A new mangrove core record for Eastern Thailand: chemical characterization of bulk organic sediment by FTIR‒ATR spectroscopy and elemental analysis
Main Article Content
Abstract
The eastern Gulf of Thailand features mixed low-relief geomorphology, characterized by intertidal mudflats, coastal wetlands, and relict sand deposits indicative of prograding barrier systems formed during Holocene regression. While previous research has focused on reconstructing sea-level changes using beach ridge records and mangrove pollen, there has been no comprehensive investigation into organic geochemical archives. This work aims to provide a new mangrove core record for Eastern Thailand, focused on chemical characterization of organic sediments and proxy reconstructions of relative environmental changes with depth, complementary to growing literature on coastal paleoenvironmental change in this region of the Gulf of Thailand. This research adopts an innovative approach to reconstructing environmental change by analyzing the chemical composition, relative sources, and cycling dynamics of mangrove organic matter, employing loss-on-ignition (LOI), elemental analyses, and Fourier-transform infrared (FT-IR) spectroscopy techniques. The PEM stratigraphic units encompass nutrient-poor surface tidal wash, organic-rich mangrove soils with active humus formation, and basal shallow marine sands with low organic content and high-energy horizons of fragmentary shells. Enhanced organic decomposition is evident in bioturbated surface sediments, while high total organic carbon to total nitrogen (TOC/TN) ratios indicates substantial allochthonous contributions from mangrove leaf litter and detrital organic matter via runoff from the Prasae River. Fluctuating TOC/TN values and FT-IR absorbances at 2925–2905 cm⁻¹ and 3300 cm⁻¹ reflect significant mixing between terrestrial and aquatic organic matter, linked to dynamic sea-level changes and increasing riverine inputs. The organic mangrove soils exhibit FT-IR absorption peaks for phenolic and aromatic compounds at 1630 cm⁻¹, indicating advanced humification stages, while the basal sands preserve higher proportions of aliphatic hydrocarbons, as indicated by vibrations at 1475 cm⁻¹, suggesting influences from grain size, sulfur-reduction pathways, and the inhibitory effects of high phenolic content on organic carbon preservation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2008 Department of Geology, Faculty of Science, Chulalongkorn University. Parts of an article can be photocopied or reproduced without prior written permission from the author(s), but due acknowledgments should be stated or cited accordingly.
References
Alahmadi, S.M., Mohamad, S., Maah, M.J., 2012. Synthesis and Characterization of Mesoporous Silica Functionalized with Calix[4]arene Derivatives. International Journal of Molecular Sciences 13, 13726–13736. https://doi.org/10.3390/ijms131013726
Alongi, D.M., 2020. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci 2, 67. https://doi.org/10.3390/sci2030067
Alongi, D.M., 2018. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 9, 596. https://doi.org/10.3390/f9100596
Alongi, D.M., 2014. Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science 6, 195–219. https://doi.org/10.1146/annurev‒marine‒010213‒135020
Alongi, D.M., 2005. Mangrove–Microbe–Soil Relations, in: Interactions Between Macro‒ and Microorganisms in Marine Sediments. American Geophysical Union (AGU), pp. 85–103. https://doi.org/10.1029/CE060p0085
Andrade, A., Rubio, B., Rey, D., Álvarez‒Iglesias, P., Bernabeu, A.M., Vilas, F., 2011. Palaeoclimatic changes in the NW Iberian Peninsula during the last 3000 years inferred from diagenetic proxies in the Ría de Muros sedimentary record. Climate Research 48, 247–259. https://doi.org/10.3354/cr00992
Audah, K.A., Ettin, J., Darmadi, J., Azizah, N.N., Anisa, A.S., Hermawan, T.D.F., Tjampakasari, C.R., Heryanto, R., Ismail, I.S., Batubara, I., 2022. Indonesian Mangrove Sonneratia caseolaris Leaves Ethanol Extract Is a Potential Super Antioxidant and Anti Methicillin‒Resistant Staphylococcus aureus Drug. Molecules 27, 8369. https://doi.org/10.3390/molecules27238369
Avramidis, P., Bekiari, V., 2021. Application of a catalytic oxidation method for the simultaneous determination of total organic carbon and total nitrogen in marine sediments and soils. PLOS ONE 16, e0252308. https://doi.org/10.1371/journal.pone.0252308
Ballian, A., Chawchai, S., Miocic, J.M., Charoenchatree, W., Bissen, R., Preusser, F., 2024. Late Holocene coastal dynamics south of the Chanthaburi estuary, eastern Gulf of Thailand. Quaternary Research 117, 19–29. https://doi.org/10.1017/qua.2023.34
Barreto, M.B., Lo Mónaco, S., Díaz, R., Barreto‒Pittol, E., López, L., Peralba, M. do C.R., 2016. Soil organic carbon of mangrove forests (Rhizophora and Avicennia) of the Venezuelan Caribbean coast. Organic Geochemistry 100, 51–61. https://doi.org/10.1016/j.orggeochem.2016.08.002
Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 2018. Present and future Köppen‒Geiger climate classification maps at 1‒km resolution. Sci Data 5, 180214. https://doi.org/10.1038/sdata.2018.214
Bianchi, T.S., Canuel, E.A., 2011. Chemical Biomarkers in Aquatic Ecosystems. Princeton University Press. https://doi.org/10.1515/9781400839100
Broder, T., Blodau, C., Biester, H., Knorr, K.H., 2012. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491. https://doi.org/10.5194/bg‒9‒1479‒2012
Carneiro, L.M., do Rosário Zucchi, M., de Jesus, T.B., da Silva Júnior, J.B., Hadlich, G.M., 2021. δ13C, δ15N and TOC/TN as indicators of the origin of organic matter in sediment samples from the estuary of a tropical river. Marine Pollution Bulletin 172, 112857. https://doi.org/10.1016/j.marpolbul.2021.112857
Chabangborn, A., 2017. Review of Paleoclimatic Reconstruction in Thailand Between the Last Glacial Maximum and the Mid Holocene. Burapha Science Journal 61–77.
Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17. https://doi.org/10.1029/2002GB001917
Choowong, M., n.d. Lithofacies and episodic coastal evolution from the Eastern part of Thailand 7.
Dahibhate, N.L., Saddhe, A.A., Kumar, K., 2019. Mangrove Plants as a Source of Bioactive Compounds: A Review. The Natural Products Journal 9, 86–97. https://doi.org/10.2174/2210315508666180910125328
Duarte, C.M., Middelburg, J.J., Caraco, N., 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8. https://doi.org/10.5194/bg‒2‒1‒2005
Ellison, J.C., 2019. Chapter 20 ‒ Biogeomorphology of Mangroves, in: Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S. (Eds.), Coastal Wetlands (Second Edition). Elsevier, pp. 687–715. https://doi.org/10.1016/B978‒0‒444‒63893‒9.00020‒4
Enggrob, K.L., Larsen, T., Peixoto, L., Rasmussen, J., 2020. Gram‒positive bacteria control the rapid anabolism of protein‒sized soil organic nitrogen compounds questioning the present paradigm. Sci Rep 10, 15840. https://doi.org/10.1038/s41598‒020‒72696‒y
Englong, A., Punwong, P., Selby, K., Marchant, R., Traiperm, P., Pumijumnong, N., 2019. Mangrove dynamics and environmental changes on Koh Chang, Thailand during the last millennium. Quaternary International, SI: Quaternary International 500 500, 128–138. https://doi.org/10.1016/j.quaint.2019.05.011
Fenchel, T., King, G.M., Blackburn, T.H., 2012. Chapter 3 ‒ Degradation of Organic Polymers and Hydrocarbons, in: Fenchel, T., King, G.M., Blackburn, T.H. (Eds.), Bacterial Biogeochemistry (Third Edition). Academic Press, Boston, pp. 49–57. https://doi.org/10.1016/B978‒0‒12‒415836‒8.00003‒7
Flores, R.M., 2014. Chapter 3 ‒ Origin of Coal as Gas Source and Reservoir Rocks, in: Flores, R.M. (Ed.), Coal and Coalbed Gas. Elsevier, Boston, pp. 97–165. https://doi.org/10.1016/B978‒0‒12‒396972‒9.00003‒3
Gaffney, J.S., Marley, N.A., Clark, S.B., 1996. Humic and Fulvic Acids and Organic Colloidal Materials in the Environment, in: Humic and Fulvic Acids, ACS Symposium Series. American Chemical Society, pp. 2–16. https://doi.org/10.1021/bk‒1996‒0651.ch001
García‒Troche, E.M., Morell, J.M., Meléndez, M., Salisbury, J.E., 2021. Carbonate chemistry seasonality in a tropical mangrove lagoon in La Parguera, Puerto Rico. PLOS ONE 16, e0250069. https://doi.org/10.1371/journal.pone.0250069
Gijsman, R., Horstman, E.M., Swales, A., MacDonald, I.T., Bouma, T.J., van der Wal, D., Wijnberg, K.M., 2024. Mangrove forest drag and bed stabilisation effects on intertidal flat morphology. Earth Surface Processes and Landforms 49, 1117–1134. https://doi.org/10.1002/esp.5758
Giovanela, M., Crespo, J.S., Antunes, M., Adamatti, D.S., Fernandes, A.N., Barison, A., da Silva, C.W.P., Guégan, R., Motelica‒Heino, M., Sierra, M.M.D., 2010. Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin. Journal of Molecular Structure 981, 111–119. https://doi.org/10.1016/j.molstruc.2010.07.038
González‒Pérez, M., Vidal Torrado, P., Colnago, L.A., Martin‒Neto, L., Otero, X.L., Milori, D.M.B.P., Gomes, F.H., 2008. 13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil. Geoderma 146, 425–433. https://doi.org/10.1016/j.geoderma.2008.06.018
Google Earth, 2022. Prasae Estuary and Thung Prong Thong Mangrove Complex, 1:150,000 [WWW Document]. Google Earth. URL https://earth.google.com/static/multi‒threaded/versions/10.65.1.2/index.html?#@12.70481887,101.72352565,4.28684284a,4784.65900906d,35y,0h,0t,0r
Hayes, M.H.B., Swift, R.S., 2020. Chapter 1 ‒ Vindication of humic substances as a key component of organic matter in soil and water, in: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, pp. 1–37. https://doi.org/10.1016/bs.agron.2020.05.001
Hossain, G.M., Bhuiyan, M.A.H., 2016. Spatial and temporal variations of organic matter contents and potential sediment nutrient index in the Sundarbans mangrove forest, Bangladesh. KSCE J Civ Eng 20, 163–174. https://doi.org/10.1007/s12205‒015‒0333‒0
Hossain, M.D., Nuruddin, A.A., 2016. Soil and Mangrove: A Review. Journal of Environmental Science and Technology 9, 198–207. https://doi.org/10.3923/jest.2016.198.207
Jia, M., Wang, Z., Mao, D., Ren, C., Song, K., Zhao, C., Wang, C., Xiao, X., Wang, Y., 2023. Mapping global distribution of mangrove forests at 10‒m resolution. Science Bulletin 68, 1306–1316. https://doi.org/10.1016/j.scib.2023.05.004
Kashif, M., Sang, Y., Mo, S., Rehman, S. ur, Khan, S., Khan, M.R., He, S., Jiang, C., 2023. Deciphering the biodesulfurization pathway employing marine mangrove Bacillus aryabhattai strain NM1‒A2 according to whole genome sequencing and transcriptome analyses. Genomics 115, 110635. https://doi.org/10.1016/j.ygeno.2023.110635
Kathiresan, K., Bingham, B.L., 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40, 81–251. https://doi.org/10.1016/S0065‒2881(01)40003‒4
Kim, J., Lee, J., Yang, Y., Yun, J., Ding, W., Yuan, J., Khim, J.S., Kwon, B.‒O., Kang, H., 2021. Microbial decomposition of soil organic matter determined by edaphic characteristics of mangrove forests in East Asia. Science of The Total Environment 763, 142972. https://doi.org/10.1016/j.scitotenv.2020.142972
Krumins, J., Klavins, M., Seglins, V., Kaup, E., 2012. Comparative Study of Peat Composition by using FT-IR Spectroscopy. Materialzinatne un Lietiska Kimija 26, 106.
Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P., Regnier, P., 2013. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences 10, 371–398. https://doi.org/10.5194/bg‒10‒371‒2013
Kumar, U., Panneerselvam, P., Gupta, V.V.S.R., Manjunath, M., Priyadarshinee, P., Sahoo, A., Dash, S.R., Kaviraj, M., Annapurna, K., 2018. Diversity of Sulfur‒Oxidizing and Sulfur‒Reducing Microbes in Diverse Ecosystems, in: Adhya, T.K., Lal, B., Mohapatra, B., Paul, D., Das, S. (Eds.), Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 1: Soil‒Microbe Interaction. Springer, Singapore, pp. 65–89. https://doi.org/10.1007/978‒981‒10‒6178‒3_4
Laux, M., Ciapina, L.P., de Carvalho, F.M., Gerber, A.L., Guimarães, A.P.C., Apolinário, M., Paes, J.E.S., Jonck, C.R., de Vasconcelos, A.T.R., 2024. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 24, 228. https://doi.org/10.1186/s12866‒024‒03390‒6
Li, M., Fang, A., Yu, X., Zhang, K., He, Z., Wang, C., Peng, Y., Xiao, F., Yang, T., Zhang, W., Zheng, X., Zhong, Q., Liu, X., Yan, Q., 2021. Microbially‒driven sulfur cycling microbial communities in different mangrove sediments. Chemosphere 273, 128597. https://doi.org/10.1016/j.chemosphere.2020.128597
Li, Y., Long, C., Dai, Z., Zhou, X., 2024. Pattern of total organic carbon in sediments within the mangrove ecosystem. Front. Mar. Sci. 11. https://doi.org/10.3389/fmars.2024.1428229
Madumini Senanayake, N.D., Ratnayake, A.S., Premila Wijesinghe, U.M., Ratnayake, N.P., 2021. Geochemistry and sedimentology of tropical mangrove sediments along the southwest coast of Sri Lanka: Fingerprints for development history of wetlands. Regional Studies in Marine Science 46, 101884. https://doi.org/10.1016/j.rsma.2021.101884
Martínez Cortizas, A., Sjöström, J.K., Ryberg, E.E., Kylander, M.E., Kaal, J., López-Costas, O., Álvarez Fernández, N., Bindler, R., 2021. 9000 years of changes in peat organic matter composition in Store Mosse (Sweden) traced using FTIR-ATR. Boreas 50, 1161–1178. https://doi.org/10.1111/bor.12527
Mathew, J., Gopinath, A., Vareed, R.A., 2021. Spectroscopic characterization of humic substances isolated from tropical mangrove sediments. Arab J Geosci 14, 668. https://doi.org/10.1007/s12517‒021‒06968‒w
McLachlan, R.L., Ogston, A.S., Asp, N.E., Fricke, A.T., Nittrouer, C.A., Schettini, C.A.F., 2020. Morphological evolution of a macrotidal back-barrier environment: The Amazon Coast. Sedimentology 67, 3492–3512. https://doi.org/10.1111/sed.12752
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9, 552–560. https://doi.org/10.1890/110004
Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, 213–250. https://doi.org/10.1016/S0146‒6380(97)00049‒1
Miocic, J.M., Sah, R., Chawchai, S., Surakiatchai, P., Choowong, M., Preusser, F., 2022. High resolution luminescence chronology of coastal dune deposits near Chumphon, Western Gulf of Thailand. Aeolian Research 56, 100797. https://doi.org/10.1016/j.aeolia.2022.100797
Mo, S., Yan, B., Gao, T., Li, J., Kashif, M., Song, J., Bai, L., Yu, D., Liao, J., Jiang, C., 2023. Sulfur metabolism in subtropical marine mangrove sediments fundamentally differs from other habitats as revealed by SMDB. Sci Rep 13, 8126. https://doi.org/10.1038/s41598‒023‒34995‒y
Nagakura, T., Schubert, F., Wagner, D., Kallmeyer, J., IODP Exp. 385 Shipboard Scientific Party, 2022. Biological Sulfate Reduction in Deep Subseafloor Sediment of Guaymas Basin. Front. Microbiol. 13. https://doi.org/10.3389/fmicb.2022.845250
Nardi, S., Schiavon, M., Francioso, O., 2021. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 26, 2256. https://doi.org/10.3390/molecules26082256
Niemeyer, J., Chen, Y., Bollag, J.‒M., 1992. Characterization of Humic Acids, Composts, and Peat by Diffuse Reflectance Fourier-Transform Infrared Spectroscopy. Soil Science Society of America Journal 56, 135–140. https://doi.org/10.2136/sssaj1992.03615995005600010021x
Norden, B., Fyfe, C.A., McKinnon, M.S., 1986. 13C CP/MAS NMR study of peat in the solid state. International Peat Journal 1, 153–164.
Obeng, A.S., Dunne, J., Giltrap, M., Tian, F., 2023. Soil organic matter carbon chemistry signatures, hydrophobicity and humification index following land use change in temperate peat soils. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e19347
Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan, J.R., 2009. Introduction to Spectroscopy, 4th ed. Brooks/Cole, USA.
Pernetta, J., 1993. Mangrove Forests, Climate Change and Sea Level Rise: Hydrological Influences on Community Structure and Survival, with Examples from the Indo‒West Pacific. IUCN.
Pisani, O., Hills, K.M., Courtier‒Murias, D., Haddix, M.L., Paul, E.A., Conant, R.T., Simpson, A.J., Arhonditsis, G.B., Simpson, M.J., 2014. Accumulation of aliphatic compounds in soil with increasing mean annual temperature. Organic Geochemistry 76, 118–127. https://doi.org/10.1016/j.orggeochem.2014.07.009
Pradisty, N.A., Amir, A.A., Zimmer, M., 2021. Plant species‒ and stage‒specific differences in microbial decay of mangrove leaf litter: the older the better? Oecologia 195, 843–858. https://doi.org/10.1007/s00442‒021‒04865‒3
Scholl, D.W., 1997. MANGROVE SWAMPS: GEOLOGY AND SEDIMENTOLOGYMangrove swamps: Geology and sedimentology, in: Geomorphology. Springer, Berlin, Heidelberg, pp. 683–688. https://doi.org/10.1007/3‒540‒31060‒6_237
Sherman, R.E., Fahey, T.J., Howarth, R.W., 1998. Soil‒plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115, 553–563. https://doi.org/10.1007/s004420050553
Shiau, Y.‒J., Chiu, C.‒Y., 2020. Biogeochemical Processes of C and N in the Soil of Mangrove Forest Ecosystems. Forests 11, 492. https://doi.org/10.3390/f11050492
Sinsakul, S., 1992. Evidence of Quaternary sea level changes in the coastal areas of Thailand: a review. Journal of Southeast Asian Earth Sciences, Global Environmental Change the Role of the Geoscientist Past, Present and Future Sea-level changes 7, 23–37. https://doi.org/10.1016/0743‒9547(92)90012‒Z
Slatt, R.M., 2013. Chapter 10 ‒ Nondeltaic, Shallow Marine Deposits and Reservoirs, in: Slatt, R.M. (Ed.), Developments in Petroleum Science, Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers. Elsevier, pp. 441–473. https://doi.org/10.1016/B978‒0‒444‒56365‒1.00010‒9
Socrates, G., 2004. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons.
Somboon, J.R.P., 1988. Paleontological study of the recent marine sediments in the lower central plain, Thailand. Journal of Southeast Asian Earth Sciences 2, 201–210. https://doi.org/10.1016/0743‒9547(88)90031‒1
Stevenson, F.J., Goh, K.M., 1971. Infrared spectra of humic acids and related substances. Geochimica et Cosmochimica Acta 35, 471–483. https://doi.org/10.1016/0016‒7037(71)90044‒5
Tang, C.‒S., Yin, L., Jiang, N., Zhu, C., Zeng, H., Li, H., Shi, B., 2020. Factors affecting the performance of microbial‒induced carbonate precipitation (MICP) treated soil: a review. Environ Earth Sci 79, 94. https://doi.org/10.1007/s12665‒020‒8840‒9
Twilley, R., Day, J., 2012. Estuarine Ecology, Second Edition. pp. 165–202. https://doi.org/10.1002/9781118412787.ch7
Twilley, R.R., Chen, R.H., Hargis, T., 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64, 265–288. https://doi.org/10.1007/BF00477106
Upton, A., Vane, C.H., Girkin, N., Turner, B.L., Sjögersten, S., 2018. Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? Geoderma 326, 76–87. https://doi.org/10.1016/j.geoderma.2018.03.030
Vinh, T.V., Allenbach, M., Linh, K.T.V., Marchand, C., 2020. Changes in Leaf Litter Quality During Its Decomposition in a Tropical Planted Mangrove Forest (Can Gio, Vietnam). Frontiers in Environmental Science 8.
Woodroffe, C.D., 2018. Mangrove response to sea level rise: palaeoecological insights from macrotidal systems in northern Australia. Mar. Freshwater Res. 69, 917–932. https://doi.org/10.1071/MF17252
Woodroffe, C.D., 1992. Mangrove sediments and geomorphology, in: Tropical Mangrove Ecosystems, Coastal and Estuarine Studies. American Geophysical Union (AGU), pp. 7–42. https://doi.org/10.1029/CE041
Woodroffe, C.D., Rogers, K., McKee, K.L., Lovelock, C.E., Mendelssohn, I.A., Saintilan, N., 2016. Mangrove Sedimentation and Response to Relative Sea-level Rise. Annual Review of Marine Science 8, 243–266. https://doi.org/10.1146/annurev‒marine‒122414‒034025
Worthington, T.A., zu Ermgassen, P.S.E., Friess, D.A., Krauss, K.W., Lovelock, C.E., Thorley, J., Tingey, R., Woodroffe, C.D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N.J., Sutherland, W.J., Spalding, M., 2020. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci Rep 10, 14652. https://doi.org/10.1038/s41598‒020‒71194‒5
Yulianto, E., Sukapti, W.S., Rahardjo, A.T., Noeradi, D., Siregar, D.A., Suparan, P., Hirakawa, K., 2004. Mangrove shoreline responses to Holocene environmental change, Makassar Strait, Indonesia. Review of Palaeobotany and Palynology 131, 251–268. https://doi.org/10.1016/j.revpalbo.2004.03.009
Zhang, Y., Du, J., Zhang, F., Yu, Y., Zhang, J., 2011. Chemical characterization of humic substances isolated from mangrove swamp sediments: The Qinglan area of Hainan Island, China. Estuarine, Coastal and Shelf Science, Dynamics of Chinese Muddy Coasts and Estuaries 93, 220–227. https://doi.org/10.1016/j.ecss.2010.12.025
Zhou, W., Han, G., Liu, M., Li, X., 2019. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ 7, e7880. https://doi.org/10.7717/peerj.7880
Zhu, J.‒J., Yan, B., 2022. Blue carbon sink function and carbon neutrality potential of mangroves. Science of The Total Environment 822, 153438. https://doi.org/10.1016/j.scitotenv.2022.153438