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บทคัดย่อ

	 ได้ใช้วิธีมอนติคาร์โลแปรผัน แก้ปัญหาบ่อศักย์คู่สมมาตร V(x) = -kx2 + λx4 บนครึ่งโดเมนโดยพิจารณาที่ k และ λ หลายๆ ค่า 

ได้ค่าของพลังงานสถานะพื้นที่ได้ในหน่วยคำนวณสอดคล้องกับค่าที่ได้จากวิธีฮิลล์เด็ทท์ซึ่งเป็นวิธีที่แม่นยำสูงมาก สำหรับศักย์ชนิดนี้ 

ได้ขยายกราฟของฟังก์ชันคลื่นออกไปจนเต็มโดเมน และพบว่าลักษณะของความหนาแน่นของความน่าจะเป็นนั้นเป็นไปตามหลักการของ

การทะลุผ่านกำแพงศักย์และความสมมาตรของฟังก์ชันคลื่น

คำสำคัญ : วีเอ็มซี   บ่อศักย์คู่กำลังสี่   ครึ่งโดเมน   รูปแบบผลต่างไฟไนต์

Abstract

	 We apply variation Monte Carlo method within half-domain to the symmetric double-well problem in the 

form V(x) = -kx2 + λx4 for several values of positive k and λ. The values of ground-state energy are in good agreement 

with the Hill determinant method, a very accurate approach for this kind of potential. In addition, the graphs of wave 

function are extended to full domain and are displayed We also find this method yields the probability densities 

that comply with tunneling principle and symmetry of wave function.
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Introduction
	 The double-well potential acts as a good model of 

some physical devices whose potential can be imagined as 

two wells at both sides with a barrier in the middle. This 

kind of problem has so far attracted physicists worldwide 

(Arias & Buenda, 1990; Balsa et al., 1983; Banerjee, 1978; 

Bansal et al., 1991; Bishop & Flynn, 1988; Brickmann & 

Zimmermann, 1969; Fernandez et al., 1985; Handy, 1992; 

Hodgson et al., 1989; Schiffrer, 1985; Somorjai & Hornig, 

1962; Witwit, 1996; Witwit & Killingbeck, 1993).

	 In most articles the symmetric quartic one, i.e.  

V(x) = -kx2 + λx4  has been chosen to investigate, for the 

sake of simplicity. This symmetric potential graph has two 

minima with a potential barrier between two potential 

wells. If the particle has total energy less than the height 

of central barrier, one may view it as being influenced 

by two wells. If it initially stays in one particular well, it 

may eventually leak to another one by tunneling. The 

width and height of the central barrier depends on the  

parameters k and λ. According to elementary Calculus,  

barrier height = k2/ (4λ) and the barrier width =           . 

Once the ratio k / λ is large the barrier height will be high, 

then tunneling becomes ineffective. It follows that the 

wave function will decay considerably towards the origin 

so that the ground-state probability might resemble the 

first excited-state one. This reflects the truth that both 

ground and first-excited-state energy levels lie close to 

each other in this case. Otherwise, if the central well is 

short or narrow tunneling towards origin will be more 

likely, then the probability will indeed differ from the 

first excited state one, resulting in remarkable spacing of 

energy spectrum.

	 Several means have been applied to solve this 

problem, e.g. Hill determinant method (Witwit, 1996), 

analytical transfer matrix method (Zhou et al., 2003), 

finite element method (Chaiharn, 2008), numerical 

shooting method (Wan-ek, 2008), phase integral method 

(Fröman et al., 1980)], gradient method (Schiffrer, 1985), 

coupled cluster method (Bishop & Flynn,1988) etc.

Materials and Methods
	 In the Variation Monte Carlo method (VMC) we 

first assign a trial wave function, ϕ (x), usually in a simple 

form, e.g. a constant throughout the domain. Then, for a 

given potential V(x), calculate the expectation value of 

energy pertaining to this wave function. Of course, this 

energy is not a correct one yet as long as the trial wave 

function is still not correct either. The next step, we 

numerically pick up x by random and vary ϕ (x) at that 

point by an infinitesimal amount, i.e. +∆ϕ. The sign should 

be plus or minus depending on which one yields lower 

expectation value of energy. Then continue choosing x  

again byrandom and repeat the foregoing procedure. 

Randomizing x up to 104 times or more will spread x 

overall domain and tend to stabilize the energy expec-

tation value. Actually this gives us the lowest energy as 

desired. The procedure not only yields the ground-state 

energy but also the very accurate ground-state wave 

function in position space.

The Hamiltonian in half-domain VMC approach 
	 By substituting the symmetric double-well 

potential

			   V(x) = -kx2 + λx4 ,			  (1)

which we shall use throughout this article, into the energy 

expectation value equation, we get

(2)

Being a bound-state problem, the domain can be made 

finite for computing purpose, i.e. 

(3)

Also, for abound-state problem the wave function can 

be set real, that is
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where we have divided the domain into n equally small parts, each of width x , practically taken to 
be optimally small as 0.2.  

Eq.(8) will be used extensively by computer program to evaluate the expectation value of 
energy, until we get the minimal value as stated in the previous section. 

The flow chart representing algorithm in brief of this work is presented in the next page. 
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where we have divided the domain into n equally small parts, each of width x , practically taken to 
be optimally small as 0.2.  

Eq.(8) will be used extensively by computer program to evaluate the expectation value of 
energy, until we get the minimal value as stated in the previous section. 

The flow chart representing algorithm in brief of this work is presented in the next page. 
 

 3 

2 2
2 4

2ˆ 2
d kx x dx

H m dx
H

dx

  
 
 

 











 
   
  




.  (2) 

Being a bound-state problem, the domain can be made finite for computing purpose, i.e.  
 

max

min

max

min

2 2
2 4

22

x

x
x

x

d kx x dx
m dx

H
dx

  

 





 
   
 




.    (3) 

Also, for abound-state problem the wave function can be set real, that is 
max

min

max

min

2 2
2 4

2

2

2

x

x
x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (4) 

Since all functions in the integrand are even, we may work in half domain yielding 
max

max

2 2
2 4

2
0

2

0

2

x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (5) 

Throughout this article, we use such computational units that 1, 1/ 2m  . This simplifies (5) to 

 
max max

max

4 2 2

0 0

2

0

"
x x

x

dx x kx dx
H

dx

  



  


 


.    (6) 

 
Applying by-part integration, (6) is transformed to the following one: 

 
max max

max

4 2 2

0 0

2

0

'
x x

x

d x kx dx
H

dx

   



  


 


.    (7) 

Next, we approximate the integrals with the aid of Trapezoidal rule, obtaining 

 
 

   

 

4 2 4 2 2 2 2 21 1
1 1 1 12

1

2 2
1

1

2 2n
i i i i

i i i i i i i i
i

n

i i
i

x x k x x
x

H

   
    

 

 
   






   
      






, (8) 

where we have divided the domain into n equally small parts, each of width x , practically taken to 
be optimally small as 0.2.  

Eq.(8) will be used extensively by computer program to evaluate the expectation value of 
energy, until we get the minimal value as stated in the previous section. 

The flow chart representing algorithm in brief of this work is presented in the next page. 
 

 3 

2 2
2 4

2ˆ 2
d kx x dx

H m dx
H

dx

  
 
 

 











 
   
  




.  (2) 

Being a bound-state problem, the domain can be made finite for computing purpose, i.e.  
 

max

min

max

min

2 2
2 4

22

x

x
x

x

d kx x dx
m dx

H
dx

  

 





 
   
 




.    (3) 

Also, for abound-state problem the wave function can be set real, that is 
max

min

max

min

2 2
2 4

2

2

2

x

x
x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (4) 

Since all functions in the integrand are even, we may work in half domain yielding 
max

max

2 2
2 4

2
0

2

0

2

x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (5) 

Throughout this article, we use such computational units that 1, 1/ 2m  . This simplifies (5) to 

 
max max

max

4 2 2

0 0

2

0

"
x x

x

dx x kx dx
H

dx

  



  


 


.    (6) 

 
Applying by-part integration, (6) is transformed to the following one: 

 
max max

max

4 2 2

0 0

2

0

'
x x

x

d x kx dx
H

dx

   



  


 


.    (7) 

Next, we approximate the integrals with the aid of Trapezoidal rule, obtaining 

 
 

   

 

4 2 4 2 2 2 2 21 1
1 1 1 12

1

2 2
1

1

2 2n
i i i i

i i i i i i i i
i

n

i i
i

x x k x x
x

H

   
    

 

 
   






   
      






, (8) 

where we have divided the domain into n equally small parts, each of width x , practically taken to 
be optimally small as 0.2.  

Eq.(8) will be used extensively by computer program to evaluate the expectation value of 
energy, until we get the minimal value as stated in the previous section. 

The flow chart representing algorithm in brief of this work is presented in the next page. 
 

 3 

2 2
2 4

2ˆ 2
d kx x dx

H m dx
H

dx

  
 
 

 











 
   
  




.  (2) 

Being a bound-state problem, the domain can be made finite for computing purpose, i.e.  
 

max

min

max

min

2 2
2 4

22

x

x
x

x

d kx x dx
m dx

H
dx

  

 





 
   
 




.    (3) 

Also, for abound-state problem the wave function can be set real, that is 
max

min

max

min

2 2
2 4

2

2

2

x

x
x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (4) 

Since all functions in the integrand are even, we may work in half domain yielding 
max

max

2 2
2 4

2
0

2

0

2

x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (5) 

Throughout this article, we use such computational units that 1, 1/ 2m  . This simplifies (5) to 

 
max max

max

4 2 2

0 0

2

0

"
x x

x

dx x kx dx
H

dx

  



  


 


.    (6) 

 
Applying by-part integration, (6) is transformed to the following one: 

 
max max

max

4 2 2

0 0

2

0

'
x x

x

d x kx dx
H

dx

   



  


 


.    (7) 

Next, we approximate the integrals with the aid of Trapezoidal rule, obtaining 

 
 

   

 

4 2 4 2 2 2 2 21 1
1 1 1 12

1

2 2
1

1

2 2n
i i i i

i i i i i i i i
i

n

i i
i

x x k x x
x

H

   
    

 

 
   






   
      






, (8) 

where we have divided the domain into n equally small parts, each of width x , practically taken to 
be optimally small as 0.2.  

Eq.(8) will be used extensively by computer program to evaluate the expectation value of 
energy, until we get the minimal value as stated in the previous section. 

The flow chart representing algorithm in brief of this work is presented in the next page. 
 

(8)

where we have divided the domain into n equally small 

parts, each of width ∆ x, practically taken to be optimally 

small as 0.2. 

	 Eq. (8) will be used extensively by computer 

program to evaluate the expectation value of energy, 

until we get the minimal value as stated in the previous 

section.

	 The flow chart representing algorithm in brief of 

this work is presented in the next page.

Results and Discussion
	 We have calculated ground-state energies of this 

system in several cases and then compare the results with 

those from Hill determinant approach (Witwit, 1996), the 

results are shown below.

Ground-state energies

	 The following tables display numerical results of 

energy eigenvalues for particular value of λ and k. The 

energies are in the computational units that   = 1 and   

m =    . For the parameters, we have used ∆x = 0.1, 

∆ψ = 0.02 since, as long as we tried, they give satisfactory 

results whereas smaller values would cause much longer 

computing time with similar outcomes. In the same way, 

we have used ψ(x) = 0.5 almost throughout the domain 

for the initial unnormalized wave function, for the sake  

of simplicity as shown in Fig.1 below. The figure also 

displays the final wave function after The percent 

difference is calculated with respect to those obtained 

from Hill Determinant method which is regarded as an 

approach that yields  very accurate results (Hautot, 1986; 

Hautot & Magnus, 1979; Hautot & Nicolas, 1983; Znojil, 

1982).

 3 

2 2
2 4

2ˆ 2
d kx x dx

H m dx
H

dx

  
 
 

 











 
   
  




.  (2) 

Being a bound-state problem, the domain can be made finite for computing purpose, i.e.  
 

max

min

max

min

2 2
2 4

22

x

x
x

x

d kx x dx
m dx

H
dx

  

 





 
   
 




.    (3) 

Also, for abound-state problem the wave function can be set real, that is 
max

min

max

min

2 2
2 4

2

2

2

x

x
x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (4) 

Since all functions in the integrand are even, we may work in half domain yielding 
max

max

2 2
2 4

2
0

2

0

2

x

x

d kx x dx
m dx

H
dx

  



 
   
 




.    (5) 

Throughout this article, we use such computational units that 1, 1/ 2m  . This simplifies (5) to 

 
max max

max

4 2 2

0 0

2

0

"
x x

x

dx x kx dx
H

dx

  



  


 


.    (6) 

 
Applying by-part integration, (6) is transformed to the following one: 

 
max max

max

4 2 2

0 0

2

0

'
x x

x

d x kx dx
H

dx

   



  


 


.    (7) 

Next, we approximate the integrals with the aid of Trapezoidal rule, obtaining 

 
 

   

 

4 2 4 2 2 2 2 21 1
1 1 1 12

1

2 2
1

1

2 2n
i i i i

i i i i i i i i
i

n

i i
i

x x k x x
x

H

   
    

 

 
   






   
      






, (8) 

where we have divided the domain into n equally small parts, each of width x , practically taken to 
be optimally small as 0.2.  

Eq.(8) will be used extensively by computer program to evaluate the expectation value of 
energy, until we get the minimal value as stated in the previous section. 

The flow chart representing algorithm in brief of this work is presented in the next page. 
 

1
2

ชนัญ  ศรีชีวิน / วารสารวิทยาศาสตร์บูรพา. 17 (2555) 1 : 24-34



27

Fig. 1	 Flow chart representing logic of this work.
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Table 1	 Ground-state energies from VMC calculation compared with the ones obtained from Hill Determinant  

		  method.

Parameters in case E0 from VMC E0 from Hill Det. % difference
λ = 1.0, k = 5.0 -3.38041 -3.41014 0.87
λ = 1.0, k = 7.0 -8.67204 -8.67111 0.01 
λ = 1.0, k = 10.0 -20.63748 -20.63358 0.02 
λ = 6.0, k = 40.0 -57.98453 -57.87859 0.18 
λ = 0.5, k = 5.0 -9.37836 -9.44698 0.73
λ = 1.5, k = 15.0 -32.10278 -32.12731 0.08 
λ = 5.0, k = 30.0 -37.34071 -37.42980 0.24 
λ = 10.0, k = 50.0 -52.70857 -52.71005 0.003 
λ = 15.0, k = 100.0 -152.83048 -152.67831 0.10 
λ = 25.0, k = 15.0 -208.17907 -207.84995 0.16
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Fig.2   Line  : Initial wave function via VMC  in half domain (arbitrary units).  
 Dot   : Final wave function calculated via VMC in half domain (arbitrary units). 
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Fig.4 Ground-state wave function via VMC, in arbitrary units, in case λ 1.0,  k 7.0   

Fig. 2	 Line  : Initial wave function via VMC  in half domain (arbitrary units). 

	 Dot   : Final wave function calculated via VMC in half domain (arbitrary units).
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Fig.4 Ground-state wave function via VMC, in arbitrary units, in case λ 1.0,  k 7.0   
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Fig.5 Ground-state wave function via VMC, in arbitrary units, in case λ 1.0,  k 10.0   
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Fig.6 Ground-state wave function via VMC, in arbitrary units, in case λ 6.0,  k 40.0   
 
 

Fig. 3	 Ground-state wave function via VMC, in arbitrary units, in case λ = 1.0, k = 5.0

Fig. 4	 Ground-state wave function via VMC, in arbitrary units, in case λ = 1.0, k = 7.0

Fig. 5	 Ground-state wave function via VMC, in arbitrary units, in case λ = 1.0, k = 10.0
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Fig.5 Ground-state wave function via VMC, in arbitrary units, in case λ 1.0,  k 10.0   
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Fig.7 Ground-state wave function via VMC, in arbitrary units, in case λ 0.5,  k 5.0   
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Fig.8 Ground-state wave function via VMC, in arbitrary units, in case λ 1.5,  k 15.0   
 

-4 -2 2 4
X

0 X

 
Fig.9 Ground-state wave function via VMC, in arbitrary units, in case λ 5.0,  k 30.0   

Fig. 6	 Ground-state wave function via VMC, in arbitrary units, in case λ = 6.0, k = 40.0

Fig. 7	 Ground-state wave function via VMC, in arbitrary units, in case λ = 0.5, k = 5.0
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Fig. 8	 Ground-state wave function via VMC, in arbitrary units, in case λ = 1.5, k = 15.0

Fig. 9	 Ground-state wave function via VMC, in arbitrary units, in case λ = 5.0, k = 30.0
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Conclusion
	 From the Monte Carlo principle, we have success-

fully adjusted the ground-state wave functions within 

the half domain by minimizing the energy eigenvalues. 

Due to the fact that the potential is an even function, 

then the wave functions are symmetric or antisymmetric. 

In other words, the ground-state wave functions of this 

problem must be even functions. Hence, using the half-

domain technique reduces the computing time by about 

one half. We obtain numerical results of the energy 

eigenvalues in good agreement with those calculated via 

Hill-determinant method. This confirms the validity and 

correctness of random process.

	 By viewing the double well as a single well plus a  

central barrier, we know from elementary Calculus that 

the barrier width and height are          and k2 / (4λ)  

respectively. Therefore, the combination of k and λ 

determines the shape of double well. For example, 

for ground state in case of k = 5.0, λ = 1.0, the wave 

function decays noticeably as x     0 since the barrier in 

this case is pretty thin. The decay is, however, more 

obvious in case of k = 30.0, λ = 5.0 since the barrier 

gets thicker and the well gets deeper (the barrier height 

is higher). These results show that the graphs of wave 

function suit theoretical prediction indeed. Under this 

circumstance, we get closer level between E0 and E1 

which, even though cannot be seen by this method (since 

this one normally deals with ground states), can somehow 

be observed from other means.
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