2.4), R(q'I) and S7q-11are the polynomials:

o(u-t)= "o * 'rQ-r * 'r8-2 *"'*'p,-k

t(u-t) = 
"o * 'LQ-r * 'rQ-2 *"'*'7r-l

of the control law:

R(q-r)"Ut. t(u-t)y(,)= ,oe"(t-t),"Q) e.i>

The degrees of R1q-l1 and S6-l1are chosen such that:

**(o(u-')) = *r(o*(r-t) + u"r(o"(u')) - a,*(r('-' 
)

a.*('(o-')) = *'(r('-')) -'

To reparameterize the process model in term of the regulator pmameters, multipty (2.4) by
v(t):

z(e-1)n( {l)r(i* u-d n(u-l) '(u-t)n Q) = ao(r-')n*(o-t)a(u-t)"t ' i

Using (2.1) to eliminateyft/ in the first term of (2.9): 
(2'9)

u-o t(u-t)o(u-t), U)* q-d n(*-t)r(n-1)r(') = .n"(r-t)a*(t t)a(e -r)/')

(2.10)

To simpli$ the design, it is assumed ttrat the plant rs minimum phase i.e. 86-Il is a stable
potynomial (Note that this assumption is considered as one constraint in utilizing direct
adaptive algorithm). Therefore, B(q'l ) can bo canceled in (2. f 0), giving:

a"(a-t)a*(u-t)r(i=o-o^(a-t)*U)*u-ds(a-t\i l,)

or in rhe a regression modet"r-] 

n(e-l)'tt - d)*s(e -t)/r- a)

(2.6)

(2.8)

y(,)= ,$(,- ale Q.r2)

(2.11)
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where

(2.13)

aT=fu|"Q-d)...u(t*d_k)i l ' t-a).. ' ,( t_a-|]

=l, rt, 
- a)...u r(t 

- d - k)

eT =lrorrr z... rk"o ", "r'.. "r]

t  r( t-d).. .v f( t  
-  o - i l |

Er w afiltered regressor vector, whose components are filtered by the potynomial

Aoh-l)A*(q-l). Note that Q.lz) is linear in the parameters /o.-.,rbso..-,s1.

2.2 Parameter estimation
The parameters in 6 are estimated using the least square (LS) typed estimator. Since

typical processes exhibits some degree of time-varying and nonlinear dynamic behaviors, it

is necessary to incorporate some adaptive mechanism in the estimator to make it able to

adjust the estimates to follow these changes . A forgetting factor is introduced into the

estimator to solve the problem. The forgetting factor prevents the recursive estimator from
converging by exponential$ weighting data coming into the estimator. The most recent

data is given the highest weight and older dala arc weighted exponentially. Therefore, the

method is called exponential forgetting.

The LS estimator with constanf exponential weighting of past data is Sven by the

following rectrsive relationshipr,ry, t 
l

4i=y€)-*/r(t-r)4r-r)
r(t -t)p,(r - t)

K(r) =
I  n* e\p(r- r)e,(r- r) I
\  ' /  " t '  ' )

4,)-- 4t*t)+r(r)r(r)

p(t\ =(r 
- r(r)el (r - r))p(r - r)

: pnediction errcr of y(t)
= Kalman gain
= estimated error cwariance matrix
= forgetting factor; 0 < ,a < 1
= estimated parameter vector

r ^  ^  ^  ^  ^ ' l:  
Lror i  /z. . . f t  so,t l  J2.. .srJ

E

K
P
A

g

where
(2.14)
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h (2.14), the prediction horizon dis assumed to be equal to 1. Note that the tEnn constant

forgetting factar comes from the fact that L is a constant value. The forgetting factat L
enables the algorithm to adjust its parameters to a time-varying plant by prwenting the
covariance matix P(t) frm b6ing ntoo small". The speed of adaptation is determined by
the asymptotic memory length [5, 18J:

(2.ls)N=&
which implies that the information coming into tlre estimator dies away with time constant
Nsample int€rvals.

' When the algorithm is started up and the estimates are poor, the regulator will make large
excnrsions until the estimates improve. This is obsenred as a quick decrease n P(t);
howwer, as control gets better P(t) trro,y become rrery large, especially during long periods
of near-steady-state operation with little or no information about the systern dynamics.
TYns bloning zp phenomena of P(t) matix can also be rmderstood from the updating
equation of P(t) from (2.14):

P(r)= (2.1o
(t- *Ul{(r - r))r(r - r)

z(r)= 4iz}-0.[t- 4rk-r)r(r)]'(r12 (2.rs)

A

The negative t6rrn on the right-hand side represents the reduction in uncertainty of the
estimates due to the last measurement. If no information is in the last measurement i.e.
steady-state condition, P(t)A{t) will not change direction and (2.fQ reduces to:

; . r(r- t)
P\t1= -[- Q.t7)

As P(t) is constantl! divided by a forgetting factor d which is less tlnn 1, the P(t) mafrix
will nblow up" exponbntially. This is called estimator windup. The estimator will forget
the proper valne of the estimates. As a result, the regulator becomes very se,nsitive to
disturbances or numerical errors. fuid often a set point change or a random input will lead
to a temporary ustable system or woffie if the numerical e,rrors or nonlinearities af,e very
serious.

In order to avoid such difficulties, the LS estimator with variable forgetting factor is
intoduced [5, 18]. The idea is to define a measure for the information content in the
estimator; the forgetting factpr can then be varied at each step such that this measure of
information is kept constant. llrcweighted sum of the scluales of the prediction error [is
deftrcd:N a measur€ of the infcirmation content of the estimator. Recursively, this can be
exprossod as:

If 2(t) is kept oonstant:
(2.Ie)

i.e., the amount of forgeqing at each step is kept equal to the anrount of new information
in the latest measurernent (therefore, the estimation will be always based on the same
arnourt of information), from (2.18) we get:
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where

Q.2r)

N(t) b ftre equivalent a,symptotic memory length. )o influences the velocity of adaptation

of the controller in reaction to abrupt changes. fui excessivety high value o1 Ioleads to a

longer adaptation time. Too small a value of 2o may lead to a blowing-up of the

covariance matix P(t) and corresponding unstable systern.

The LS estimator withvariab/e exponential weighting of past data is glen by the recursive

relationships [5, 1E]:

4i= vU)- 4k-04'-0

; ' f  n(t)> t .

: i f  l ( t \< l "mtn

i l t )=l--L
l/(r)

r(t -r)p 
r(r 

- t)

+
(

L'
I

I'
I
I

4t

,K(r)=

^( , )=

4,) =

t

f ( ,

K(,

'f

I
0

T}Q.

- 1 l

E
min

u(r)

- 1 )

\ t -

^/t

m

)'{

\ t

^/t

r )

P\r

{

K(

P(T
t

f

l - L

I

I t
L

1)

-1)

l]'i'i2

t -

p(r) = 
(I - r(r)el'r - r))P(r - r)

Q.22>
In e.Zz), the prodiction horizon d is assumed to be 1. Note that a lower limit on the

forgetting factor ).*inisintroduced in order to prevent 2 from becoming too small or even

negative.

Another modification is introduced into both of the above adaptive algorithms in order to

increase the robustness of the algorithms against drirt n estimated parameters due to

measurement noise in the absence of persistent excitation on the input signal. Reconsider

the updating equation of the estimated parameters:

4i =?{r- r)+ r(r)(y(r)- 4d 
-ri4' - 1))

If the output of the planty(t) is comrpted with measurement noise I for all q i.e.;

y(t) = 
4r, 

- r)f + 4t) <{.rnt

Q.23',)
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where 6* represents the true parameter vector, therefore, & is not going to be able to
converge to the true value 6*. During this time, the absence of persistent excitation
condition on the input signal can cause 0 to dtift away from an equilibrium. The gains will
increase and the system will finally become unstable. The drifting phenomena can also be
understood from (2.23). Usirg Q.24),8.23) can be converted to:

d.,) =(r- x(t)eTt, -r)lar -r)- x(t)eT!-r)dr) e.zs)
\ J / J

where b= f -b= parameter error. In the absence of persistent excitation on the input
sigtal, the integral action can occur in (2.25). In other words, the parameter error growth
causes instability in the control system.

An algorithm modification to Q.23) is to weakeir this integration effect by converting it to a
lealE ntegnuon Therefore, this modification is called leakage ll2l. Q.23) is modified
to:

d,,) =(r- z-)et' - r)+ r(r)(y 0 - ,$(,- r)(r - r))
where 1>2*>0. This converts (2.25) to:

H,t) =((t - I )t 
- Kd) 4(t 

- t))flt - t) - x(t) dr(r - r)E(r) * t f
tr qf o bounded Q.Zn implies that parameter effors (thus parameter estimates) remain
bormded when l>)L->0.

2.3 Adaptive control law:
An adaptive confrol law can now be formulated as follows:

1) Update the parameter estimates by (2.14) or Q.22).
2\ Determine a conftol law such that:

n (e- 1),(' 1 = t oa o(o- 
t),"{') - s(e- I 

)rt'l Q.28)

3) Repeat the above steps at each sampling instant.

Howwer, an additional modification to the regulator (2.28) is nocessary becawe it may
contain an rmstable mode. An integral action embedded in the adaptive regulator is an
unstable system; sometimes the integrator can insume.very large value if the control signal
z saturates while there is a control error. This is called integral or reset windup. To solve
integralwindupproblem I71, Q.28')is rewritten by addingAnk-l)u(t) on both sides:

o *(r 
r)uQ) ='or, (o- t ) 

o 
"Q) 

-s(a- 1 
),(' ) 

. (e *(u- 
1 
) 
- R (q- I ))"(' )

Q.2e)

An anti-resetwindup regulator is then given by:

Q.26)

Q.27)
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o *(u 
t)v ( r ) =, o.a 

"(r- 
t)u 

"(t) 
-s ( e 

- 1 
)r 

(' ) . (o *(o- 
t 
) 
- ̂  (r 

- t 
) ),(' )

u(t)= 
""du(r))

(2.30)

where Ank-I) is the stable.observer po$nomial of the controller and sat(.) is the
saturation funotion of the control srglal u(t). Notn that the regulator (2.30) is equivalent to
(2.28) when the confol si$al does not saturate. Figure 3 shows block diagam describing
the regulator (2.30) [7].

Figure 3. Block diagram of equation (2.30), which avoids integral windup.

3. Modeling
In this section, a model of the plant to be confrolled is dsrived. Figrne 4 gives a general
view of the rotational vibration system (RVS) with time-varying inertia.

Chddr
I.oad l(4) lnad2(,12) I,oad 3 (Jr)

Figure 4. The Rotational Vibration System (RVS) with Time-Varying Inettia

A DC motor is coupled to an inertial load Qoad 1) through a shaft. Inad I is then coupled
to another inertial load Qoad 2) through a spring. Finally, load2 and the other inertial load
(load 3) are coupled together fuouglr an electical clutch. The electrical clutch engages or
disengages load 3 to the rest of the system if activated or deactivated respectively. As a
res1lt, the rotational inenia of the systern when load 3 is engaged is different from that
when load 3 is disengaged. Therefore, the dynamic of tho controllod system is changed
when load 3 is engaged. The system in Figrre 4 can represent a robot shown in Figure 1.

3.1 Derivation of the mathematical model of the controlled system
In order to derive the dynamic equation for the conholled systun, denote the moments of
inertia and angular positions of the motor, load 1, load 2 , ild load 3 by J'a, J 1, J2, J3



'!nckl

and 6v7, 61, 62, 63, respectively. Also, denote the damping factors of the motor and the
stiffiress factor of the spring by D and K, respective$.

To simpliff the derivation, assuming ths inertia of ths shafts connecting J'*ta J 1 wrdJ2 to
J3 arc negligible and theirc stiftress factors aro so high that 6*=61 and 62=fu (when -r3 is
engaged). As a result of the above simplificatioq denote 6762=fu, which is the
controlled variable. And deirote J*=J'*+J1. Also, denote J7J2+J j; therefore -/1 is equal
to J2 tf -/3 is not engaged and is equal to JyJS if -I3 is engaged. Figure 5 shows the
resulting simplitied controlled system.

Figure 5. The simplified Rotational Vibration System (RVS).

Let T, and T7 be the torque generated by the motor and torque of the motor shaft acting
onJ6 respectivety. The dynamic eguationq of the two bodies are:

T ,=J  0  +D0- - .+7 ,  (3 .1 )
g  m m  m  I

(3.2)

(3.3)

Substitute (3.2) for Q in (3.1) and (3.3), the dynamic equations become:

Tr= J ro,
The deflection of the spring is described b.y the equation:

rr= x\e*- er)

T  - J  e  + D 0  + J . 0 ,
g  m m  m  t t

J 
'b.+ 

K0. = K0
t l  I  m

(3.4)

(3.s)

Now consider the electrical equation of the system. Let
V = Motorvoltage
I - Armature current
La = Motor inductance
K7 = Motor torque constant
Kg : Back emf constant
R = Winding resistance

The motor equivalent circuit is approximated by a circuit shown in Figure 6. E" is an
internally genorated voltage, which is propo*ionai to the motor velocity.

/|
lEs

Figure 6. The motor equivalent circuit
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From the circuit above, it can be found that :
V = L a l + N + E f

Since E* is proportional to the motgr velocity:
E  =  K ^ 0

g  E m

Therefore, the electical equation.of the system becomes:
V = L  I + N + K ^ 0

a  E m

(3.6)

(3.7)

(3.8)

(3.e)

(3.10)

(3.il)

(3. 12)

Assuming the rnagnetic field in the motor is constant, the current l produces a proportional
torque ?1r:

T =K*I
g t

In order to simpli$ the ana$sis, substitute (3.9) in (3.a):
K ^ l = J  0  + D 0  - ' J . 0 ,

I  m m  m  t l

Now app$ the Laplace transformation to equations (3.5), (3.8), and (3.10), which describe
the behavior of the sYstem:

tz t,e r(t) + K e r(s) 
= K o *(r)

v(s)= sr r(s)+ft/(s) + sxro*(')

Krf(s) = rzJ*0*(s)+ sDl*(t)* '2tre,(t) (3'13)

Afterrearrangingtheterms in equations (3.11),(3.12), and (3.13), this systern of equations
can be written in matrix form as below:

Let

o -K (,tt,.")t r(,) I I o I
(% . 

") 
,K E o ll a,t") l= l t',") | c r.u

-Kr (",rt ,*"r) ,2r, jL d/(") i  LoJ

_K

t K E

(r"*+'n)

["2.t * r)
\ r l

0

,2J.
t

IH(s)l

0

(%.u)
- K T

{v(91 L#*l
L+,1{u(s))

Rewrite the matrix equation (3.14) as:

[/{")l {v(")} = {u(")} (3.1s)
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taking tH1s11-t on both side of equarion (3.15):

{r(")} = [r(")]-r {u(")}
The transfer function relating the load shaft position Q to the input voltage v canbederived from the matrix equation (3.le as:

G(" )=1I=  =  ,Krv\s) prs5+ por4 * prr3 * nrr2 * nr,

(3.16)

Q.r7)

where

P5= JtLoJ*

eo= Jr(nto+- r  R)
m t

p3 = DJ rR * K EJ rKT * xt o(1, * l.)

rr= r(nto+ n(t,* t.))

\=  K(nn+ x  rKy)

Values for the conslant parameters in (3.17) can be obtained from the DC motor data sheetand from some rudimentary measurements and calculations.

To be able to use the model (3.17) in adaptive control atgorithm design described in theprevious section, the s-domain hansfer function (3.17) if conv'erted into the z-domain(discrete) transfer firnction of the form:

nt \  brr4 +b.rr i  +b.zz +b^z+b.
Ga) = ; (J.rs)

. 
o,r- + alz' + arz" + arzo + a4z + q5

or in the delay operator q-l form:

/ -r.l = _!:Vl .urrt .uorabso-4 .t [o )- ,trGT; (3.re)
where the values for b;'.r and a;'s when I-oadJ3 engages are different from those whenLoadJ j disengages.

4. Simulation
To investigate the behavior of the adaptive scherne discussed in section 2, a series ofsimnlation are performed. using equation (2.s), with no observer &ynamic (A"i;:ij=;;,
the degrees of parameter polynomials R(q-i) ia sfu-tl are both selected to"be degreek=l=4' Therefore, there are totally l0 controller parameters to be estimated. T1.e direct
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adaptive algofithilrs with constant and variablz forgetting factor are implunented in tho

simulation as follows, respectively:

4.1 Direct adaptive with constant forgetting

1)Usethemodelofthcplanttoca|oa|atey(t)usingu(t.l)asinput,
z)Vwy(t-l) utd u(t-I) to update the regressor q(t-l)'

3) Update the current estimates 6(t) tr,alitrlg(J.'14)'

+i UpAate the current covariance matrix P/rl using (2'14)'

5) Use the new estimates to calculate the control signal v(t) andthe saturated

outPut u(t) ttsng (2.30)'
6) Inorease time steP.
7) Go to steP I'

4.2 Direct adaptive wlth variabte forgetting
1)Usethemodeloftheplanttocilcu|atey(t)ttshtgu(t.I)asinput.
z)Use y(t-t) md u(t-I) to update the regrossor Aft-[)'
3) Update the current estimates 6(t) a$EW(@'22)'

+i Upaate the current forgetting factor A(t) trsittlg@J2)'

SiUpOate the current covariance maftixP(rl using Q'22)'
6) Use the new estimates to calculate the control si$al v(t) andths saturated

ou$ut a(t) rtsing (2.30).
7) Increase time steP.
8) Go to steP 1.

Note ftrat algorittrm lrr.4-2 i$ idcntical to 4'l

factor X(t) is chosen.

apart from step 4 rn 4.2, where the forgetting

The initial values of the parameter estimates are chos€n for both adaptive schemes such

that the initial 
"ontron# 

are proportional controllers with low gain (0'94)' . The initial

rnlue for the covariance -uttx is choseir to be 100 times an identity matrix' Also' a

pertnrbation signal, which is a sins wave of magnitude 0'25 and frequenry 2'0 rad/sec' is

added to tho contol si$al u(t) of both adaptive schemes. This exfra signal is used to

provide the additional €Nr€r$f content to the conftollers' outputs so that they are persistently

exciting wiftin tfn ao*intltg dynamics of the process' Note that the values for the

magpiUrde *O ntq"*"V of tf,e iernubation tignA are chosen based on the satisfactoty

trial-and-error simulation rcsults'

4.3 Simulrrtion results
The plant is required to follow a sqqafe wave with magnitude 10 and frequency of 0'005

Hz. The load 3 (Js)is engaged at t = 100 seconds. The results are shown in Figure 7a

7b, and 7c, which show the responses along with control signals of three control schernes

which are the adaptive scherne with 
"**tit 

forgetting factor, the adaptive scheme with

variable forgetting factor, and the non-adaptive *rht*t (Proportional-Integfal-Derivative or

PD), resPectivetY.
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Figure 7. System responses with control signals of three control algorithms:
a) Adaptive with constant forgetting factor
b) Adaptive with variable forgetting factor
c) Non-adaptive @roportional-Integral-Derivative or PID)

with J3 is engaged at t: 100 seconds.

Note a burst m the output of the plant controlled by the adaptive controller with constant
forgetting factor after app,roximately 300 s. of stable operation in Figrre 7a. This is due to
the estimator windup effec! as described in section 2. Figrne 8 shows the diagonal
elerneirts pii of the covariance maftix P(t) wherrr the adaptive scheme with constant 2 is
used.

tbnc (rcc) finr (c.c)

thc (rcc) thc (r.c)

thc Gcc) thc (rcc)
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FigureS.ThediagonalelementsofthecovariancematrixPwhentheadaptive
algorithmwitheonstotttforyettingfactor(1,=0.95)isused.

From the figpre above, note the- blowing-up of the;o11ance matfix of the estimates

which leads to subsequent unstable 
"""or"d 

;y-r"" rng burst in the output of the plant

could be eliminated 6 -yd another value of the forgetting factor'

under control by the adaptive controller with variable forgetting factor, trre behavior of the

plant is moro robust ; ,i" change in pf"ot Cltutnit due' to ttt" *gtg"ment of 'I3' The

engagement ofJ3 increases the o'o*t,oot or,l,,,.,po*e by small afiroult. See Figure 7b.

Figure ga and gu ,bJ th" u"t *ior* ortir" r-grtti"g factor and the prediction error of the

"6pri"t 
controller with variable l' respectivety'

Figure 9. The behaviors of a) the r"teiliil l"*1*d.b) 
the prediction error of

trre aJaptive controller with vaiahlc forgetting factor'

under steady-state operations (nrgfiction error is close to zero), 1(t) s close tg unity and

the estimator behaves very much tikt T;;'igt'ttA 
fiher .This 

makes the estimates able

to follow slow changes in the ptant A'namicJ During the dynamic change when -I3

dns (tel

t)"*a*"r."-

oLt.*o"*
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engages at t: 100 s., this results in a poor fit between model and plant (prediction error
bounces away from zero) and a smaller forgetting factor is produced. This increases the
adaptation rate of the estimator making it be able to follow rapid changes in the plant
dynamics. And after a while, the parameter estimates are nretuned" and the forgetting
factor returns to its former value close to unity. Figure 10 shows the diagonal elements pr;
of the covariance matrix P(t) when the adaptive controller with variable forgetting factor is
used. Note that the variances of the estimates now settle on constant values. and there is
no estimator windup.

Figure 10. The diagonal elements of the covariance matrix Pwhen the adaptive
algorithm vrthvmifilz forgetting factor is used.

Compared to the adaptive confroller with variable forgetting factor, performance of the
PID controller is considered quite good. See Figure 7c. Although the engagement of J3
caules the PID controller to give more oscillation in the plant response than the adaptive
scheme does, the PID algorithm can still be considered reasonably robust to the changes in
plant dynamics.

4.4 Analysis of simulation results
From the simulations, the adaptive control schemes both with constant and variable
forgetting factors show better performance in controlling position of the RVS with time
varying inertia than the non-adaptive corurterpart @ID) does. The non-adaptive confoller
whose parameters are fixed during the operation give more oscillating response around the
command si$al when the plant parameter (inenia) changes than the adaptive counterparts
do. This is due to the abilities in adapting the controllers' parameters of both adaptive
control schsmes to the change in dynamic of the controlled systein. However, althotrgh the
adaptive control scheme with constanl forgetting factor gives less oscillating responso when
there is a change in plant dynamic than the non-adaptive does, it cotrld occasionally result
im a burst in the plant output due to the estimator windup. Tho bursting phenomena could
be eliminated if a "propetr" value of the forgeuing factor is used. And this fact leads to the

of the adaptive control scheme withvariable forgetting factor. The adaptive
contol scheme withvariab/e forgetting factor does not have ths estimator windup problem
because its forgetting factor is automatically adjusted to tre optropetr" value when the plant

ttne (rec)
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dynamic changes. Therefore, the adaptive scheme with variable fotgetling factor is more

robust to the chango in the plant dynamic than the scheme with constanl forgetting factor.

5. Experimentation
Figgre 11 shows the schematic diagram of the experimental controlled system.

I'igure 11. The schematic diagram of the experimental controlled system.

The experimental controlled system consists of three main subsystems which are:
1. Digitat Controller: A personal computer equipped with multifunctional

tnput/Output board.
2. Position sensing subs.ystem: An incremental rotary optical sncoder

used to sense the position of the shaft.
3. Actuating subs.ystem: A 12-bit Dgital-to-Analog Converter used to

drive the servo motor throrgh a power amplifier.
The other hardware component tltat h worth mentioned is the electrical clutch. This clutch

engages -I3 to the rest of the systern if activated and it disengages ./3 from the rest of the
system if deactivatod.

The adaptive (and non-adaptive) control algorithms discussed in section 2 and 4 are
implemented in C programming language. For each control algorithrL the C program

structure is implerneirted in a modular fashion. The initialization, InpuVOutput operations,
and parameter estimations are implemented as separate functions called by the main
program where svery firnction routines are "glued" together. The advantage of

implementing the p,rogram sftucfire modularly is tlrat it is more convenient in debugging
dgring the program dwelopment stage because each function can be debugged and tested
separatety.

5.1 Experimentation results
The plant is required to follow a square wave with magnitude 90 ard frequency of O.l Hz.

The load 3 (Ji is engaged at t = 15 seconds. The results aro shown in Figwe lZa, l2b,
and 12c, which show the responses along with confiol signals of tluee control schemes
which are the adaptive schems with constant foryetting factor, the adaptive scheme with
variable forgotting factor, and the non-adaptive scheme (Proportional-Integral-Derivative or
PD), respectivety.
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Figure 12. System responses with control signals of three control algorithms:
a) Adaptive with constant forgetting firctor
b) Adaptive with variable forgetting factor
c) Non-adaptive @roportional-Integral-Derivative or PID)

with J3 is engaged at t: 15 seconds.

From the experimentation results above, it can be seen that the results obtained are
general$ support the facts found during the simulation. Both adaptive schemes are more
robust to the change in the plant dynamic occurring at t = 15 s. than the non-adaptive
schsme is. The behavior of the respornes of both adaptive schemes are almost the same
before and aftsr J3 eng;Eng at t = 15 s. This fact substantiates the "well-known"
characteristic of the adaptive control system in responding to the change in the plant
parameters. But for the non-adaptive scheme, the behavior of its response is noticeably
different.before and after J3 engaging at t = 15 s.

t |n(E)

d.gu

h ( c ) b ( c )

lh(c) rn'-(s)
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6. Conclusion
fro* the simulations, it is found tlnt:

r the adaptiil .*oor schernes both with constant andvariable forgetting factors

show betrer performanc, ir, ,orrt lffipong of the RVS wittr time varying

inertia than ttre non-adaptive 
"";,*;; 

eD) 1o":: 
ffi is due to the abilities

in adapting the oonroller*' puru#id of ilorft ueuptVt control schernes to the

change in dynamio of the confiolled system'

r the adaptive confiol scheme ii ""^*"t 
forgetting factor could occasional$

result tn a burstin the plant ouprrt due to the estimatir windup' The b'rsting

pnrno*r**r"*fO i. ,ii,oi*r.d,F;''pt"pern value of the forgetting factor is

Hll; adaptive control scheme withvariable forgetting factor doos not have tho

estimator windup problem u"ru*" it" rongtuiog ft"toi is automaticalty adjusted

to the "propo';ti* when the plant dynamic changes'

r the adaptiw scherne vtrthuotrnbi iotgruiog f*t* is more robust to the change

intheptuotay*.i,thantheschemewtfrtconstanfforgettirrgfactor,

From the experimentatioq it is formd that:

I the results obtained ,r, *ro.ffi, support ths facts forurd during the simulation'
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