A Self-Tuning Controller
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Abstract- This article describes the design steps for one type of the adaptive controller,
called a self-tuning controller. The adaptive control algorithms used are the least-square
direct adaptive pole assignments with constant and variable forgetting factors. The use of
a variable forgetting factor can avoid one of the major difficulties associated with constant
forgetting factor-namely, blowing-up of the covariance matrix of the estimates and
subsequent unstable control. Furthermore, anti-reset windup technique is incorporated
into the adaptive regulators in order to avoid "summing up” of the integrator if the control
signal saturates when there is a control error. Performance comparisons in controlling
angular positions of the #ime-varying-inertia system with the adaptive and the non-adaptive
(Proportional-Integral-Derivative or PID) controllers are implemented in both simulations
and real-time experimentations. The adaptive control schemes both with constant and
variable forgetting factors show better performance in controlling position of the time-
varying-inertia system than the non-adaptive counterpart does. This is due to the abilities
in adapting the controllers’ parameters of both adaptive control schemes to the change in
dynamic of the controlled system.

1. Introduction

Contro]lers can be designed following any one of a number of procedures available [1].

Generally, most control systems design procedures involve the following steps:
1) Derve a nonlinear or linear mathematical model based on the physical
properties of the process.
2) Identify the parameters of the model from off-line experiments on the process.
3) Design the controller and establish its parameters based on the process model
identified in the above steps.
4) Implement the controller.
5) Tune the controller by repeating steps 3 and 4 until satisfactory performance is
achieved.
It is usually desirable to repeat the above procedures if the system dynamics or disturbance
characteristics change significantly.

The classical Proportional-Integral-Derivative (PID) controller is widely used in industry.
It is often necessary to adjust the controller according to the changing process requirement.
In practice, tuning and readjustment of this type of controller is highly subjective because it
depends upon practical experience and familiarity with the process of the individual
involved. Values of the parameters for a fixed parameter controller are normally chosen
on the basis of the best compromise for one operating point.

For the system to operate optimally as the operating point changes, it is desirable that the
controller parameters be tuned to the operating conditions. Availability of the modemn
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digital devices with on-board on-line computational capabilities make this possible using the
following procedures:
1) Model the complicated nonlinear process by a low-order model with time-
varying parameters. -
2) On-line identification of the parameters of such a model will track the
operating conditions.
3) The control algorithm can use the estimated (identified) values of the model
parameters to generate the required control on-line.
An adaptive controller designed according to the above procedures is called a self-tuning
regulator or controller.

The original self-tuning regulator was designed to operate on a process with constant but
unknown parameters [2]; the process parameters are estimated on-line by recursive least-
square estimation (RLS) and these estimates are then used in designing a minimum
variance controller. As the parameter converges, better control is achieved and it has been
shown that the optimal control law will result even in the case of convergence to biased
estimates of the process parameters. The above algorithm is called an indirect adaptive
algorithm because the regulator parameters are not updated directly, but rather indirectly
via the estimation of the process model. It is, however, sometimes possible to
reparameterize the process so that the model can be expressed in terms of the regulator
parameters. This gives a significant simplification of the algorithm, because the design
calculations are eliminated and the regulator parameters are updated directly. This give a
direct adaptive algorithm. Analysis of the asymptotic properties of a direct self-tuning
regulator was also first given in 1973 by Astrom and Wittenmark [2].

However, typical processes exhibit some degree of time varying and nonlinear dynamics;
these may arise, for example, by nonlinearities in actuators and other gradual drifts of the
system, all of which violate the assumption of linear, time invariant system. An example of
a nonlinear system is a robot shown in Figure 1.

Figure 1. An industrial robot.
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The motor turning at the elbow moves the wrist through the forearm, which has some
flexibility. Variations in the moment of inertia are also common in current industrial
robots. The moment of inertia usually depends on the geometry of the robot and on the
load it handles. With variations in these two variables during the operation, the moment of
inertia may change significantly from one position to another. This makes it necessary to
incorporate some adaptive mechanism in the estimator to make it able to adjust the
estimates to follow these changes. One way to solve this problem is to prevent the
recursive estimator from converging by introducing a forgetting factor [3] and many
applications show that this algorithm behaves well for wide range of plants. Some other
methods are reviewed by Goodwin and Payne [4].

Nevertheless, a problem often referred to as an estimator windup can arise when the
algorithm with constant forgetting factor is used in steady-state regulation of the plant. Old
information is continually forgotten while there is very little new dynamic information
coming from the plant. If the forgetting factor is not carefully chosen, this may lend to an
exponential growth of the covariance matrix and a system which is extremely sensitive to
disturbances and susceptible to numerical and computational difficulties. One way to solve
this problem is to vary the forgetting factor at each step such that a measure for the
information content in the estimator is kept constant [S]. With a reasonable choice of
information measure, it was shown that the algorithm with variable forgetting factor could
prevent the covariance matrix from blowing up while still retaining the adaptability of the
algorithm.

This article describes the design steps for the direct adaptive control algorithm. To
demonstrate the behavior of the adaptive control scheme, a series of simulation results are
given. And to evaluate and exhibit the features of the simulations done, real-time
experimentation results are also given in this article.

2. Adaptive control algorithms

The adaptive control algorithm discussed in this section is a self-tuning type since it
automatically tunes the controller to the desired performance. The Self-tuning regulator
(STR) is based on the idea of separating the estimation of unknown parameters of the plant
from the design of the controller. Figure 2 illustrates the basic idea of the STR [7].

Process parameters
Design Estimation
Regulator
parameters
e
Regulator 3| Pr
] J

Wionure 9 The colf - timino regulator (STR) block diacram
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The unknown parameters are estimated on-line, using recursive estimation schemes such
as:

Least square (LS)

Extended and generalized least square

Stochastic approximation

Instrumental variable

Maximum likelihood.

The underlying design problem, which is represented by the block Design in Figure 2,
generates an on-line solution to the design problem for a system with known parameters.
The design methods that can be used are:

= Pole placement

= Model following

= Minimum variance

= Linear quadratic.
The STR is very flexible with respect to choices of the design and estimation methods.
Different combinations of the estimation and design methods lead to STR with different
properties.

For the self-tuner shown in Figure 2, the regulator parameters are updated indirectly via
design calculations. This gives an indirect adaptive algorithm. 1t is, however, often
possible to reparameterize the plant model in the regulator parameters so that the regulator
parameters are updated directly. This gives a direct adaptive algorithm. This direct
approach results in a significant simplification of the algorithm because the design
calculation is eliminated. The direct adaptive algorithm will be discussed in this section.

2.1 Process model

In the direct self-tuning regulator, the idea is to use the specifications, in terms of the
desired locations of the poles and zeros, to reparameterize the process model so that the
design step is trivial [17]. Consider a process described by the difference equation in the

delay operator q'I:
g 0= B(a7 o) @b

where d = deg(4) - deg(B), is called the pole excess or the prediction horizon. It
represents the number of time steps before the input » affects the output y. The
specifications the process output is to mimic are usually given in the form of the desired
closed-loop response:

4 (a7 )= g (0 e

where 4,, is the desired closed-loop characteristic polynomial. The degree of A4,, is
chosen such that:

deg(Am) > deg(4)— deg(B) 2.3)

A pole placement design, which gives the above desired response, is obtained by solving
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where 4, is the desired observer polynomial. The degree of A4, is chosen such that:
deg(4 )= 2deg(4) - deg(4_)- deg(B)-1 @.5)

The observer polynomial should be stable and faster than the desired closed-loop response
determined by 4,,,. In (2.4), R(g~!) and S(q~!) are the polynomials:

R(q_l) SH T rlqwl + rzq—2+...+rkq_k
~| S = e
S(q ) =Syt 89 g totsyg
of the control law:
R(q—l)u(t)+ S(q_l)y(t): tOAo(q_l)uc(t) 2.7

The degrees of R(q'l ) and S(q‘l ) are chosen such that:
o) s )l
deg(S (q_l)) = deg(A(q‘l)) -1

To reparameterize the process model in term of the regulator parameters, multiply (2.4) by

(®):
4 A(q_l)R(q_ljy(tH q'dB(q—l)S(q'l )y(t) = Ao(q_l)Am(q“l)B(q—ljy(t)

2.9)

2.8)

Using (2.1) to eliminate y(?) in the first term of (2.9):

q_dB(q_l)R(q“l)u(tﬁ q-dB(q_l)S (q"l)y(l‘) = Ao(q_l)/lm (q_l)B(q_l)y(t)

(2.10)

To simplify the design, it is assumed that the plant is minimum phase i.e. B(g™!) is a stable
polynomial (Note that this assumption is considered as one constraint in utilizing direct
adaptive algorithm). Therefore, B(g~!) can be canceled in (2.10), giving:

a4, (a7 Pl =g ¥R (e Yulo)+a?5(a o)
= R(q_l)u(t el S(q_'l)y(t shd)

or in the a regression model form:
ROREACRL 2.12)

2.11)
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where
= 1
it [t~ d)..ult—d k) plt-d)..p(t-d~1)]
Foafat)a (o)

:[u ) i-d-1) y,(t=d)..y f(t—d—l)] 2.13)

T _
g = [ror1 roTy soslsz...sl]
@r is a filtered regressor vector, whose components are filtered by the polynomial
A(q! )A4,,(q71). Note that (2.12) is linear in the parameters 7o,...,7fSgp---5]-

2.2 Parameter estimation

The parameters in 6 are estimated using the least square (LS) typed estimator. Since
typical processes exhibits some degree of time-varying, and nonlinear dynamic behaviors, it
is necessary to incorporate some adaptive mechanism in the estimator to make it able to
adjust the estimates to follow these changes. A forgetting factor is introduced into the
estimator to solve the problem. The forgetting factor prevents the recursive estimator from
converging by exponentially weighting data coming into the estimator. The most recent
data is given the highest weight and older data are weighted exponentially. Therefore, the
method is called exponential forgetting.

The LS estimator with constant exponential weighting of past data is given by the
following recursive relationships [7, 12]:

CORSORACECS)
P(t—l)(pf(t—l)
(/m goijP(r—ncpf(z—l))

A1) =de-1)+K(0)e(2)
(I~K(t)¢§(t—1))P(t— 1)

K(t)=

-

Q.19
where

1t

prediction error of y(?)

Kalman gain

estimated error covariance mairix
forgetting factor; 0 < A< 1
= estimated parameter vector

A A A

= [0t 5859

1l

[}
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In (2.14), the prediction horizon d is assumed to be equal to 1. Note that the term constant
Jorgetting factor comes from the fact that 4 is a constant value. The forgetting factor A
enables the algorithm to adjust its parameters to a time-varying plant by preventing the
covariance matrix P(z) from being "too small". The speed of adaptation is determined by
the asymptotic memory length [5, 18]:
1
N (7] 2.15)

which implies that the information coming into the estimator dies away with time constant
N sample intervals.

" When the algorithm is started up and the estimates are poor, the regulator will make large
excursions until the estimates improve. This is observed as a quick decrease in P(%);
however, as control gets better P(z) may become very large, especially during long periods
of near-steady-state operation with little or no information about the system dynamics.
This blowing up phenomena of P(z) matrix can also be understood from the updating
equation of P(t) from (2.14):

L TOlRl o ot
(1 K(r)q)f(; 1))P(t 1) o

The negative term on the right-hand side represents the reduction in uncertainty of the
estimates due to the last measurement. If no information is in the last measurement, i.c.

steady-state condition, P(?) PAY will not change direction and (2.16) reduces to:
Plt-1
P(t)= —(——) Q2.17)

As P(t) is constantly divided by a forgetting factor A, which is less than 1, the P(z) matrix
will "blow up" exponentialty. This is called estimator windup. The esiimator will forget
the proper value of the estimates. As a result, the regulator becomes very sensitive to
disturbances or numerical errors. And often a set point change or a random input will lead
to a temporary unstable system or worse if the numerical errors or nonlinearities are very
serious.

Bt o

In order to avoid such difficulties, the LS estimator with variable forgetting factor is
introduced [5, 18]. The idea is to define a measure for the information content in the
estimator; the forgetting factor can then be varied at each step such that this measure of
information is kept constant. The weighted sum of the squares of the prediction error J is
defined as a measure of the information content of the estimator. Recursively, this can be
expressed as:

(1) = A)x(t-1)+ [1— qof,(t— 1)1<(t)]e(t)2 (2.18)

If J(1) is kept constant:
2)=x(-1)=2(-2)= .. =%, @-19)
i.c., the amount of forgetting at each step is kept equal to the amount of new information

in the latest measurement (therefore, the estimation will be always based on the same
amount of information), from (2.18) we get:
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At)=1- (2.20)

N(z)
where

29
[1- o/ (e~ 10}

N(1) is the equivalent asymptotic memory length. 2, influences the velocity of adaptation
of the controller in reaction to abrupt changes. An excessively high value of 2, leads to a
longer adaptation time. Too small a value of 2, may lead to a blowmg-up of the
covariance matrix P(?) and corresponding unstable system.

1V(t) =

(2.21)

The LS estimator with variable exponential weighting of past data is given by the recursive
relationships [5, 18]:

1) = (1)~ @ (=D &t-1)
P(r—l)aof(t—l)

(1+6L(1-1)p (1-1))
[1- T o= DK (0 |e?

K(t)=

Alr)={1- = df Ae)> A
0
Ain S At) <
a1)= t—1)+K(t)e(r)

2.22)
In (2.22), the prediction horizon d is assumed to be 1. Note that a lower limit on the

forgetting factor A,,;,, is introduced in order to prevent A from becoming too small or even
negative.

Another modification is introduced into both of the above adaptive algorithms in order to
increase the robustness of the algorithms against driff in estimated parameters due to
measurement noise in the absence of persistent excitation on the input signal. Reconsider
the updating equation of the estimated parameters:

4= e -1+ K 50)- o7 (1~ D -1) @)
If the output of the plant y(?) is corrupted with measurement noise & for all t, 167

)= fu_nf+4ﬁ G24)
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where 6* represents the true parameter vector, therefore, 6 is not going to be able to
converge to the true value 6 During this time, the absence of persistent excitation
condition on the input signal can cause 6 to drift away from an equilibrium. The gains will
increase and the system will finally become unstable. The drifting phenomena can also be
understood from (2.23). Using (2.24), (2.23) can be converted to:

)= (1-K()oT (=) Jie-)- KWL -D0) @29

A k e ’
where 6= 6 — 6= parameter error. In the absence of persistent excitation on the input
signal, the integral action can occur in (2.25). In other words, the parameter error growth
causes instability in the control system.

An algorithm modification to (2.23) is to weaken this integration effect by converting it to a

leaky integration. Therefore, this modification is called Jeakage [12]. (2.23) is modified
to:

A1) = (1— ﬂf)fs(t = K(t)(y(t) - ¢§(r ~D)dt- 1)) (2.26)
where 1>1-0. This converts (2.25) to:
Ar) = ((1_ - k(1) - 1))z(t_ )-K(We (- )0+ 6" @)

If qyis bounded, (2.27) implies that parameter errors (thus parameter estimates) remain
bounded when 1>1*>0.

2.3 Adaptive control law:

An adaptive control law can now be formulated as follows:
1) Update the parameter estimates by (2.14) or (2.22).
2) Determine a control law such that:

R(q_l)u(t) = tOAO(q'l)uc(t) —S(q_l)y(t) 2.28)

3) Repeat the above steps at each sampling instant.

However, an additional modification to the regulator (2.28) is necessary because it may
contain an unstable mode. An integral action embedded in the adaptive regulator is an
unstable system; sometimes the integrator can assume very large value if the control signal
u saturates while there is a control error. This is called integral or reset windup. To solve
integral windup problem [7], (2.28) is rewritten by adding Aoc(q'l Ju(t) on both sides:

Aol Ju0= 11, (a7 i 0= 5(a= )+ (4,5 (a71)- (7)o

(2.29)

An anti-reset windup regulator is then given by:
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u(t) = sat(v(t))
(2.30)

where A4 oc(q'l ) is the stable observer polynomial of the controller and saf(.) is the
saturation function of the control signal #(#). Note that the regulator (2.30) is equivalent to
(2.28) when the control signal does not saturate. Figure 3 shows block diagram describing
the regulator (2.30) [7].

Ay R

Figure 3. Block diagram of equation (2.30), which avoids integral windup.

3. Modeling
In this section, a model of the plant to be controlled is derived. Figure 4 gives a general
view of the rotational vibration system (RVS) with time-varying inertia.

S 9, -] 7]
i Motor
Voltage ___Ju':LP__
‘ Spring K Chutch

Load 1(J)) Load2(J,) Load 3(J,)
Figure 4. The Rotational Vibration System (RVS) with Time-Varying Inertia.

A DC motor is coupled to an inertial load (load 1) through a shaft. Load 1 is then coupled
to another inertial load (load 2) through a spring. Finally, load 2 and the other inertial load
(load 3) are coupled together through an electrical clutch. The electrical clutch engages or
disengages load 3 to the rest of the system if activated or deactivated, respectively. As a
result, the rotational inertia of the system when load 3 is engaged is different from that
when load 3 is disengaged. Therefore, the dynamic of the controlled system is changed
when load 3 is engaged. The system in Figure 4 can represent a robot shown in Figure 1.

3.1 Derivation of the mathematical model of the controlled system
In order to derive the dynamic equation for the controlled system, denote the moments of
inertia and angular positions of the motor, load 1, load 2, and load 3 by J'y,, J}, J2, J3
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and 6,,, 6;, 67, 63, respectively. Also, denote the damping factors of the motor and the
stiffness factor of the spring by D and X, respectively.

To simplify the derivation, assuming the inertia of the shafts connecting /', to /; and J> to
J 3 are negligible and theirs stiffness factors are so high that 6,,=6; and 6,=63 (when J33 is
engaged). As a result of the above simplification, denote 6=6,=63, which is the
controlled variable. And denote J,,=/",,+J;. Also, denote J=J+J3; therefore J; is equal
to Jy if J3 is not engaged and is equal to J>+/3 if J3 is engaged. Figure 5 shows the
resulting simplified controlled system.

6 e,
K
Ve | J,,D :%D—D—FUE% J,

Figure 5. The simplified Rotational Vibration System (RVS).

Let Ty and 77 be the torque generated by the motor and torque of the motor shaft acting
on Jy, respectively. The dynamic equatlons of the two bodies are:

r,=J, ¢2tD0 LT G.1)
L=J9, (3.2)
The deflection of the spring is described by the equation:
Z—K(G —91) 3.3)
Substitute (3.2) for 77in (3.1) and (3.3), the dynarmc equations become:
T J' 9 +D8 +Jt91 (3.9
Jt91+K61—K9m 3.5
Now consider the electrical equation of the system. Let
Vv = Motor voltage
i = Armature current
L = Motor inductance
Ky = Motor torque constant
Kg = Back emf constant
R = Winding resistance

The motor equivalent circuit is approximated by a circuit shown in Figure 6. Eg is an
internally generated voltage, which is proportional to the motor velocity.
I

R L,

0000

2 AN

|
E & TEs
; y

Figure 6. The motor equivalent circuit.
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From the circuit above, it can be found that :

V=L [+RI+E 3.6)
a g
Since £, is proportional to the motor velocity:
E =K 4 3.7
Therefore, the electrical equation of the system becomes:
V= Lai+R1+KE&)m (3.8)

Assuming the magnetic field in the motor is constant, the current / produces a proportional
torque T g

T =Kl (3.9)
In order to simplify the analysis, substitute (3.9) in (3.4):
K.I=J 6 +D8 +J8 (3.10)
1 m m m “tl

Now apply the Laplace transformation to equations (3.5), (3.8), and (3.10), which describe
the behavior of the system:

5% 0/(s)+ KO(s) = K6, [s) (3.11)
V(s)= sLal(s)+ RI(s)+ sKEem( s) (3.12)
K I(s)= sszGm(s)+ sDO_ (s)+ s27 65 G.13)

After rearranging the terms in equations (3.11),(3.12), and (3.13), this system of equations
can be written in matrix form as below:

> %
0 -K (S Jt+K) I(S) 0
(sLa - R) sK 0 Gm((s)) =1 PAR) (3.14)
2 2 6,(s, 0
! —KT (s Jm+sD) s JZ J' )
0 K (S'ZJ o A’)
Let [H(s)] & (SLa + R) sK £ 0
2 2
i ~KT (.s Jm+sD) s Jt
1(s)
ey = |60
| GI(S)
[0
A R VAL
| 0
Rewrite the matrix equation ({3. 14) as:
| H(s)]x(s)} = {U(s)} (3.15)
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taking [H(s)]"1 on both side of equation (3.15):

()} =[] i)} (3.16)
The transfer function relating the load shaf position 6; to the input voltage ¥ can be
derived from the matrix equation (3.16) as:
_ G &
Gls)= =L G.17)
V(S) PsStpys +pgs Py +pys

where
Ps = Jt La']m

py=JDL +J R)

P3 :DJtR+KEJtKT+KLa(Jt+Jm)

py=K(DL +R(J +7 )

= K(DR+KEKT)

Values for the constant parameters in (3.17) can be obtained from the DC motor data sheet
and from some rudimentary measurements and calculations.

To be able to use the model (3.17) in adaptive control algorithm design described in the
previous section, the s-domain transfer function (3.17) is converted into the z-domain
(discrete) transfer function of the form:

b z4+b z3+b322+b z+b

Gz)= ——1—2 P (.18)
aOZ +a.Zz Pa.z +a.z +a,z+a

1 2 3 4 5

or in the delay operator q'l form:
b +b q~1+b q_2 +b q_3+b q_4
Gl 1 2 3 4 5
T o] - =3 i 5
a0+alq +a2q +a3q +a4q frasq
where the values for 5,’s and ;s when Load J 3 engages are different from those when
Load J3 disengages.

(3.19)

4. Simulation

To investigate the behavior of the adaptive scheme discussed in section 2, a series of
simulation are performed. Using equation (2.8), with no observer dynamic (Ao(qJ, )=1),
the degrees of parameter polynomials R(q!) and Stg!) are both selected to be degree
k=I=4. Therefore, there are totally 10 controller parameters to be estimated. The direct
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adaptive algorithms with constant and variable forgetting factor are implemented in the
simulation as follows, respectively:

4.1 Direct adaptive with constant forgetting
1) Use the model of the plant to calculate y(2) using u(t-1) as input.
2) Use y(t-1) and u(t-1) to update the regressor ¢(-1).
3) Update the current estimates 6(t) using (2.14).
4) Update the current covariance matrix P(?) using (2.14).
5) Use the new estimates 0 calculate the control signal v(z) and the saturated
“output %(2) using (2.30).
6) Increase time step.
7) Go to step 1.

4.2 Direct adaptive with variable forgetting

1) Use the model of the plant to calculate y(?) using u(z-1) as input.

2) Use y(t-1) and u(t-1) to update the regressor @(t-1).

3) Update the current estimates 6(2) using (2.22).

4) Update the current forgetting factor A(?) using (2.22).

5) Update the current covariance matrix P(t) using (2.22).

6) Use the new estimates to calculate the control signal v(z) and the saturated

output %(?) using (2.30).

7) Increase time step.

8) Go to step 1.
Note that algorithm in 4.2 is identical to 4.1 apart from step 4 in 4.2, where the forgetting
factor A(?) is chosen.

The initial values of the parameter estimates are chosen for both adaptive schemes such
that the initial controllers are proportional controllers with low gain (0.94). The initial
value for the covariance matrix is chosen to be 100 times an identity matrix. Also, a
perturbation signal, which is a sine wave of magnitude 0.25 and frequency 2.0 rad/sec, is
added to the control signal u(2) of both adaptive schemes. This extra signal is used to
provide the additional energy content to the controllers' outputs so that they are persistently
exciting within the dominating dynamics of the process. Note that the values for the
magnitude and frequency of the perturbation signal are chosen based on the satisfactory
trial-and-error simulation results. |

4.3 Simulation results

The plant is required to follow a square wave with magnitude 10 and frequency of 0.005
Hz. The load 3 (J3) is engaged at t = 100 seconds. The results are shown in Figure 7a,
7b, and 7¢, which show the responses along with control signals of three control schemes
which are the adaptive scheme with constant forgetting factor, the adaptive scheme with
variable forgetting factor, and the non-adaptive scheme (Proportional-Integral-Derivative or
PID), respectively.
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Figure 7. System responses with control signals of three control algorithms:
a) Adaptive with constant forgetting factor

b) Adaptive with variable forgetting factor

¢) Non-adaptive (Proportional-Integral-Derivative or PID)

with J3 is engaged at t = 100 seconds.

Note a burst in the output of the plant controlled by the adaptive controller with constant
forgetting factor after approximately 300 s. of stable operation in Figure 7a. This is due to
the estimator windup effect, as described in section 2. Figure 8 shows the diagonal
clements p;; of the covariance matrix P(#) when the adaptive scheme with constant A is

used.
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Figure 8. The diagonal elements of the covariance matrix P when the adaptive
algorithm with constant forgetting factor (A= 0.95) is used.

From the figure above, note the blowing-up of the covariance matrix of the estimates
which leads to subsequent unstable control system. The burst in the output of the plant
could be eliminated by trying another value of the forgetting factor.

Under control by the adaptive controller with variable forgetting factor, the behavior of the
plant is more robust to the change in plant dynamic due to the engagement of J 3. The
engagement of J 3 increases the overshoot of the response by small amount. See Figure 7b.
Figure 9a and 9b show the behaviors of the forgetting factor and the prediction error of the
adaptive controller with variable A, respectively.

)

Forgetting factor
1

0
0
0.
0.

time (sec)

b)Hedi:tinn error
0.4

0.

time (sec)
Figure 9. The behaviors of a) the forgetting factor and b) the prediction error of
the adaptive controller with variable forgetting factor.

Under steady-state operations (prediction error is close to zero), A(t) is close to unity and
the estimator behaves very much like an unweighted filter. This makes the estimates able
to follow slow changes in the plant dynamics. During the dynamic change when J3
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engages at t = 100 s., this results in a poor fit between model and plant (prediction error
bounces away from zero) and a smaller forgetting factor is produced. This increases the
adaptation rate of the estimator making it be able to follow rapid changes in the plant
dynamics. And after a while, the parameter estimates are "retuned” and the forgetting
factor returns to its former value close to unity. Figure 10 shows the diagonal elements p;;
of the covariance matrix P(¢) when the adaptive controller with variable forgetting factor is
used. Note that the variances of the estimates now settle on constant values, and there is
no estimator windup.
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1000/
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Figure 10. The diagonal elements of the covariance matrix P when the adaptive
algorithm with variable forgetting factor is used.

Compared to the adaptive controller with variable forgetting factor, performance of the
PID controller is considered quite good. See Figure 7c. Although the engagement of J3
causes the PID controller to give more oscillation in the plant response than the adaptive
scheme does, the PID algorithm can still be considered reasonably robust to the changes in
plant dynamics.

4.4 Analysis of simulation results

From the simulations, the adaptive control schemes both with constant and variable
forgetting factors show better performance in controlling position of the RVS with time
varying inertia than the non-adaptive counterpart (PID) does. The non-adaptive controller
whose parameters are fixed during the operation give more oscillating response around the
command signal when the plant parameter (inertia) changes than the adaptive counterparts
do. This is due to the abilities in adapting the controllers' parameters of both adaptive
control schemes to the change in dynamic of the controlled system. However, although the
adaptive control scheme with constant forgetting factor gives less oscillating response when
there is a change in plant dynamic than the non-adaptive does, it could occasionally result
in a burst in the plant output due to the estimator windup. The bursting phenomena could
be eliminated if a "proper” value of the forgetting factor is used. And this fact leads to the
development of the adaptive control scheme with variable forgetting factor. The adaptive
control scheme with variable forgetting factor does not have the estimator windup problem
because its forgetting factor is automatically adjusted to the "proper" value when the plant



o

dynamic changes. Therefore, the adaptive scheme with variable forgetting factor is more
robust to the change in the plant dynamic than the scheme with constant forgetting factor.

5. Experimentation
Figure 11 shows the schematic diagram of the experimental controlled system.

Encoder

4 I3 3
Spring
Motor
Clutch
Digital controller
Amplifier D/A C?n';"‘ﬁ Coumters

Figure 11. The schematic diagram of the experimental controlled system.

The experimental controlled system consists of three main subsystems which are:
1. Digital Controller: A personal computer equipped with multifunctional
Input/Output board.
2. Position sensing subsystem: An incremental rotary optical encoder
used to sense the position of the shaft.
3. Actuating subsystem: A 12-bit Digital-to- Analog Converter used to
drive the servo motor through a power amplifier.
The other hardware component that is worth mentioned is the electrical clutch. This clutch
engages J 3 to the rest of the system if activated and it disengages J3 from the rest of the
system if deactivated.

The adaptive (and non-adaptive) control algorithms discussed in section 2 and 4 are
implemented in C programming language. For each control algorithm, the C program
structure is implemented in a modular fashion. The initialization, Input/Output operations,
and parameter estimations are implemented as separate functions called by the main
program where every function routines are "glued" together. The advantage of
implementing the program structure modularly is that it is more convenient in debugging
during the program development stage because each function can be debugged and tested
separately.

5.1 Experimentation results

The plant is required to follow a square wave with magnitude 90 and frequency of 0.1 Hz.
The load 3 (J3) is engaged at t = 15 seconds. The results are shown in Figure 12a, 12b,
and 12c, which show the responses along with control signals of three control schemes
which are the adaptive scheme with constant forgetting factor, the adaptive scheme with
variable forgetting factor, and the non-adaptive scheme (Proportional-Integral-Derivative or
PID), respectively.
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Figure 12. System responses with control signals of three control algorithms:
a) Adaptive with constant forgetting factor
b) Adaptive with variable forgetting factor
c) Non-adaptive (Proportional-Integral-Derivative or PID)
with J3 is engaged at t = 15 seconds.

From the experimentation results above, it can be seen that the results obtained are
generally support the facts found during the simulation. Both adaptive schemes are more
robust to the change in the plant dynamic occurring at t = 15 5. than the non-adaptive
scheme is. The behavior of the responses of both adaptive schemes are almost the same
before and after J3 engaging at t = 15 s. This fact substantiates the "well-known"
characteristic of the adaptive control system in responding to the change in the plant
parameters. But for the non-adaptive scheme, the behavior of its response is noticeably
different before and after J 3 engaging att = 15 5.
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6. Conclusion
From the simulations, it is found that:

B the adaptive control schemes both with constant and variable forgetting factors
show better performance in contro ing position of the RVS with time varying
inertia than the non-adaptive counterpart (PID) does. This is due to the abilities
in adapting the controllers' parameters of both adaptive control schemes to the
change in dynamic of the controlled system.

m the adaptive control scheme with constant forgetting factor could occasionally
result in a burst in the plant output due to the estimator windup. The bursting
phenomena could be eliminated if a "proper” value of the forgetting factor is
used.

B the adaptive control scheme with variable forgetting factor does not have the
estimator windup problem because its forgetting factor is automatically adjusted
to the "proper” value when the plant dynamic changes.

B the adaptive scheme with variable forgetting factor is more robust to the change

in the plant dynamic than the scheme with constant forgetting factor.

From the experimentation, it is found that:

B the results obtained are generally support the facts found during the simulation.
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