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Abstract 

This research investigates a deep learning-based methodology for crop classification by integrating 

Sentinel-2 satellite imagery with SegFormer, a state-of-the-art transformer-based semantic 

segmentation model. The study focuses on five dominant land cover types: rice fields, sugarcane, 

cassava, para rubber, and pond areas within a part of Khu Mueang District, Buriram Province, 

Thailand. The main objectives are to develop an efficient classification method using Sentinel-2 

satellite data and to evaluate the predictive performance of SegFormer in the agricultural field. 

Satellite images were acquired via Google Earth Engine (GEE) during the harvest season (Nov 

2023–Jan 2024), complemented by ground truth data collected from field surveys and high-

resolution drone imagery. Preprocessing steps included cloud filtering, image normalization, and 

manual pixel-level labeling in QGIS software. The dataset was divided into 512×512 pixel patches, 

resulting in 780 image–mask pairs allocated for training (480), validation (120), and testing (180). 

The SegFormer model was trained using Optuna to find the best hyperparameter settings. The model 

achieved 0.967 pixel-wise accuracy with a validation loss of 0.075 (cross-entropy) on the training 

and validation datasets, demonstrating strong learning performance during model development. It 
showed strong classification performance for para rubber and sugarcane. However, it faced 

challenges in distinguishing cassava, ponds, and bare soil due to class imbalance and spectral 

similarity. 
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1. Introduction 

       Agriculture continues to be a major 

contributor to ensuring global food security, 

environmental stability, and national economic 

development. According to the United Nations 

(2017) the global population is projected to 

increase from 7.6 billion in 2017 to 9.8 billion 

by 2050 which means the demand for 

agricultural products will increase significantly. 

However, the agricultural sector is still facing 

increasing problems such as climate change 

resulting in unpredictable weather conditions, 

limited agricultural land, and water scarcity 

(Food and Agriculture Organization of the 

United Nation, 2015). These challenges 

adversely affect crop productivity and compel 

agricultural systems to adopt more efficient and 

sustainable. These concerns are especially 

relevant in Thailand, where agriculture remains 

a key economic activity as well as a source of 
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income for people residing in the countryside. 

Thailand had approximately 8.7 million 

agricultural landholders (National Statistical 

Office Thailand, 2021). However, this sector 

has shown slower growth than other industries, 

with a decline in both the quantity and quality of 

agricultural production. Key contributing 

factors include the effects of climate change, 

limited technological adoption, and inefficient 

management of water and land resources. These 

constraints highlight the need for modern, data-

driven solutions that can enhance monitoring, 

productivity, and long-term sustainability in 

Thai agriculture. 

       Among the key data-driven solutions, crop 

classification also plays a vital role in 

agricultural resource management. Accurate 

crop maps contribute to improved water 

management by enabling precise estimation of 

crop water requirements, planning of irrigation 

schedules, and assessment of water use 

efficiency. Furthermore, timely and accurate 

crop classification supports crop monitoring and 

early detection of stress conditions, such as 

droughts or pest infestations, which is crucial 

for mitigating crop losses. These capabilities are 

especially important for enhancing agricultural 

productivity and ensuring food security under 

climate change conditions. Therefore, a robust 

crop classification system has practical 

significance not only in terms of technological 

innovation but also in supporting data-driven 

decision-making for sustainable agriculture in 

Thailand. 

       To address the challenges in agriculture, the 

application of modern technology has become 

more important. Remote sensing technologies, 

particularly satellite imagery, have emerged as 

valuable tools for large-scale, real-time 

agricultural monitoring. When combined with 

artificial intelligence (AI) and deep learning 

(DL) models, these technologies can automate 

tasks such as crop classification, crop health 

monitoring, and yield estimation (Ma et al., 

2019). Among various deep learning 

techniques, Convolutional Neural Networks 

(CNNs) are widely applied due to their superior 

performance in image-based classification tasks 

(Abdi, 2019). However, CNNs typically require 

large training datasets and might be 

computationally expensive. 

       Recent advancements in transformer-based 

models, like SegFormer (Xie et al., 2021) 

have provided new direction for semantic 

segmentation models. SegFormer provides high 

accuracy and efficiency with a lightweight 

architecture, making it appropriate option  

for remote sensing applications. A Despite its 

advantages, the application of SegFormer in 

agricultural crop classification remains limited, 

especially in Thai farm systems, and further 

evaluation under local conditions is required. 
The study aims to address this gap by 

developing an efficient methodology for crop 

classification using Sentinel-2 Multi-Spectral 

Instrument, Level-2A satellite imagery. 

Specifically, it focuses on evaluating the 

performance of the SegFormer model in 

classifying major crop types within a selected 

area covering a part of Khu Mueang district, 

Buriram Province, Thailand. 
 

2. Material and Method 

2.1 Study area 

       This research was conducted in a selected 

agricultural area located in Khu Mueang 

District, Buriram Province, situated in the lower 

northeastern part of Thailand. The study area 

includes parts of three subdistricts of Khu 

Mueang, Hin Lek Fai, and Phon Samran, 
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covering approximately 4.7 square kilometers  

(Figure 1). 

 
Figure 1  The location of the study area within 

Kumuang District, Buriram Province, Thailand. 

The high-resolution drone, with a 10.6 cm 

resolution, shows the variety of crop types, 

captured in 6-10 May 2024. 

 

       This region is characterized by a tropical 

savanna climate zone (classified as “Aw”  in the 

Köppen–Geiger system) with distinct wet and 

dry seasons (Phumkokrux, 2021). The climate 

alternates between hot and humid conditions 

during the rainy season and a prolonged  

dry period with limited precipitation 

(Meteorological Development Department, 

2023). The study area is predominantly 

composed of sandy loam soils, which are low in 

organic matter content and have limited 

nutrients. These environmental conditions 

strongly influence local agricultural practices, 

supporting the cultivation of diverse crop types 

including rice, sugarcane, cassava, and para 

rubber. These crops represent the dominant 
cultivated land use in Buriram Province and are 
considered as Thailand’s major economic crops 
(Land Development Department, 2021). 

Therefore, this study area was selected based on 

its agricultural diversity, the availability of 

ground truth data, and regional land and water 

resource management concern. 

 

2.2 Data collection and preprocessing 

2.2.1 Sentinel-2 satellite images 

       A total of 26 Sentinel-2 MSI Level-2A 

images were collected via the Copernicus Open 

Access Hub using Google Earth Engine 

(GEE) during the harvesting period (November 

2023 and January 2024). RGB images with less 

than 10% of cloud cover were chosen to ensure 

quality. The selected scenes were exported in 

TIFF format to preserve high-resolution and 

lossless geospatial quality, then converted to 

PNG format using Python scripts. Each image 

had a resolution of 10 meters and a size of 

2,088×2,600 pixels. Of the total images,  

20 images from November–December 2023  

were used for model training and validation,  

while six images from January 2024 were used 

 for the testing set. The GEE script used for 

 image collection and export is available at: 
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https://code.earthengine.google.com/?scriptPat

h=users%2Fsathiradap1999%2FDL%3ABRR. 

       Table 1 presents Sentinel-2 image samples 

of different crop types. In this research, 

Sentinel-2 images were collected during the 

growing seasons of sugarcane and para rubber. 

Cassava fields exhibited mixed growth stages, 

while pond areas remained visually stable. Due 

to spectral variability across rice growth stages, 

only harvested rice fields were used for 

classification and this can be confirmed through 

field surveys and is assumed to remain rice-

dedicated within one cropping cycle. As a result, 

crop growth stages were not differentiated. 

Table 1 Visual characteristics of each crop type 

as observed from Sentinel-2 satellite imagery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note: All image samples were displayed using 

the same spatial scale. The reference scale bar 

shown at the bottom right applies to all image 

samples.) 

 As shown in Table 1, harvested rice 

fields typically appear as continuous pale 

brownish patches with rectangular shapes and 

medium to large field sizes, often located close 

together. Sugarcane fields are identifiable by 

their light green tones and elongated rectangular 

shapes, with medium to large field sizes and 

relatively uniform vegetation coverage. Para 

rubber exhibits dense, dark green coverage with 

blocky plot shapes and consistently large field 

sizes, reflecting its perennial and structured 

plantation characteristics. In contrast, cassava 

plots appear darker brownish, less structured, 

and more scattered, with typically small field 

sizes that reflect the variability in planting 

practices. Pond areas are marked by dark to 

olive green tones, irregular shapes, and varying 

sizes, and are often partially obscured by aquatic 

vegetation. These spectral and spatial 

differences are critical for distinguishing crop 

types in remote sensing–based classification. 

2.2.2 Drone photography 

       To ensure spatial accuracy in ground truth 

labeling, high-resolution drone imagery was 

captured over the study area on 6–10 May 2024 
using a flight altitude of 200 meters.  

This produced imagery at approximately 10.6 
cm/pixel, which was used as visual reference for 

manual labeling in QGIS.  

2.2.3 Field observations 

       Field surveys were conducted the same 

period (6–10 May 2024) to verify crop types and 

collect in situ reference data, which were cross-

validated with both satellite and drone imagery.  

 

2.3 Data preparation 

       The collected data was used to label images 

into five crop classes—rice, sugarcane, cassava, 

para rubber, and ponds—using high-resolution 

imagery in QGIS. These labeled images were 

then converted into grayscale segmentation 

masks suitable for deep learning input, using 

class-specific RGB-to-index mapping. To 

https://code.earthengine.google.com/?scriptPath=users%2Fsathiradap1999%2FDL%3ABRR
https://code.earthengine.google.com/?scriptPath=users%2Fsathiradap1999%2FDL%3ABRR
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address input limitations and computational 

efficiency, all images were split into 512×512 

pixel patches. This size offers a balance between 

spatial context and memory constraints, making 

it suitable for deep learning architectures such 

as U-Net (Ronneberger et al., 2015) and 

SegFormer. The final dataset comprised 780 

image-mask pairs,  divided into 480 for training, 

120 for validation, and 180 for testing. 

 

2.4 Model configuration and training 

       The crop classification model in this study 

was developed using the SegFormer 

architecture (Figure 2) with the mit_b0 

backbone. Hyperparameter tuning was       

conducted using Optuna (Akiba et al., 2019) to 

identify optimal training settings. Model 

training was conducted using the PyTorch 

framework with the AdamW optimizer with 

cross-entropy loss. A ReduceLROnPlateau 

scheduler was applied to automatically adjust 

the learning rate. Training configurations and 
 

hyperparameters are summarized in Table 2. 

Table 2 Model training configuration and 

hyperparameters used in this research. 

       Model performance was evaluated on the 

validation set using pixel-wise accuracy and 

validation loss, which are commonly used 

metrics in semantic segmentation tasks (Singh 

et al., 2022).

 

Figure 2 Overview of the SegFormer semantic segmentation model architecture, consisting of 
a transformer-based encoder and an All MLP-based decoder (adapted from Song et al. (2023)). 

Parameter Configuration 

Number of epochs 700 

Learning rate 0.0001  

Weight decay 0.0001  

Gamma 0.90  

Step size 5 

Batch size 6 

Patience 6 

Hardware GPU (CUDA-enabled) 

GPU used NVIDIA RTX 3050 
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2.5 Inference and post-training process 

       After training, the SegFormer model was 

loaded from a saved checkpoint to retain  

its learned weights and biases. Test images 

512×512 pixels were passed through the model 

to make a classification prediction.  

       To improve spatial consistency, predicted 

patches were reconstructed into full-sized 

images and refined using a majority color 

process based on the argmax function. This 

process reduces noise and ensures that  a single 

dominant class coherently represents each 

polygon. The dominant class 𝐶∗ for polygon 𝑃 

is defined by: 

 

𝐶∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 1(𝑦𝑖  =  𝑐)

𝑐

𝑖 ∈ 𝑃

 

 

where: 

𝐶∗  is the class with the highest frequency in  

𝑃, ensuring that the entire polygon is filled with 

this dominant class.  

𝑃 represents the set of pixels within a polygon, 

𝑦𝑖 is the predicted class for pixel 𝑖, 

1(𝑦𝑖 = 𝑐) is an indicator function that counts 

occurrences of class c, defined as: 

 

1(yi  =  c)  =  {
1, if yi  =  c

  0, otherwise
 

 

3. Results 

3.1 Performance of the SegFormer model 

       The training process was monitored over 

700 epochs, and model checkpoints were saved 

based on validation loss improvement.  

As shown in Figure 3, the model exhibited a 

consistent decline in both training and 

validation loss, indicating successful 

convergence without signs of overfitting. 

       The best-performing model checkpoint 

achieved a pixel-wise accuracy of 0.967 on the 

validation set, demonstrating its ability to learn 

spatial–spectral patterns of various crop types in 

the region. This model was subsequently used 

for inference on a separate test set, which  

was used solely for qualitative evaluation.  

No quantitative metrics were reported, as the 

test set was used only for visual inference. 

 
Figure 3 Training (red line) and validation (blue 

line) loss during 700 epochs of model training 

process. 

3.2 Segmentation and model inference result 

       Figures 4 and 5 illustrate representative 

prediction masks and segmentation results from 

the training and validation sets. The four panels 
(a–d) presented in Figure 4 highlight 

representative patches selected for quality 

control (QC) and visualization of the model's 

behavior during the training process. These 

examples demonstrate how the model 

effectively distinguishes between crop types 

under learned conditions.   
       Figure 4, the predicted masks from the 

training and validation sets are closely aligned 
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with the ground truth images with the following 

highlights: 

 

Figure 4 Inference comparison using the 

training and validation datasets. Panels a–d 

represent different patch locations. The colors 

highlight different classes: rice (orange), 

sugarcane (light green), para rubber trees (dark 

green), cassava (brown), and pond (blue). 

 

• The pond class (panel a), especially 

when covered by aquatic vegetation, is 

frequently misclassified as para rubber due 

to the similarity in spectral reflectance 

between the two classes. 

• The cassava class (panel b) is difficult to 

detect due to its occurrence in small, 

scattered plots and limited representation in 

the training data. 

• The model generally distinguishes rice 

fields, sugarcane, and para rubber with high 

accuracy, with class boundaries closely 

aligning with the ground truth. However, 

confusion still occurs between sugarcane 

and para rubber (panel c) due to similar 

spectral features, suggesting potential areas 

for model refinement. 

       Figure 5 presents a full-scene segmentation 

map reconstructed from patch-level predictions 

and refined using the majority-vote process. 

       As shown in Figure 5, the model performs 

well in distinguishing crop types with stable 

spectral and structural characteristics, such as 

para rubber and sugarcane. Para rubber, with its 

dense canopy and consistent year-round 

reflectance, is the most accurately classified 

class. Sugarcane is also effectively segmented, 

though some misclassifications with para rubber 

occur in areas with similar leaf coloration or 

mixed vegetation. Harvested rice fields are 

reasonably well identified due to their distinct 

brown tones, which contrast with other land 

covers. Conversely, cassava remains one of the 

most challenging classes due to its scattered 

distribution and limited training data. Pond 

areas are also difficult to classify, particularly 

when small water bodies are covered by 

vegetation or have similar spectral features to 

tree canopies. These results show that while the 

model performs well on dominant crop types, it 

still struggles with classes that are either less 

represented in the training set or have spectral 

characteristics that closely resemble other land 

covers. 

       Despite the overall accuracy, some 

segmentation errors remain, particularly in areas 

with complex boundaries or spectrally similar 

classes like cassava and ponds. The black 

outlines in panel (c) highlight regions where 

predictions differ from the ground truth image, 

reflecting potential misclassifications. These 
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discrepancies may arise from class imbalance  

in the training data or subtle spectral similarities 

 

between certain crop types. These issues suggest 

directions for further model refinement. 

 

 
Figure 5 Comparison of the input Sentinel-2 satellite image (a), annotated segmentation (ground 

truth labeled) image (b), and final segmentation map (c) at a resolution of 2,088 x 2,600 pixels, 

derived from the training and validation datasets after reconstruction and majority color processing
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       Figure 6 shows the final segmentation 

output generated from the test dataset, which 

was not used during training or validation 

process. 

 

Figure 6 Segmentation map generated from the test dataset after combining patch-level predictions 

and applying a majority color processing.
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       Compared to the results from the training 

and validation datasets shown in Figure 5, the 

final segmentation output from the test dataset 

(Figure 6) shows a noticeable decline in 

classification quality.  

       While the model still correctly identifies 

major crop types such as para rubber and 

sugarcane in several regions, misclassifications 

are more frequent in the test dataset, particularly 

for cassava, harvested rice fields, and pond 

areas. These classes tend to exhibit spectral 

features that overlap with other land cover types. 

In addition, the model showed limited ability to 

detect small agricultural plots. Even when such 

plots were detected, predictions were often 

inaccurate. Notably, fields smaller than 

approximately 5,200 square meters were more 
likely to be misclassified or missed, possibly 

because the 10-meter resolution of Sentinel-2 

imagery was too coarse to capture their shapes 

clearly. 

       This result highlights the model’s limited 

generalization capacity when applied to unseen 

areas, emphasizing the importance of dataset 

diversity and class balance in future model 

development. 

 

4. Discussion  

       Although SegFormer was originally 

developed for general-purpose semantic 

segmentation in urban and structured scenes, its 

application in agricultural settings has begun to 

emerge, albeit with limited. This study 

demonstrates that, with appropriate adaptation, 

SegFormer can be effectively applied to crop 

classification in real-world agricultural settings. 

       Transformer-based deep learning models 

have recently gained momentum in remote 

sensing and semantic segmentation, with 

architectures such as SegFormer offering 

notable advantages in capturing global spatial 

features, improved boundary segmentation, and 

efficient processing with fewer parameters 

compared to traditional models (Xie et al. 

(2021); Li et al. (2023). 

       Nonetheless, recent studies suggest that 

Transformer-based models can outperform 

CNNs in agricultural applications when 

appropriately adapted. For instance, Gallo et al. 

(2024) reported that a Swin UNETR model 

achieved higher accuracy and faster training 

than traditional CNNs when applied to time-

series data. Similarly, Zhao et al. (2018) showed 

that transformer-based models effectively 

captured both spatial and temporal complexities 

in crop classification tasks. In the application of 

SegFormer, Song et al. (2023) applied the model 

for crop classification in Bengbu, China—an 

area characterized by large-scale, irrigated 

farmlands with relatively continuous field 

structures. Their study relied on curated ground 

truth data derived from official land-use maps, 

field surveys, and NDVI-based phenological 

masks, which ensured high annotation quality. 

SegFormer outperformed CNN-based models 

and RF, achieving the highest overall accuracy 

and segmentation consistency especially  

when applied to well-structured agricultural 

landscapes with clearly defined cropping 

patterns and balanced training data.  While Li et 

al. (2023) founds that U-Net achieved the 

highest overall accuracy for crop classification 

in their study over structured farmlands, they 

also acknowledged the strong performance of 

SegFormer. While its accuracy was slightly 

lower than U-Net, SegFormer demonstrated 

notable strengths in spatial clarity and boundary 

delineation, particularly when well-prepared 

ground truth data were used. 
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       In contrast to previous studies that applied 

SegFormer model to structured farmlands using 

curated datasets, this research investigates more 

complex field conditions. These conditions are 

characterized by fragmented and heterogeneous 

plots with varying shapes and sizes—typical of 

many agricultural landscapes in Thailand—

which increase the complexity of crop 

classification from satellite imagery. 

       The model’s performance in this study, 

supported by visual assessments, high-quality 

training data, and spatial refinement techniques 

suggests that the SegFormer can be adapted  

to meet the challenges of remote sensing 

applications in real-world agricultural. To 

highlight the unique contributions of this 

research, the key findings are summarized 

below: 

• Real-world applicability in unstructured 

farming landscapes: the model was tested 

under field conditions featuring fragmented 

plot patterns and heterogeneous cropping 

practices, providing insights into its 

robustness beyond idealized or curated 

datasets. 

• Post-inference refinement using majority-

vote process: improved spatial consistency 

in the final segmentation map and  

reduced misclassification noise at field 

boundaries. 

• Integration of UAV-labeled training data: 

high-resolution drone imagery was used to 

generate precise polygon labels, improving 

the quality of training data and enhancing 

the model’s ability to detect small, irregular 

field boundaries, particularly in plots larger 

than approximately 5,200 square meters. 

• Qualitative insights into class-specific 

learning: the visual progression from 

training and validation to test datasets were 

analyzed to assess the model’s learning 

behavior. These observations offer valuable 

insights for refining training data and 

enhancing model development in future 

research. 

Collectively, these insights underscore the 

potential of SegFormer when applied with 

appropriate adaptation and highlight practical 

considerations for future development. 
 

5. Conclusion and recommendation  

       The research successfully developed  
a modern methodology for crop classification 

using Sentinel-2 satellite imagery in 

combination with the SegFormer model, 

achieving a high pixel-wise accuracy of  
0.967 on the validation set, demonstrating its 

effectiveness in learning spatial  and spectral 

patterns from the training data. 

       However, segmentation performance varied 

across crop classes. Para rubber and sugarcane 

were classified with high accuracy due to their 

distinct and relatively stable spectral features. 

Harvest rice fields, while showing moderate 

accuracy, experienced some confusion with bare 

soil. Cassava posed the greatest challenge due to 

its limited representation in the dataset and 

scattered planting patterns, resulting in frequent 

misclassifications. These outcomes underscore 

the importance of balanced and diverse training 

data for robust model generalization. 

       This study also demonstrated the benefits of 

post-processing techniques such as majority-

vote filtering, which improved spatial 

consistency and reduced noise along field 

boundaries. Additionally, the integration of 

high-resolution UAV-labeled training data 

enhanced the model’s ability to detect small and 

irregular field plots, further contributing to 

overall performance. Based on visual 
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assessment, the model was able to correctly 

classify small fields starting from approximately 

5,200 square meters. For plots smaller than this 

threshold, detection was inconsistent, and 

misclassifications were more likely. This 

limitation is likely due to the coarse spatial 

resolution of Sentinel-2 imagery (10 meters), 

which reduces the model’s ability to distinguish 

fine-scale features in very small plots. 

       While the application of deep learning to 

satellite-based crop classification holds strong 

potential, challenges remain. Spectral similarity 

among certain classes (e.g., para rubber vs. pond 

areas) and the impact of seasonal variation 

require careful data preparation and model 

tuning. The findings of this study confirm that 

SegFormer can be effectively tailored for large-

scale agricultural mapping, provided that 

preprocessing, label quality, and class balance 

are appropriately addressed. Future work may 

incorporate multi-temporal data to enhance 

classification accuracy. 
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