Dating Ancient Remains by Thermoluminescence: Implications of Incompletely Burnt Bricks
Main Article Content
Abstract
In this study, the feasibility of thermoluminescence dating for ancient burnt bricks related to archaeometry are investigated at the Thung Tuk archaeological site. All samples were prepared by the quartz inclusion treating technique and evaluate equivalent dose by using the regeneration
technique. The natural radionuclide concentration of uranium (U), thorium (Th) and potassium (K) were determined by using gamma ray spectrometry for natural dose rate assessment. The TLdating results of brick pieces indicated two different age ranges –one around 840-1,500 years BP and another at about 2,800 years BP. The younger date range corresponded quite well to the previous chronological results of the site (1,000-1,300 year BP from antique typology and 1,070-1,310 years BP from conventional radiocarbon dating) whereas the contrasting old date of brick sample had been subjected to incomplete burning of brick during the production process. In final, we concluded that the age of the Thung Tuk archaeological site is about 840-1,500 years BP based on TL dating results of bricks.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2008 Department of Geology, Faculty of Science, Chulalongkorn University. Parts of an article can be photocopied or reproduced without prior written permission from the author(s), but due acknowledgments should be stated or cited accordingly.
References
Abdel-Wahab, M. S., El-Fiki, S. A., El-Fiki, M. A., Gomaa, M., Abdel-Kariem, S., El-Faramawy, N., 1996. Annual dose measurement and TL dating of ancient Egyptian pottery. Radiation Physics and Chemistry; 47 (5), 697-700.
Aitken, M.J., 1985. Thermoluminescence dating. London: Academic Press. Aitken, M. J., 1990. Science-based dating in archaeology. London: Longman.
Bailiff, I. K., Holland, N., 2000. Dating bricks of the last two millennia from Newcastle upon Tyne: a preliminary study. Radiation Measurements; 32 (5-6), 615-619.
Bell, W.T., 1979. Attenuation factors for the absorbed radiation dose in quartz inclusions for thermoluminescence dating. Ancient TL; 8, 2-13.
Bevilacqua, F., Chiavari, C., Di Francesco, C., Migliorini, E., Martini, M., Sibilia, E., 1999. Thermoluminescence analysis in historical architecture: application to the ornamentations ‘‘in cotto’’ of the atrium of the Abbey of Pomposa. Sixth International Conference on Non Destructive Testing and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Roma, 17–20 May 1999.
Bonde, A., Murray, A., Friedrich, W. L., 2001. Santorini: Luminescence dating of a volcanic province using quartz. Quaternary Science Reviews; 20 (5-9),
-793.
Bougrov, N. G., Vlasov, V. K., Kiryukhin, O. V., Fatkulbayanova, N. L., 1995. Thermoluminescence measurements of ceramic samples from accidentally
polluted territory of southern Urals. Radiation Measurements; 24 (4), 493-498.
Cechak, T., Dynybyl, V., Gerndt, J., Kanaval, J., Kubelik, M., Musilek, L., Pavlik, M., Zyma, J., 2000. ThermoluminescenceReader for Dating of Brick Structures, CTU Prague, Workshop 2000, Paper JAD/18.
Cechak, T., Gerndt, J., Hirsl, P., Jirousek, P., Kanaval, J., Kubelik, M., Musilek, L., 2001. Automation of TL brick dating by ADAM-1. Radiation Physics and
Chemistry; 61 (3-6), 729-731.
Chaisuwan, B., Naiyawatt, R., 2002. Thung Tuk ancient seaport. Phuket. Phuket: 15th Regional Office of Fine Arts. Chankian, S., Kaewtubtim, P. 1999. TL dating of ancient pottery of the Yarang historical site, Amphur Yarang, Pattani Province. Songklanakarin Journal of Science and Technology; 21, 347-353.
Colman, S. M., Pierce, K. L., 2000. Classifications of quaternary geochronologic methods. In J. S. Noller, J. M. Sowers, and W. R. Lettis (eds.), Quaternary Geochronology: Methods and Applications, pp2-5. Washington D.C.: American Geophysical Union. Colman, S. M., Pierce, K. L., Birkeland, P. W. 1987. Suggested terminology for quaternary dating methods. Quaternary Research; 28, 314-319.
Duller, G.A.T., Botter-Jensen, L., Murray, A.S., 2000. Optical dating of single sand-sized grains of quartz: sources of variability, Radiation Measurements; 32, 453–457.
Feathers, J. K. 2003. Use of luminescence dating in archaeology. Measurement Science and Technology; 14, 1493-1509.
Franklin, A. D., Hornyak, W. F., Pagonis, V., Kristianpoller, N., 1990. Thermoluminescence study of annealing a geological calcite. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements; 17 (4), 517-523.
Guibert, P., Schvoerer, M., Etcheverry, M. P., Szepertyski, B., Ney, C., 1994. IXth millenium B.C. ceramics from Niger: detection of a U-series disequilibrium and TL dating. Quaternary Science Reviews; 13 (5-7), 555-561.
Haustein, M., Krbetschek, M. R., Trautmann, T., Roewer, G., Stolz, W., 2001. A luminescence study for dating archaeometallurgical slag. Quaternary
Science Reviews; 20 (5-9), 981-985.
Hutton, J. T., Prescott, J. R., Bowman, J. R., Dunham, M. N. E., Crone, A. J., Machette, M. N. Twidale, C. R., 1994. Thermoluminescence dating of
Australian palaeo-earthquakes. Quaternary Science Reviews; 13 (2), 143-147.
Kalchgruber, R., Göksu, H. Y., Hochhäuser, E., Wagner, G. A., 2002. Monitoring environmental dose rate using Risø TL/OSL readers with built-in sources: recommendations for users. Radiation Measurements; 35, 585-590.
Krbetschek, M. R., Götze, J., Dietrich, A., Trautmann, T., 1997. Spectral information from minerals relevant for luminescence dating. Radiation
Measurements; 27 (5-6), 695-748.
Kresten, P., Goedicke, C., Manzano, A. 2003. TL-dating of vitrified material. Geochronometria; 22, 9-14.
Martini, M., Sibilia, E., 2001. Radiation in archaeometry: archaeological dating. Radiation Physics and Chemistry; 61 (3-6), 241-246.
Martini, M., Sibilia, E., Croci, S., Cremaschi, M., 2001. Thermoluminescence (TL) dating of burnt flints: problems, perspectives and some examples of
application. Journal of Cultural Heritage; 2 (3), pp 179-190.
Mercier, N. Valladas, H., 2003. Reassessment of TL age estimates of burnt flints from the Palaeolithic site of Tabun Cave, Israel. Journal of Human Evolution; 45 (5), 401-409.
Murray, A. S., Mejdahl, V., 1999. Comparison of regenerative-dose single-aliquot and multiple-aliquot (SARA) protocols using heated quartz from archaeological sites. Quaternary Geochronology, 18, 223–229.
Reotrit, S., 1987. Archaeological exploration in the Yarang historical site, Amphur Yarang, Pattani Province. Pattani: Center of Southern Thailand Study, Songklanakarin University, Pattani.
Roberts, R. G., 1997. Luminescence dating in archaeology. Radiation Measurements; 27, 819–892.
Roberts, R. G., Jones, R., Smith, M. A. 1994. Beyond the radiocarbon barrier in Australian prehistory. Antiquity; 68, 611-616.
Robertson, G. B., Prescott, J. R., 1988. The THAI Ceramics Archaeological Project: TL characteristics of the artifacts. International Journal of Radiation
Applications and Instrumentation (Part D). Nuclear Tracks and Radiation Measurements; 14 (1-2), 299-305.
Roque, C., Guibert, P., Vartanian, E., Bechtel, ., Schvoerer, M., 2001. Thermoluminescence-dating of calcite: study of heated limestone fragments
from Upper Palaeolithic layers at Combe Sauniere, Dordogne, France. Quaternary Science Reviews; 20 (5-9), 935-938.
Singhvi, A. K., Wagner, G. A., 1986. Dating Young Sediments. In A.J. Hurford, E. Jager, and I. A. M. Tencate (eds.), pp. 159–197. Bangkok.
Srisuchart, T., 1986. Ta Kua Pa: Ancient town. Southern culture Encyclopedia 3. Center of southen culture study. Srinakharinwirot University, Song Khla province. p. 1217.
Takashima, I., Honda, S. 1989. Comparison between K-Ar and TL dating results of pyroclastic flow deposits in the Aizutajima area, Northeast Japan.
Journal of Geological Society; 95, 807-816.
Takashima, I., Watanabe, K. 1994. Thermoluminescence age determination of lava flows/ domes and collapsed materials at Unzen volcano, SW Japan.
Bulletin of the Volcanological Society of Japan; 39, 1-12.
Taylor, R.E., Aitken, M.J., 1997. Chronometric Dating in Archaeology, Plenum Press, London. Toyoda, S., Rink, W. J., Schwarcz, H. P., Rees-Jones, J., 2000. Crushing effects on TL and OSL on quartz: relevance to fault dating. Radiation Measurements; 32 (5-6), 667-672.
Vieillevigne, E., Guibert, P., Bechtel, F., 2000. Exploration of the possibilities of dating mediaeval construction’s building by optically stimulated luminescence: the case of the bricks citadel of Termez (Ouzbekistan). Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS
– Université Bordeaux 3. Centre de Recherche en Physique Appliquée à l’Archéologie (CRP2A), Maison de l'Archéologie, 33607 Pessac cedex,
France. 2 p.
Wales, D. C., Wales, H. G. Q., 1947. Further work on Indian sites in Malaya. JMBRAS; 5, 1-2.
Yanchou, L., Jingzhao, Z., Xueli, X. J., 1988. TL dating of pottery sherds and baked soil from the Xian Terracotta Army Site, Shaanxi Province, China. International Journal of Radiation Applications and Instrumentation (Part D) Nuclear Tracks and Radiation Measurements; 14 (1-2), 283-286.
Yaroslav, V. K., Hall, S., Tite, M. S., Bailey, R., O'Malley, J. M., Medvedev, V. E., 2001. Radiocarbon and thermoluminescence dating of the pottery from the early Neolithic site of Gasya (Russian Far East): initial results. Quaternary Science Reviews; 20 (5-9), 945-948.
Zacharias, N., Buxeda i Garrigós, J., Mommsen, H., Schwedt, A., Kilikoglou, V. 2005. Implications of burial alterations on luminescence dating of archaeological ceramics. Journal of Archaeological Science; 32 (1), 49-57.
Zimmerman, D. W. 1971. Thermoluminescence dating using fine grains from pottery. Archaeometry; 13 (1), 29-56.