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Abstract
This research investigates a deep learning-based methodology for crop classification by integrating
Sentinel-2 satellite imagery with SegFormer, a state-of-the-art transformer-based semantic
segmentation model. The study focuses on five dominant land cover types: rice fields, sugarcane,
cassava, para rubber, and pond areas within a part of Khu Mueang District, Buriram Province,
Thailand. The main objectives are to develop an efficient classification method using Sentinel-2
satellite data and to evaluate the predictive performance of SegFormer in the agricultural field.
Satellite images were acquired via Google Earth Engine (GEE) during the harvest season (Nov
2023-Jan 2024), complemented by ground truth data collected from field surveys and high-
resolution drone imagery. Preprocessing steps included cloud filtering, image normalization, and
manual pixel-level labeling in QGIS software. The dataset was divided into 512x512 pixel patches,
resulting in 780 image—mask pairs allocated for training (480), validation (120), and testing (180).
The SegFormer model was trained using Optuna to find the best hyperparameter settings. The model
achieved 0.967 pixel-wise accuracy with a validation loss of 0.075 (cross-entropy) on the training
and validation datasets, demonstrating strong learning performance during model development. It
showed strong classification performance for para rubber and sugarcane. However, it faced
challenges in distinguishing cassava, ponds, and bare soil due to class imbalance and spectral
similarity.
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1. Introduction

Agriculture continues to be a major
contributor to ensuring global food security,
environmental stability, and national economic
development. According to the United Nations
(2017) the global population is projected to
increase from 7.6 billion in 2017 to 9.8 billion
by 2050 which means the demand for
agricultural products will increase significantly.
However, the agricultural sector is still facing

increasing problems such as climate change
resulting in unpredictable weather conditions,
limited agricultural land, and water scarcity
(Food and Agriculture Organization of the
United Nation, 2015). These challenges
adversely affect crop productivity and compel
agricultural systems to adopt more efficient and
sustainable. These concerns are especially
relevant in Thailand, where agriculture remains
a key economic activity as well as a source of

Phahurat et al., 2025. Vol. 17, No.2, 36-49



G

income for people residing in the countryside.
Thailand had approximately 8.7 million
agricultural landholders (National Statistical
Office Thailand, 2021). However, this sector
has shown slower growth than other industries,
with a decline in both the quantity and quality of
agricultural production. Key contributing
factors include the effects of climate change,
limited technological adoption, and inefficient
management of water and land resources. These
constraints highlight the need for modern, data-
driven solutions that can enhance monitoring,
productivity, and long-term sustainability in
Thai agriculture.

Among the key data-driven solutions, crop
classification also plays a wvital role in
agricultural resource management. Accurate
crop maps contribute to improved water
management by enabling precise estimation of
crop water requirements, planning of irrigation
schedules, and assessment of water use
efficiency. Furthermore, timely and accurate
crop classification supports crop monitoring and
early detection of stress conditions, such as
droughts or pest infestations, which is crucial
for mitigating crop losses. These capabilities are
especially important for enhancing agricultural
productivity and ensuring food security under
climate change conditions. Therefore, a robust
crop classification system has practical
significance not only in terms of technological
innovation but also in supporting data-driven
decision-making for sustainable agriculture in
Thailand.

To address the challenges in agriculture, the
application of modern technology has become
more important. Remote sensing technologies,
particularly satellite imagery, have emerged as
valuable tools for large-scale, real-time
agricultural monitoring. When combined with
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artificial intelligence (AI) and deep learning
(DL) models, these technologies can automate
tasks such as crop classification, crop health
monitoring, and yield estimation (Ma et al.,
2019). Among deep learning
techniques, Convolutional Neural Networks

various

(CNNp5s) are widely applied due to their superior
performance in image-based classification tasks
(Abdi, 2019). However, CNNs typically require
large training datasets and might be
computationally expensive.

Recent advancements in transformer-based
models, like SegFormer (Xie et al., 2021)
have provided new direction for semantic
segmentation models. SegFormer provides high
accuracy and efficiency with a lightweight
architecture, making it appropriate option
for remote sensing applications. A Despite its
advantages, the application of SegFormer in
agricultural crop classification remains limited,
especially in Thai farm systems, and further
evaluation under local conditions is required.
The study aims to address this gap by
developing an efficient methodology for crop
classification using Sentinel-2 Multi-Spectral
Instrument, Level-2A  satellite  imagery.
Specifically, it focuses on evaluating the
performance of the SegFormer model in
classifying major crop types within a selected
area covering a part of Khu Mueang district,
Buriram Province, Thailand.

2. Material and Method
2.1 Study area

This research was conducted in a selected
agricultural area located in Khu Mueang
District, Buriram Province, situated in the lower
northeastern part of Thailand. The study area
includes parts of three subdistricts of Khu
Mueang, Hin Lek Fai, and Phon Samran,
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covering approximately 4.7 square kilometers
(Figure 1).
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Figure 1 The location of the study area within
Kumuang District, Buriram Province, Thailand.
The high-resolution drone, with a 10.6 cm
resolution, shows the variety of crop types,
captured in 6-10 May 2024.

This region is characterized by a tropical
savanna climate zone (classified as “Aw” in the
Koppen—Geiger system) with distinct wet and
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dry seasons (Phumkokrux, 2021). The climate
alternates between hot and humid conditions
during the rainy season and a prolonged

dry period with limited precipitation
(Meteorological Development Department,
2023). The study area is predominantly

composed of sandy loam soils, which are low in
organic matter content and have limited
nutrients. These environmental conditions
strongly influence local agricultural practices,
supporting the cultivation of diverse crop types
including rice, sugarcane, cassava, and para
rubber. These crops represent the dominant
cultivated land use in Buriram Province and are
considered as Thailand’s major economic crops
(Land Development Department, 2021).
Therefore, this study area was selected based on
its agricultural diversity, the availability of
ground truth data, and regional land and water
resource management concern.

2.2 Data collection and preprocessing
2.2.1 Sentinel-2 satellite images

A total of 26 Sentinel-2 MSI Level-2A
images were collected via the Copernicus Open
Access  Hub using Google Earth Engine
(GEE) during the harvesting period (November
2023 and January 2024). RGB images with less
than 10% of cloud cover were chosen to ensure
quality. The selected scenes were exported in
TIFF format to preserve high-resolution and
lossless geospatial quality, then converted to
PNG format using Python scripts. Each image
had a resolution of 10 meters and a size of
2,088%x2,600 pixels. Of the total images,
20 images from November—December 2023
were used for model training and validation,
while six images from January 2024 were used
for the testing set. The GEE script used for
image collection and export is available at:
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https://code.earthengine.google.com/?scriptPat
h=users%?2Fsathiradap1999%2FDL%3ABRR.
Table 1 presents Sentinel-2 image samples
of different crop types. In this research,
Sentinel-2 images were collected during the
growing seasons of sugarcane and para rubber.
Cassava fields exhibited mixed growth stages,
while pond areas remained visually stable. Due

to spectral variability across rice growth stages,
only harvested rice fields were used for
classification and this can be confirmed through
field surveys and is assumed to remain rice-
dedicated within one cropping cycle. As a result,
crop growth stages were not differentiated.

Table 1 Visual characteristics of each crop type
as observed from Sentinel-2 satellite imagery.

Crop type class Sentinel-2 satellite image

D
FECYE S
A el T

Rice field
(Harvested season)

Sugarcane
(Growing season)

Para rubber
(Growing season)

Cassava
(Mixed season)

: -
| S S——

o 100 200 m

(Note: All image samples were displayed using
the same spatial scale. The reference scale bar
shown at the bottom right applies to all image
samples.)

As shown in Table 1, harvested rice
fields typically appear as continuous pale
brownish patches with rectangular shapes and
medium to large field sizes, often located close
together. Sugarcane fields are identifiable by
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their light green tones and elongated rectangular
shapes, with medium to large field sizes and
relatively uniform vegetation coverage. Para
rubber exhibits dense, dark green coverage with
blocky plot shapes and consistently large field
sizes, reflecting its perennial and structured
plantation characteristics. In contrast, cassava
plots appear darker brownish, less structured,
and more scattered, with typically small field
sizes that reflect the variability in planting
practices. Pond areas are marked by dark to
olive green tones, irregular shapes, and varying
sizes, and are often partially obscured by aquatic
vegetation. These spectral and spatial
differences are critical for distinguishing crop
types in remote sensing—based classification.

2.2.2 Drone photography

To ensure spatial accuracy in ground truth
labeling, high-resolution drone imagery was
captured over the study area on 610 May 2024
using a flight altitude of 200 meters.
This produced imagery at approximately 10.6
cm/pixel, which was used as visual reference for
manual labeling in QGIS.

2.2.3 Field observations

Field surveys were conducted the same
period (6—10 May 2024) to verify crop types and
collect in situ reference data, which were cross-
validated with both satellite and drone imagery.

2.3 Data preparation

The collected data was used to label images
into five crop classes—rice, sugarcane, cassava,
para rubber, and ponds—using high-resolution
imagery in QGIS. These labeled images were
then converted into grayscale segmentation
masks suitable for deep learning input, using
class-specific RGB-to-index mapping. To
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address input limitations and computational
efficiency, all images were split into 512x512
pixel patches. This size offers a balance between
spatial context and memory constraints, making
it suitable for deep learning architectures such
as U-Net (Ronneberger et al, 2015) and
SegFormer. The final dataset comprised 780
image-mask pairs, divided into 480 for training,
120 for validation, and 180 for testing.

2.4 Model configuration and training

The crop classification model in this study
was developed using the SegFormer
architecture (Figure 2) with the mit b0
backbone.  Hyperparameter tuning  was
conducted using Optuna (Akiba et al., 2019) to
identify optimal training settings. Model
training was conducted using the PyTorch
framework with the AdamW optimizer with
cross-entropy loss. A ReduceLROnPlateau
scheduler was applied to automatically adjust
the learning rate. Training configurations and

Input image
Sentinel-2 satellite
image (512x512x3)

s3uippaquiy

yaeg depanO
1 Yooig
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H
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hyperparameters are summarized in Table 2.

Table 2 Model training configuration and
hyperparameters used in this research.

Parameter Configuration
Number of epochs 700

Learning rate 0.0001

Weight decay 0.0001

Gamma 0.90

Step size 5

Batch size 6

Patience 6

Hardware GPU (CUDA-enabled)
GPU used NVIDIA RTX 3050

Model performance was evaluated on the
validation set using pixel-wise accuracy and
validation loss, which are commonly used
metrics in semantic segmentation tasks (Singh
et al., 2022).

Predict result
Segmentation map

W
x 33X G

Figure 2 Overview of the SegFormer semantic segmentation model architecture, consisting of
a transformer-based encoder and an All MLP-based decoder (adapted from Song et al. (2023)).
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2.5 Inference and post-training process

After training, the SegFormer model was
loaded from a saved checkpoint to retain
its learned weights and biases. Test images
512512 pixels were passed through the model
to make a classification prediction.

To improve spatial consistency, predicted
patches were reconstructed into full-sized
images and refined using a majority color
process based on the argmax function. This
process reduces noise and ensures that a single
dominant class coherently represents each
polygon. The dominant class C* for polygon P
is defined by:

Cc
c* = argmaxz 1(y; = ©)

iEP

where:

C* is the class with the highest frequency in
P, ensuring that the entire polygon is filled with
this dominant class.

P represents the set of pixels within a polygon,
y; is the predicted class for pixel i,

1(y; = ¢) is an indicator function that counts
occurrences of class c, defined as:

ify; = ¢

1,
1 = = { 0, otherwise

3. Results

3.1 Performance of the SegFormer model
The training process was monitored over

700 epochs, and model checkpoints were saved

based on validation loss improvement.
As shown in Figure 3, the model exhibited a
consistent decline in both training and
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validation  loss, indicating  successful
convergence without signs of overfitting.

The best-performing model checkpoint
achieved a pixel-wise accuracy of 0.967 on the
validation set, demonstrating its ability to learn
spatial-spectral patterns of various crop types in
the region. This model was subsequently used
for inference on a separate test set, which
was used solely for qualitative evaluation.
No quantitative metrics were reported, as the

test set was used only for visual inference.

1.24 —— train

—e— valid

0.8

loss

0.4 4

0.2 4

: r T r v T v :
0 100 200 300 400 500 600 700
epoch

Figure 3 Training (red line) and validation (blue
line) loss during 700 epochs of model training
process.

3.2 Segmentation and model inference result

Figures 4 and 5 illustrate representative
prediction masks and segmentation results from
the training and validation sets. The four panels
(a—d) presented in Figure 4 highlight
representative patches selected for quality
control (QC) and visualization of the model's
behavior during the training process. These
examples demonstrate how the model
effectively distinguishes between crop types
under learned conditions.

Figure 4, the predicted masks from the
training and validation sets are closely aligned
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with the ground truth images with the following
highlights:

Sentinel-2 Ground thruth
satellite images inages

Prediction masks
(overlayed)

Prediction masks
(without overlayed)

Color Representation

B ricerica [ pararuvver [ Pona

. Sugarcane . Cassava :I Unclassified background

Figure 4 Inference comparison using the
training and validation datasets. Panels a—d
represent different patch locations. The colors
highlight different classes: rice (orange),
sugarcane (light green), para rubber trees (dark
green), cassava (brown), and pond (blue).

e The pond class (panel a), especially
when covered by aquatic vegetation, is
frequently misclassified as para rubber due
to the similarity in spectral reflectance
between the two classes.

e The cassava class (panel b) is difficult to
detect due to its occurrence in small,
scattered plots and limited representation in
the training data.

e The model generally distinguishes rice
fields, sugarcane, and para rubber with high
accuracy, with class boundaries closely
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aligning with the ground truth. However,
confusion still occurs between sugarcane
and para rubber (panel c) due to similar
spectral features, suggesting potential areas
for model refinement.

Figure 5 presents a full-scene segmentation
map reconstructed from patch-level predictions
and refined using the majority-vote process.

As shown in Figure 5, the model performs
well in distinguishing crop types with stable
spectral and structural characteristics, such as
para rubber and sugarcane. Para rubber, with its
dense canopy and consistent
reflectance, is the most accurately classified
class. Sugarcane is also effectively segmented,
though some misclassifications with para rubber

year-round

occur in areas with similar leaf coloration or
mixed vegetation. Harvested rice fields are
reasonably well identified due to their distinct
brown tones, which contrast with other land
covers. Conversely, cassava remains one of the
most challenging classes due to its scattered
distribution and limited training data. Pond
areas are also difficult to classify, particularly
when small water bodies are covered by
vegetation or have similar spectral features to
tree canopies. These results show that while the
model performs well on dominant crop types, it
still struggles with classes that are either less
represented in the training set or have spectral
characteristics that closely resemble other land
Covers.

Despite the accuracy,
segmentation errors remain, particularly in areas
with complex boundaries or spectrally similar
classes like cassava and ponds. The black
outlines in panel (c) highlight regions where

overall some

predictions differ from the ground truth image,
reflecting potential misclassifications. These

Phahurat et al., 2025. Vol. 17, No.2, 36-49



Bulletin of Earth Sciences of Thailand

Gt

discrepancies may arise from class imbalance  between certain crop types. These issues suggest

in the training data or subtle spectral similarities  {irections for further model refinement.

©
Figure 5 Comparison of the input Sentinel-2 satellite image (a), annotated segmentation (ground
truth labeled) image (b), and final segmentation map (c) at a resolution of 2,088 x 2,600 pixels,
derived from the training and validation datasets after reconstruction and majority color processing
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Figure 6 shows the final segmentation was not used during training or validation
output generated from the test dataset, which  process.

Color Representation

I Ricefies [ Pararubber [B] Pond

. Sugarcane . Cassava D Unclassified background

Figure 6 Segmentation map generated from the test dataset after combining patch-level predictions
and applying a majority color processing.
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Compared to the results from the training
and validation datasets shown in Figure 5, the
final segmentation output from the test dataset
(Figure 6) shows a noticeable decline in
classification quality.

While the model still correctly identifies
major crop types such as para rubber and
sugarcane in several regions, misclassifications
are more frequent in the test dataset, particularly
for cassava, harvested rice fields, and pond
areas. These classes tend to exhibit spectral
features that overlap with other land cover types.
In addition, the model showed limited ability to
detect small agricultural plots. Even when such
plots were detected, predictions were often
Notably, fields smaller than
approximately 5,200 square meters were more
likely to be misclassified or missed, possibly
because the 10-meter resolution of Sentinel-2
imagery was too coarse to capture their shapes

Inaccurate.

clearly.

This result highlights the model’s limited
generalization capacity when applied to unseen
areas, emphasizing the importance of dataset
diversity and class balance in future model
development.

4. Discussion

Although  SegFormer
developed for general-purpose semantic
segmentation in urban and structured scenes, its
application in agricultural settings has begun to
albeit with limited. This study
demonstrates that, with appropriate adaptation,
SegFormer can be effectively applied to crop

was originally

emerge,

classification in real-world agricultural settings.

Transformer-based deep learning models
have recently gained momentum in remote
sensing and semantic segmentation, with
architectures such as SegFormer offering
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notable advantages in capturing global spatial
features, improved boundary segmentation, and
efficient processing with fewer parameters
compared to traditional models (Xie et al.
(2021); Li et al. (2023).

Nonetheless, recent studies suggest that
Transformer-based models
CNNs in agricultural applications
appropriately adapted. For instance, Gallo et al.
(2024) reported that a Swin UNETR model
achieved higher accuracy and faster training
than traditional CNNs when applied to time-
series data. Similarly, Zhao et al. (2018) showed
that transformer-based models effectively
captured both spatial and temporal complexities
in crop classification tasks. In the application of
SegFormer, Song et al. (2023) applied the model
for crop classification in Bengbu, China—an

can outperform
when

area characterized by large-scale, irrigated
farmlands with relatively continuous field
structures. Their study relied on curated ground
truth data derived from official land-use maps,
field surveys, and NDVI-based phenological
masks, which ensured high annotation quality.
SegFormer outperformed CNN-based models
and RF, achieving the highest overall accuracy
and segmentation consistency especially
when applied to well-structured agricultural
landscapes with clearly defined cropping
patterns and balanced training data. While Li et
al. (2023) founds that U-Net achieved the
highest overall accuracy for crop classification
in their study over structured farmlands, they
also acknowledged the strong performance of
SegFormer. While its accuracy was slightly
lower than U-Net, SegFormer demonstrated
notable strengths in spatial clarity and boundary
delineation, particularly when well-prepared
ground truth data were used.
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In contrast to previous studies that applied
SegFormer model to structured farmlands using
curated datasets, this research investigates more
complex field conditions. These conditions are
characterized by fragmented and heterogeneous
plots with varying shapes and sizes—typical of
many agricultural landscapes in Thailand—
which increase the complexity of crop
classification from satellite imagery.

The model’s performance in this study,
supported by visual assessments, high-quality
training data, and spatial refinement techniques
suggests that the SegFormer can be adapted
to meet the challenges of remote sensing
applications in real-world agricultural. To
highlight the unique contributions of this
research, the key findings are summarized
below:

e Real-world applicability in unstructured
farming landscapes: the model was tested
under field conditions featuring fragmented
plot patterns and heterogeneous cropping
practices, providing insights into its
robustness beyond idealized or curated
datasets.

e Post-inference refinement using majority-
vote process: improved spatial consistency

in the final segmentation map and
reduced misclassification noise at field
boundaries.

e Integration of UAV-labeled training data:
high-resolution drone imagery was used to
generate precise polygon labels, improving
the quality of training data and enhancing
the model’s ability to detect small, irregular
field boundaries, particularly in plots larger
than approximately 5,200 square meters.

e Qualitative insights into class-specific

learning: the visual progression from

training and validation to test datasets were
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analyzed to assess the model’s learning

behavior. These observations offer valuable

insights for refining training data and
enhancing model development in future
research.

Collectively, these insights underscore the
potential of SegFormer when applied with
appropriate adaptation and highlight practical
considerations for future development.

5. Conclusion and recommendation

The research successfully developed
a modern methodology for crop classification
using  Sentinel-2  satellite imagery in
combination with the SegFormer model,
achieving a high pixel-wise accuracy of
0.967 on the validation set, demonstrating its
effectiveness in learning spatial and spectral
patterns from the training data.

However, segmentation performance varied
across crop classes. Para rubber and sugarcane
were classified with high accuracy due to their
distinct and relatively stable spectral features.
Harvest rice fields, while showing moderate
accuracy, experienced some confusion with bare
soil. Cassava posed the greatest challenge due to
its limited representation in the dataset and
scattered planting patterns, resulting in frequent
misclassifications. These outcomes underscore
the importance of balanced and diverse training
data for robust model generalization.

This study also demonstrated the benefits of
post-processing techniques such as majority-
vote filtering, which improved spatial
consistency and reduced noise along field
boundaries. Additionally, the integration of
high-resolution UAV-labeled training data
enhanced the model’s ability to detect small and
irregular field plots, further contributing to

overall performance. Based on visual
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assessment, the model was able to correctly
classify small fields starting from approximately
5,200 square meters. For plots smaller than this
threshold, detection was
misclassifications

inconsistent, and
were more likely. This
limitation is likely due to the coarse spatial
resolution of Sentinel-2 imagery (10 meters),
which reduces the model’s ability to distinguish
fine-scale features in very small plots.

While the application of deep learning to
satellite-based crop classification holds strong
potential, challenges remain. Spectral similarity
among certain classes (e.g., para rubber vs. pond
areas) and the impact of seasonal variation
require careful data preparation and model
tuning. The findings of this study confirm that
SegFormer can be effectively tailored for large-
scale agricultural mapping, provided that
preprocessing, label quality, and class balance
are appropriately addressed. Future work may
incorporate multi-temporal data to enhance
classification accuracy.
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