Relationship Between Hotspot and Geography-Meteorology Factors in Thailand and Neighboring Countries
Main Article Content
Abstract
Air pollution is a critical issue in many countries and has become a significant problem in Southeast Asia. Wildfires, agricultural burning, and biomass burning are major sources of pollution emissions. This study aims to analyze hotspot activity and examine the relationship between hotspots and geographic-meteorological factors in Thailand and neighboring countries. MODIS hotspot data were analyzed using the frequency-magnitude distribution (FMD) and geography-meteorology factors. The results indicate that areas with high hotspot activity were mainly found in northeastern to eastern Cambodia and northern Laos. Additionally, northern Laos and some pockets in Myanmar showed high hotspot intensity, capable of generating a maximum Fire Radiative Power (FRP)
>1,000 MW. The return periods for 8, 20, 40, and 120 MW were found to be 0.05, 0.1, 0.5, and 1 year, respectively. In the next 50 years, parts of Thailand, Myanmar, and Cambodia will have a 0–60% probability of experiencing 120 MW fires. Fires are more frequent at low elevations, on gentle slopes, and across all aspects (excluding flat areas). Moreover, higher elevations, steeper slopes, and southern aspects tend to experience more high-intensity fires. It can be inferred that fire intensity is not primarily influenced by temperature, precipitation, or relative humidity. Instead, other factors, such as fuel availability and human activities, may play a more significant role.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2008 Department of Geology, Faculty of Science, Chulalongkorn University. Parts of an article can be photocopied or reproduced without prior written permission from the author(s), but due acknowledgments should be stated or cited accordingly.
References
Adab, H., Kanniah, K. D., & Solaimani, K. (2013). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural hazards, 65, 1723-1743. https://doi.org/
1007/s11069-012-0450-8
Adaktylou, N., Stratoulias, D., Borgman, J., Cha, S., Adiningrat, D. P., & Nuthammachot, N. (2024). Land Cover Disaggregated Fire Occurrence and Particulate Matter 2.5 Relationship in the Mekong Region: A Comprehensive Study. ISPRS International Journal of Geo-Information, 13(6), 206. https://doi.org/10.3390/ijgi13060206
Baltacı, U., & Yıldırım, F. (2020). Effect of slope on the analysis of forest fire risk. Hacettepe Journal of Biology and Chemistry, 48(4), 373-379. https://doi.org/10.15671/
hjbc.753080
Berčák, R., Holuša, J., Trombik, J., Resnerová, K., & Hlásny, T. (2024). A combination of human activity and climate drives forest
fire occurrence in central europe: the case
of the Czech Republic. Fire, 7(4), 109. https://doi.org/10.3390/fire7040109
Chaiboonsri, C., Eakkapun, P., Sirimongkonlertkun, N., Suksaroj, T. T., Nasanit, R., Apiratikul, R., ... & Pongpiachan, S. (2023). The Impact of PM2.5 on Socio-Economic of Thailand: The Perception Based on The Survey Data. NIDA Development Journal, 63(2), 106-124. https://doi.org/10.14456/ndj.2023.5
Chavanaves, S., Fantke, P., Limpaseni, W., Attavanich, W., Panyametheekul, S., Gheewala, S. H., & Prapaspongsa, T. (2021). Health impacts and costs of fine particulate matter formation from road transport in Bangkok Metropolitan Region. Atmospheric Pollution Research, 12(10), 101191. https://doi.org/10.1016/j.apr.2021.101191
Chen, H., Burnett, R. T., Kwong, J. C., Villeneuve, P. J., Goldberg, M. S., Brook, R. D., ... & Copes, R. (2013). Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environmental health perspectives, 121(7), 804-810. https://doi.org/10.1289/ehp.1205958
Chorhirankul, N. (2017). Frequency-size distribution of the craters on mars. Chulalongkorn University. https://doi.org/
58837/CHULA.SP.2017.36
Dorodnykh, N., Nikolaychuk, O., Pestova, J.,
& Yurin, A. (2022). Forest Fire Risk Forecasting with the Aid of Case-Based Reasoning. Applied Sciences, 12(17), 8761. https://doi.org/10.3390/app12178761
Engel, C. B., Jones, S. D., & Reinke, K. J. (2022). Fire Radiative Power (FRP) Values for Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) Hotspots Derived from the Advanced Himawari Imager (AHI). Remote Sensing, 14(11), 2540. https://doi.org/10.3390/rs141
Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., & Lampin, C. (2013). A review of the main driving factors of forest fire ignition over Europe. Environmental management, 51, 651-662. https://doi.org/10.1007/s00267-012-
-z
Gedalof, Z. E. (2010). Climate and spatial patterns of wildfire in North America. The landscape ecology of fire, 89-115. Dordrecht: Springer Netherlands. https://doi.org/10.1007/
-94-007-0301-8_4.
Gu, Y., Fang, T., & Yim, S. H. L. (2024). Source emission contributions to particulate matter and ozone, and their health impacts in Southeast Asia. Environment international, 186, 108578. https://doi.org/10.1016/j.envint.
108578
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological society of America, 34(4), 185-188. https://doi.org/
1785/BSSA0340040185
Iaaich, H., Moussadek, R., Baghdad, B., Mrabet, R., Douaik, A., Abdelkrim, D., & Bouabdli, A. (2016). Soil erodibility mapping using three approaches in the Tangiers province–Northern Morocco. International Soil and Water Conservation Research, 4(3), 159-167. https://doi.org/ 10.1016/j.iswcr.2016.07.001
Ishimoto, M. and Iida, K. (1939). Observations of Earthquakes Registered with the Micro Seismograph Constructed Recently. Bulletin of the Earthquake Research Institute, 17, 443-478.
Li, R., Zhou, R., & Zhang, J. (2018). Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncology letters, 15(5), 7506-7514. https://doi.org/10.3892/ol.2018.8355
Kadir, E. A., Kung, H. T., AlMansour, A. A., Irie, H., Rosa, S. L., & Fauzi, S. S. M. (2023). Wildfire hotspots forecasting and mapping for environmental monitoring based on the long short-term memory networks deep learning algorithm. Environments, 10(7), 124. https://doi.org/10.3390/environments10070124
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.J., Razinger, M., Schultz, M.G., Suttie, M., & Van Der Werf, G. R. (2012). Biomass burning emissions estimated with
a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527-554. https://doi.org/10.5194/bg-9-527-2012
Khamsiri, S. (2017). Frequency-size distribution of the craters on moon. Chulalongkorn University. https://doi.org/10.58837/CHULA
.SP.2017.71
Korontzi, S., McCarty, J., Loboda, T., Kumar, S., & Justice, C. (2006). Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochemical Cycles, 20(2). https://doi.org/
1029/2005GB002529
Kumar, S., & Kumar, A. (2022). Hotspot and trend analysis of forest fires and its relation to climatic factors in the western Himalayas. Natural Hazards, 114(3), 3529-3544. https://doi.org/10.1007/s11069-022-05530-5
Miller, M. R., & Newby, D. E. (2020). Air pollution and cardiovascular disease: car sick. Cardiovascular research, 116(2), 279-294. https://doi.org/10.1093/cvr/cvz228
Moran, J., NaSuwan, C., & Poocharoen, O. O. (2019). The haze problem in Northern Thailand and policies to combat it: A review. Environmental Science & Policy, 97, 1-15. https://doi.org/10.1016/j.envsci.2019.03.016
Nami, M. H., Jaafari, A., Fallah, M., & Nabiuni, S. (2018). Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International journal of environmental science and technology, 15, 373-384. https://doi.org/10.1007/s13762-017-1371-6
Nonthapot, S., Sihabutr, C., & Lean, H. H. (2024). The effects of air pollution on tourism in Thailand. Geo Journal of Tourism and Geosites, 53(2), 522-527. https://doi.org/
30892/gtg.53215-1227
Olabarrieta, M., Valle-Levinson, A., Martinez, C. J., Pattiaratchi, C., & Shi, L. (2017). Meteotsunamis in the northeastern Gulf of Mexico and their possible link to El Niño Southern Oscillation. Natural hazards, 88, 1325-1346. https://doi.org/10.1007/s11069-017-2922-3
Pacaldo, R. S., Aydin, M., & Amarille, R. K. (2025). Forest fire and aspects showed no significant effects on most mineral soil properties of black pine forests. CATENA, 250, 108801. https://doi.org/10.1016/j.catena
.2025.108801
Pailoplee, S. (2017). Probabilities of Earthquake Occurrences along the Sumatra-Andaman Subduction Zone. Open Geosciences, 9(1), 53-60. https://doi.org/10.1515/geo-2017-0004
Pope Iii, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141. https://doi.org/10.1001/jama.287.9.1132
Prasertwiriya, K. (2020). Investigation of rainfall amounts in Thailand: Spatial Distribution. Chulalongkorn University. https://doi.org/10.58837/CHULA.SP.2020.229
Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E., & Turetsky, M. (2020). Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters, 15(3), 030201. https://doi.org/10.1088/1748-9326/
ab6d3a
Sjöström, J., & Granström, A. (2023). Human activity and demographics drive the fire regime in a highly developed European boreal region. Fire Safety Journal, 136, 103743. https://doi.org/10.1016/j.firesaf.2023.
Taghizadeh-Hesary, F., & Taghizadeh-Hesary, F. (2020). The impacts of air pollution on health and economy in Southeast Asia. Energies, 13(7), 1812. https://doi.org/10.3390/en1307
Vadrevu, K. P., Csiszar, I., Ellicott, E., Giglio, L., Badarinath, K. V. S., Vermote, E., & Justice, C. (2012). Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE Journal of selected topics in applied Earth Observations and Remote Sensing, 6(1), 224-238. https://doi.org/10.1109/
JSTARS.2012.2210699
Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373-382. https://doi.
org/10.1785/gssrl.72.3.373
Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2. 5 on the human respiratory system. Journal of thoracic disease, 8(1), E69. https://doi.org/10.3978/
j.issn.2072-1439.2016.01.19
Yadav, R., Tripathi, J., Shanker, D., Rastogi, B., Das, M., & Kumar, V. (2011). Probabilities for the occurrences of medium to large earthquakes in northeast India and adjoining region. Natural Hazards, 56, 145-167. https://doi.org/10.1007/s11069-010-9557-y
Yang, Y., Zhang, X., & Fu, Y. (2022). Foreign tourists’ experiences under air pollution: Evidence from big data. Tourism Management, 88, 104423. https://doi.org/
1016/j.tourman.2021.104423