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ABSTRACT 
 

Air pollution is a critical issue in many countries and has become a significant problem in Southeast 
Asia. Wildfires, agricultural burning, and biomass burning are major sources of pollution emissions. 
This study aims to analyze hotspot activity and examine the relationship between hotspots and 
geographic-meteorological factors in Thailand and neighboring countries. MODIS hotspot data were 
analyzed using the frequency-magnitude distribution (FMD) and geography-meteorology factors. 
The results indicate that areas with high hotspot activity were mainly found in northwestern to 
eastern Cambodia and northern Laos. Additionally, northern Laos and some pockets in Myanmar 
showed high hotspot intensity, capable of generating a maximum Fire Radiative Power (FRP) 
>1,000 MW. The return periods for 8, 20, 40, and 120 MW were found to be 0.05, 0.1, 0.5, and 1 
year, respectively. In the next 50 years, the entire area will have a 90–100% probability of 
experiencing up to 40 MW, while central, some parts of northern and southern Myanmar, southern, 
some parts of northern, central, and northeastern Thailand, and southern Cambodia will have <70% 
chance of experiencing 120 MW. Hotspots are more frequent at low elevations, on gentle slopes, 
and across all aspects (excluding flat areas). Moreover, higher elevations, steeper slopes, and 
southern aspects tend to experience more high-intensity. It can be inferred that fire intensity is not 
primarily influenced by temperature, precipitation, or relative humidity. Instead, other factors, such 
as fuel availability and human activities, may play a more significant role. 

 

Keyword: Hotspot, Fire Radiative Power, Frequency-Magnitude Distribution, geographic-
meteorological factors 

1.Introduction 

Air pollution is a critical issue impacting 
the environment and the quality of life in many 
countries and has become a significant problem 
in Southeast Asia (Gu et al., 2024). According 
to the regional estimates of the World Health 
Organization (WHO), over 2 million deaths 
annually in Southeast Asia are attributed to air 
pollution (Taghizadeh-Hesary & Taghizadeh-

Hesary, 2020). This issue arises primarily from 
emissions caused by wildfires, agricultural 
burning, biomass burning, transportation, and 
industrial sources (Miller & Newby, 2020; 
Moran et al., 2019; Chavanaves et al., 2021), 
which are key contributors to air pollution. One 
of the most hazardous pollutants is particulate 
matter with a diameter of less than 2.5 microns 
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(PM2.5). This pollutant can enter the respiratory 
system, deeply penetrate the lungs, and enter the 
bloodstream, leading to various severe health 
issues. (Xing, 2016; Li et al., 2018; Chen et al., 
2013; Pope et al., 2002). It also impacts the 
economy, society, environment (Chaiboonsri et 
al., 2023), and tourism (Yang et al., 2022; 
Nonthapot et al., 2024). Research by Gu et al. 
(2024) highlights that the total PM2.5 
concentration in Myanmar, Cambodia, Laos, 
and Thailand was significantly up to twice as 
high-during the northeast monsoon season. 
 In the context of studying wildfires, 
agricultural burning, and biomass burning, Fire 
Radiative Power (FRP) is a quantitative measure 
of radiant heat emissions and is recognized as 
a key indicator for assessing fire intensity 
(Kumar & Kumar, 2022). It can also be used to 
calculate fire emissions and environmental 
impacts. For instance, Vadrevu et al. (2012) 
studied the relationship between FRP and the 
types of vegetation burned to determine which 
areas experience more intense fires. Kaiser et al. 
(2012) calculated gas and aerosol emissions 
from biomass burning using the Global Fire 
Assimilation System (GFASv1.0), which utilizes 
FRP data. Engel et al. (2022) developed and 
evaluated a method for calculating FRP for 
BRIGHT/AHI hotspots to enable real-time fire 
energy reporting. The FRP value is recorded in 
hotspots, which are points on the Earth's surface 
with abnormally high heat values or satellite 
image pixels with high infrared radiation 
intensity. These hotspots are often caused by 
wildfires, agricultural burning, and biomass 
burning (Korontzi et al., 2006.) 

Hotspots can occur from both human-
related activities and natural factors, and many 
studies indicate that human activities are the 
primary cause of fire occurrences (Ganteaume et 
al., 2013; Rogers et al., 2020; Sjöström & 
Granström, 2023). Although hotspots are mainly 
caused by human activities, topographical and 
meteorological factors also play a crucial role in 

determining the distribution and intensity of 
hotspots. For example, at higher elevations, a 
significant increase in wildfires has been 
observed (Kumar & Kumar, 2022). Increased 
slope steepness affects the spread and intensity 
of wildfires (Baltaci & Yildirim, 2020). Forest 
fire occurrence in Central Europe is driven by a 
combination of human activities and climate 
conditions. Rising temperatures and decreasing 
rainfall increase the likelihood of wildfires 
(Berčák et al., 2024). The rate of wildfire spread 
is fastest when strong winds, low humidity, and 
high temperatures coincide. Global and regional 
climatic factors contribute to variations in wildfire 
patterns across different regions (Gedalof, 2011). 
Hotspot are detectable through MODIS (Moderate 
Resolution Imaging Spectroradiometer), a sensor 
mounted on NASA's Terra and Aqua satellites, 
capable of accurately recording hotspot data, 
covering entire countries, and near real-time data.  
 To help mitigate the impacts or risks 
associated with fire, various studies have 
examined fire prediction using different models 
as follows: Dorodnykh et al. (2022) researched 
Forest Fire Risk Forecasting with the Aid of 
Case-Based Reasoning (CBR) in Irkutsk Oblast, 
Russia. It was found that CBR model can 
accurately predict wildfire risk areas. The 
accuracy score was used to evaluate the wildfire 
risk forecasting results. The model's accuracy 
rate is 51%, indicating its potential for further 
improvement. 
 According to Kadir et al. (2023) researched 
the Long Short-Term Memory (LSTM) algorithm, 
a deep learning method, and wildfire hotspot 
dataset from MODIS (2010-2022), was applied 
to analyze and then forecast the number of 
wildfire hotspots in Indonesia. The forecast for 
the number of hotspots in 2023 achieved good 
results with an average error of 7%. 

Another study by Nami et al. (2008) 
predicted wildfire probability in northern Iran’s 
Hyrcanian ecoregion using the Evidential Belief 
Function (EBF) model. The resulting probability 
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map showed that moderate to very high-risk zones 
covered nearly 60% of the landscape, with human 
infrastructure being a key influencing factor. 
Validation confirmed the model’s effectiveness, 
showing a prediction rate of 81.03%. 
 As mentioned above, the purpose of this 
study was to analyze the hotspot activity and to 
study the relationship between hotspots and 
geographic-meteorological factors in Thailand 
and neighboring countries. The Frequency-
Magnitude Distribution (FMD), has been 
applied in various fields, such as probabilities of 
Earthquake Occurrences (Pailoplee, 2017), the 
spatial distribution of rainfall (Prasertwiriya, 
2020), tsunami occurrence probability 
(Olabarrieta et al., 2017), and the frequency 
distribution of crater sizes (Chorhirankul, 2017; 
Khamsiri, 2017). In this study, the FMD is 
integrated with MODIS hotspot data to represent 
spatial and temporal distributions and to identify 
relationships with geographic and meteorological 
factors. This approach aims to assess fire risk in 
this area, enabling effective hotspot tracking 
across and supporting timely wildfire 
management planning. 
 
2. Dataset and Completeness 
 

MODIS hotspot data for the period 2000 
to 2022 from NASA FIRMS (Fire Information 
for Resource Management System) in Figure 1. 
The datasets contain the geographical locations 
of fire point centers, each representing a 1×1 km 
area, along with the date and time of occurrence. 
The data is organized in the following format: 
longitude, latitude, year, month, day, FRP 
(Megawatt: MW), depth, hour, minute, and 
second, as shown in Table 1. 

The 30-meter Digital Elevation Model 
(DEM) from the website of The United States 
Geological Survey (USGS) provides elevation 
data at a spatial resolution of 30 meters, which 
is useful for topographic analysis, hydrological 

modeling, and terrain visualization. By using 
Geographic Information Systems (GIS), the 
DEM can be processed to derive key 
topographic features such as elevation, slope, 
and aspect, which are essential for 
understanding terrain characteristics  

The data is organized and verified as 
follows: daily mean temperature and 
precipitation from The National Oceanic and 
Atmospheric Administration (NOAA), and 
daily relative humidity from Thai 
Meteorological Department (TMD) for the 
period from year 2000 to 2022. 

 

Figure 1 MODIS hotspot data in Thailand and 
neighboring countries (Myanmar, Laos, and 
Cambodia) from 2000 to 2022.  
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Table 1 Example of hotspot data format used for FMD. 

 

3. Hotspot activity 

 
3.1 Frequency-FRP 

Ishimoto and Iida (1939) and Gutenberg 
and Richter (1944) presented Frequency-
Magnitude Distribution (FMD), which represents 
the relationship indicating the number or rate of 
occurrences of events across different times and 
areas, as explained by the Equation (1); 

  
 log(𝑁!) = 𝑎 − 𝑏𝑀 or ln(𝑁) = 𝑙𝑛𝛼 − 𝛽𝑀  (1) 
 

Where NM is the cumulative number of 
hotspots with a FRP equal to or greater than M. 
Both a and b are positive constants that vary 
across different times and specific areas. The a 
value represents the total number or rate of 
occurrence of events of all sizes while b value 
represents the ratio of larger events to smaller 
ones. The value of α and β are constants related 
to a and b as expressed by Equation (2) and (3), 
respectively; 

 
𝛼 = exp	(𝑎 ln(10))    (2) 

and 
𝛽 = 𝑏𝑙𝑛(10)           (3) 

 
The research area was gridded at 0.25° x 

0.25° spacing to analyze hotspot activity. Using 
MODIS hotspot data for the period 2000 to 2022 
from NASA FIRMS MODIS (3,332,121 
hotspots), those within an empirically fixed 25 
km radius of each grid node were selected and 
contributed to the FMD. The a-value, b-value, 

percent of goodness fit, and megawatt of 
completeness (mc-value) were then computed 
and spatially mapped using the ZMAP tool 
(Wiemer, 2001). Finally, the obtained values 
were then contoured and mapped, as illustrated 
in Figure 2. 

The spatial distribution of the a-values 
was all in the range of 1.4–4.4 (Figure 2a). Areas 
with high a-values (>4), indicating high hotspot 
activity, were primarily observed at (i) 
northwestern to eastern Cambodia, and (ii) 
northern Laos. In contrast, areas with low a-
values (<2), indicating low hotspot activity, 
were observed at (i) southern Thailand and (ii) 
central Myanmar. 

The spatial distribution of the b-values 
was all in the range of 0-0.05 (Figure 2b). Areas 
with high b-values (>0.04), indicating low 
intensity, were observed at (i) central Myanmar, 
(ii) southern Myanmar, (iii) and central to lower 
northern Thailand, (iv) and southern Thailand. 
In contrast, areas with low b-values (<0.005), 
indicating high intensity, were primarily observed 
at northern Laos. 

The spatial distribution of the mc-values 
was all in the range of 5–10 (Figure 2c). Almost 
the area showing low mc-value (5), while there 
are some scattered pockets with high mc-values.  

In addition, the goodness of fit (Figure 
2d) computing the difference between the 
observed FMD and hotspot distribution, the 
lower difference showing the higher goodness 
of fit. 
 

Longitude Latitude Year Month Day FRP Depth Hour Min Second 
102.00 14.12 2000 11 1 5.5 0 15 54 0 
101.95 14.13 2000 11 1 5.0 0 15 54 0 
99.37 22.86 2000 11 2 11.4 0 4 6 0 
103.13 19.40 2000 11 2 3.9 0 4 7 0 
105.14 17.44 2000 11 2 8.7 0 4 7 0 
105.15 17.44 2000 11 2 7.4 0 4 7 0 
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Figure 2 Spatial distributions of the (a) a-value, (b) b-value, (c) mc-value, and (e) the goodness fit 
of the FMD. 
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Figure 3 The probable maximum FRP value of hotspot capable of being generated in the individual 
time span of the next (a) 5, (b) 10, (c) 30, and (d) 50 years. 
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3.2 Most probable maximum FRP 
Yadav et al. (2011), applied the α and β 

values the FMD equation to assess earthquake 
occurrence behaviors in various forms. In this 
study, we use them to estimate the most probable 
maximum FRP over a period of t years of 
interest (ut) as expressed in Equation (4). 

 

𝑢" =
#$	('")
)

         (4) 

 
Where ut (MW) is the most probable 

maximum FRP in the period of t. 
The most probable maximum FRP value 

of hotspot that could be generated in 5, 10, 30 
and 50 years was then calculated and mapped, 
as illustrated in Figure 3. The probable 
maximum FRP value of hotspot capable of 
being generated in the next 5 and 10 years 
(Figure 3a, 3b), showing similar results. Areas 
with high FRP value (>600 MW), were 
observed at (i) northern Laos and (ii) some 
pockets in Myanmar. Meanwhile, most area are 
low FRP value (<200 MW), especially in 
Thailand and central Myanmar, where the FRP 
values are very low (<100 MW). 

The probable maximum FRP value of 
hotspot capable of being generated in the next 
30 and 50 years (Figure 3c, 3d), showing similar 
results. Areas with high FRP value (>600 MW) 
have increased and expanded, primarily 
observed at (i) northern Laos and some pockets 
(ii) in Myanmar. Meanwhile, areas with low 
FRP value (<200 MW) have decreased, 
especially in Thailand, where areas with very 
low FRP values (<100 MW) have significantly 
decreased. 

The results of the maximum FRP 
indicate that the very high-intensity zone is 
located in northern Laos and some pockets in 
Myanmar. In contrast, the very low-intensity 
zone spans from central to southern Thailand 
and central Myanmar. 

 

3.3 Hotspot return period 
 Return period is calculated by α and β 
values as expressed in Equation (5) (Yadav et 
al., 2011). 
 

𝑇! = *+,	()!)
'

          (5) 
 

Where TM (year) is the expected time 
interval for the occurrence of a hotspot with FRP 
greater than or equal to M. 
 FRP values are selected from occurrence 
statistics within 23 years (2000-2022) as 8, 20, 
40, and 120 MW for determining the return 
periods in Figure 4.  
 Return period of hotspot with FRP value 
8 MW was all in the range of 0–0.5 year (Figure 
4a). The results reveal that almost all area have 
a return period of 8 MW in 0.05 year (18 days). 
Southern Thailand and northern Myanmar have 
a return period ≥ 0.15 year (55 days). Central 
Myanmar has a return period ≥ 0.2 year (73 
days). 
 Return period of hotspot with FRP value 
20 MW was all in the range of 0–1 year (Figure 
4b). The results reveal that almost all area have 
a return period of 20 MW in 0.1 year (37 days). 
Southern Thailand and northern part of 
Myanmar have a return period ≥ 0.3 year (110 
days). Central Myanmar has a return period ≥ 
0.4 year (146 days). 
 Return period of hotspot with FRP value 
40 MW was all in the range of 0–5 years (Figure 
4c). The results reveal that almost all area have 
a return period of 40 MW in 0.5 year (183 days). 
Meanwhile, the southern Thailand, northern, 
central, and some parts of southern Myanmar 
have a return period ≥ 2 years. 
 Return period of hotspot with FRP value 
120 MW was all in the range of 0–10 years 
(Figure 4d). The results reveal that Laos, almost 
all of Cambodia, some parts of Myanmar, and 
the border areas in northern Thailand have a 
return period of 120 MW in 1 year. Meanwhile, 
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almost all Thailand, northern, central, some 
parts of southern Myanmar and southern 
Cambodia have a return period ≥ 10 years. 
 

3.4 Probability of hotspot occurrence 
 The probabilities of occurrences, Pt (M), 
for any given specific time period (t) and certain 
FRP (MW) were also evaluated as expressed in 
Equation (6) 
 

𝑃"(𝑀) = 1 − exp	(−𝛼𝑡(exp(−𝛽𝑀)))  (6) 
 

Where Pt (%) is probabilities of 
occurrences, M, in ‘0’ year 
 The probability of hotspot occurrence 
with FRP value 8, 20, 40, 120 MW in the next 
50 years as show in Figure 5. 
 The probability of hotspot occurrence 
with FRP value 8 MW in the next 50 years 
(Figure 5a) is 100% for all areas. The probability 
of hotspot occurrence with FRP value 20 MW in 
the next 50 years (Figure 5b) is between 99% 
and 100% for all areas. The probability of 
hotspot occurrence with FRP value 40 MW in 
the next 50 years (Figure 5c) is almost 100% in 
all areas, except for some area at the southern 
coast of Thailand, which is 40%. Finally, the 
probability of hotspot occurrence with an FRP 
value of 120 MW in the next 50 years is shown 
in Figure 5d. The results reveal that Laos, almost 
all of Cambodia and Myanmar, and some parts 
of northern, central, and northeastern Thailand 
have a 100% probability. Meanwhile, the 
probability of occurrence is less than 70% for 
central, some parts of northern and southern 
Myanmar, southern, some parts of northern, 
central, and northeastern Thailand, and southern 
Cambodia. 
 
 
 
 
 

 
4. Relationship with geography factors 
 

 
Figure 6 Points created every 25 km. 
 

In this part, the study focuses on the 
relationship between hotspots and geographical 
factors. Specifically, it examines (i) elevation, 
(ii) slope, and (iii) aspect, which are represented 
at points created every 25 km in Figure 6. Then, 
these factors overlay with the map of the 
probable maximum FRP values of hotspots 
capable of being generated in the next 50 years 
(Figure 3d). The zones are categorized by the 
intensity of FRP values as follows: (i) low (<200 
MW), (ii) medium (200-600 MW), and (iii) high 
(>600 MW), as illustrated in Figure 7–9. 
Furthermore, illustrative examples of elevation, 
slope, and aspect levels in each zone are also 
provided in Figure 10–12. 
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Figure 4 Return periods of hotspot with FRP value (a) 8, (b) 20, (c) 40, and (d) 120 MW.  
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Figure 5 Probability of hotspots occurrence with FRP value (a) 8, (b) 20, (c) 40, and (d) 120 MW 
in the next 50 years. 
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4.1 Elevation 
Figure 7 illustrates the distribution of 

points based on three elevation ranges: 0–499 m, 
500–1000 m, and more than 1,000 m and three 
zones of FRP intensity: low, medium, and high. 
This allows for a clear visualization of how 
points are distributed based on both elevation 
and the intensity of FRP values.  

Most points are located at lower elevations 
(0–499 m), with a total of 1,741 points. Among 
these, the majority (1,019 points) are classified 
as belonging to the low zone, followed by 617 
points in the medium zone, and 75 points in the 
high zone. 

In the 500–1000 m elevation range, there 
are 533 points. The distribution changes here, 
with 289 points falling into the medium zone, 
144 points in the high zone, and only 100 points 
in the low zone. 

For elevations above 1,000 m, there are 
355 points. The medium zone again has the 
highest number of points (195), while 98 points 
are in the high zone, and 62 points are in the low 
zone. 

Based on the analysis, it is evident that 
the distribution of points and their associated 
zone levels varies with elevation. Most points 
are located at lower elevations (0–499 m), the 
majority of points are classified as low FRP 
zone. However, as elevation increases, the 
proportion of points with medium and high FRP 
zone also increases. In the 500-1000 m range, 
medium FRP zone becomes more prevalent, 
while at elevations above 1000 m, medium FRP 
zone remains the most common, but high FRP 
zone is also significantly present. 

 
 4.2 Slope 

Figure 8 illustrates the distribution of 
points based on five slope ranges: flat to gentle 
(0–3%), moderate (3–12%), steep (12–20%), 
very steep (20–35%), and extreme (>35%) from 
UNEP/FAO (Iaaich et al., 2016) and three zones 
of FRP intensity: low, medium, and high. 

In the 0-3% slope range, there are 366 
points with low zone, 166 medium zone points, 
and 6 high zone points. In the 3-12% slope range 
has the highest number of points, the majority of 
points (555) are classified as low zone, followed 
by 330 points with medium zone, and 37 points 
with high zone. In the 12-20% slope range, there 
are 131 points with medium zone, 73 points with 
low zone, and 39 points with high zone. In 
the20-35% slope range, there are 204 points 
with medium zone, 98 points with low zone, and 
83 points with high zone. In the slope range 
greater than 35%, there are 270 points with 
medium zone, 119 points with low zone, and 
152 points with high zone. 

Based on the analysis, it is evident that 
the distribution of points and their associated 
zone levels varies with slope. The majority of 
points within the 3–12% slope range, in 0–12% 
slope range show low FRP zone. In contrast, the 
high FRP zone is predominantly found in more 
than 20% slope, especially beyond 35%. This 
indicates a possible correlation between slope 
steepness and fire risk or intensity. 

 
4.3 Aspect 

Figure 9 illustrates the distribution of 
points based on nine aspect ranges: Flat, North 
(N), Northeast (NE), East (E), Southeast (SE), 
South (S), Southwest (SW), West (W), Northwest 
(NW) and three zones of FRP intensity: low, 
medium, and high. 

In the Flat area, there are the fewest 
points, with only 56 points in total and none in 
the high zone. Meanwhile, in the North facing 
slopes, there are the most points, with 164 points 
in the low zone, 150 in the medium zone, and 38 
in the high zone. The Northeast facing slopes 
has 150 points with low zone, 120 with medium 
zone, and 37 with high zone. In the East facing 
slopes, there are 148 points with low zone, 137 
with medium zone, and 37 with high zone. The 
Southeast facing slopes has 163 points with low 
zone, 144 with medium zone, and 36 with high 
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zone. In the South facing slopes, there are 137 
points with low zone, 142 with medium zone, 
and 44 with high zone. For the Southwest facing 
slopes, there are 119 points with low zone, 124 
with medium zone, and 45 with high zone. The 
West facing slopes has 156 points with low 
zone, 130 with medium zone, and 43 with high 
zone. Lastly, the Northwest facing slopes has 
143 points with low zone, 129 with medium 
zone, and 37 with high zone. 

Based on the analysis, it is evident that 
the distribution of points and their associated 
zone levels varies with aspects. The Flat facing 
slopes exhibits the lowest number of points, 
with no high FRP zone point, indicating a 
relatively safer terrain. In contrast, the North 
facing slopes observes the most points, followed 
sequentially by the Southeast, West, South, East, 

Northwest, Northeast, and Southwest. However, 
the South, Southwest, and West facing slopes 
show a notable increase in high FRP zone 
points. 

 
5. Relationship with Meteorology factors 
 
 This part focuses on the relationship 
between hotspots and meteorological factors. 
Specifically, it examines (i) temperature, (ii) 
precipitation from NOAA, and (iii) relative 
humidity from TMD, with the locations of the 
meteorological stations shown in Figure 13. 
These factors were analyzed in conjunction with 
the FRP values of hotspots occurring in each 
zone (low, medium, and high zones). The 
analysis  uses  FRP  data  from  hotspots  within 

 
Figure 7 Distribution of points by elevation with FRP intensity zones. 
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Figure 8 Distribution of points by slope with FRP intensity zones. 
 

 
Figure 9 Distribution of points by aspect with FRP intensity zones.  
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Figure 10 Examples of elevation in (a) low, (b) medium, and (c) high zone. 

 
Figure 11 Examples of slope in (a) low, (b) medium, and (c) high zone. 

 
Figure 12 Examples of aspect in (a) low, (b) medium, and (c) high zone.  
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a 25 km radius around meteorological stations, 
with daily comparisons presented from 2000 to 
2022, as illustrated in Figure 14–16. 
 

 
Figure 13 Locations of meteorological stations. 

 
5.1 Low FRP zone 

 By selecting meteorological data from 
the Lopburi meteorological station in Thailand 
and FRP data from hotspots within a 25 km 
radius around the station as a representative for 
the analysis of the low FRP zone, the results are 
as follows and are presented in Figure 14. 

The pattern of mean FRP in the low FRP 
zone (Figure 14a). The values fluctuate, 
showing a cyclical pattern. These peaks occur 
regularly each year, indicating occasional fire 
activity, with the highest value occurring near 
150 MW at the end of 2019, possibly due to 
external environmental factors. 
 The pattern of temperature in low FRP 
zone (Figure 14b). Seasonal variations are 

noticeable, with regular cyclical patterns. There 
is no extreme long-term increase or decrease, 
but periodic short-term fluctuations. 
 The pattern of precipitation in low FRP 
zone (Figure 14c). The distribution is highly 
variable, with frequent occurrences of rainfall 
events ranging from minimal amounts to over 
90 mm (very heavy rain) in certain instances. 
Increased precipitation might help suppress fire 
activity. 

The pattern of relative humidity in low 
FRP zone (Figure 14d). The values fluctuate 
seasonally, showing a cyclical pattern that 
follows typical atmospheric moisture variations. 
High humidity levels likely contribute to 
reducing fire activity. 

Overall, the findings suggest that fire 
activity in the low FRP zone shows high FRP 
values each year that are quite similar. These 
activities are regulated by natural climatic 
variations. High humidity and frequent rainfall 
events appear to limit fire intensity and spread. 

 
5.2 Medium FRP zone 

 By selecting meteorological data from 
the Loei meteorological station in Thailand and 
FRP data from hotspots within a 25 km radius 
around the station as a representative for the 
analysis of the medium FRP zone, the results are 
as follows and are presented in Figure 15. 

The pattern of mean FRP in the medium 
FRP zone (Figure 15a) illustrates the variation 
over time. There is a high value in the early 
period, with the highest value occurring over 
200 MW at the end of 2005. A general 
decreasing trend in FRP is noticeable over time, 
particularly after around 2010, where the 
magnitude and frequency of peak FRP events 
appear to decline. 
 The pattern of temperature in medium 
FRP zone (Figure 15b) represents the 
fluctuations in temperature across the years. A 
clear seasonal cycle is evident, with periodic 
increases and decreases indicating annual 
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temperature variations. The temperature appears 
relatively stable over the years. 
 The pattern of precipitation in medium 
FRP zone (Figure 15c) shows a sporadic pattern 
with peaks occurring at different times. After 
2010, rainfall intensity increases several years. 
 The pattern of relative humidity in 
medium FRP zone (Figure 15d), which follows 
a distinct seasonal pattern similar to that of 
temperature. The data show that relative 
humidity fluctuates cyclically over time, with 
values mostly ranging between 40% and 95%, 
indicating consistent atmospheric moisture 
levels. 

Overall, this analysis illustrates that FRP 
has shown a decreasing trend over the years, 
particularly after 2010. Temperature and relative 
humidity exhibit stable seasonal cycles without 
any significant long-term trends. Rainfall, 
although highly variable, does not display a 
clear increasing or decreasing pattern. These 
findings suggest that fire activity (as indicated 
by FRP) may be declining, potentially 
influenced by climatic conditions such as 
temperature, rainfall, and humidity 

 
5.3 High FRP zone 

By selecting meteorological data from 
the Mae Hong Son meteorological station in 
Thailand and FRP data from hotspots within a 
25 km radius around the station as a 
representative for the analysis of the high FRP 
zone, the results are as follows and are presented 
in Figure 16. 

The pattern of mean FRP in the high FRP 
zone (Figure 16a). There are several peaks in the 
graph, indicating periods of higher fire activity, 
with the highest value occurring near 500 MW 
in 2010. After that, the trend shows a decreasing 
pattern. 

The pattern of Temperature in high FRP 
zone (Figure 16b) Over the years, there is no 
significant long-term increasing or decreasing 

trend, and the values remain relatively stable, 
following a consistent periodic pattern. 

The pattern of precipitation in high  
FRP zone (Figure 16c). Rainfall events appear 
sporadic, with peaks occurring at different 
points across the years. Although the rainfall 
pattern is highly variable, an increase in peak 
rainfall amounts can be observed around the 
2004–2006. 

The pattern of relative humidity in high 
FRP zone (Figure 16d), reveals a seasonal 
pattern, fluctuating between approximately 40% 
and 100%. The cyclical nature of the data 
suggests regular changes in humidity levels 
throughout the years. 

Overall, the pattern of FRP and climatic 
factors in a high FRP zone reveal that FRP was 
significantly higher in the early years but has 
shown a decreasing trend since around 2011, 
with fewer extreme fire events occurring in 
recent years. Temperature and relative humidity 
follow stable seasonal cycles without any long-
term trends. Although rainfall is variable, it 
exhibits some peaks during 2004–2006, without 
showing a clear increasing or decreasing trend. 
These observations suggest that while fire 
activity (as indicated by FRP) has decreased 
over time, the climatic factors such as 
temperature, rainfall, and humidity have 
remained relatively stable. 
 
6. Discussions and Conclusion 
 
 In this study, we focused on the analysis 
of hotspots in Thailand and nearby countries. 
The spatial variations in a- and b-values derived 
from the Frequency-Magnitude Distribution 
(FMD) were studied and visualized through 
mapping. Furthermore, parameters associated 
with the hotspots were assessed utilizing the 
calculated a- and b-values. 
 For the most probable maximum FRP in 
5, 10, 30, 50 years, they indicate that very high-
intensity zones are located in northern Laos and 
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some pockets in Myanmar, with the highest FRP 
values exceeding 1,000 MW. Satellite imagery 
from Google Earth reveals that these areas 

consist of forests and shrubland/savanna, which 
have high biomass resulting in elevated FRP value,

 
Figure 14 The pattern of (a) mean FRP, (b) temperature, (c) rainfall, and (d) relative humidity from 
2000–2022 in low FRP zone. 

 
Figure 15 The pattern of (a) mean FRP, (b) temperature, (c) rainfall, and (d) relative humidity 
from 2000–2022 in medium FRP zone. 

 
Figure 16 The pattern of (a) mean FRP, (b) temperature, (c) rainfall, and (d) relative humidity 
from 2000–2022 in high FRP zone.  
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similar to the land cover classes (MCD12Q1) 
from MODIS in the study by Adaktylou (2024). 
Conversely, the very low-intensity zones are 
found from central to southern Thailand and 
central Myanmar, where these areas are 
primarily croplands. 
 The recurrence maps reveal the diversity 
of recurrence intervals across Thailand and 
neighboring countries. Most regions exhibit 
short periods of recurrence (0.05, 0.1, 0.5, and 1 
year) at FRP of 8, 20, 40, and 120 MW, 
respectively. However, almost all areas within 
Thailand, along with northern, central, and 
southern Myanmar, as well as southern 
Cambodia, experience longer recurrence 
periods specifically at 120 MW. 
 The probability of hotspot occurrence in 
the next 50 years, almost all areas will have 
100% probability for every FRP value, except 
central, some parts of northern and southern 
Myanmar, southern, some parts of northern, 
central, and northeastern Thailand, and southern 
Cambodia, which have <70% probability at 120 
MW. Hotspots in these areas have low FRP 
values, as these regions are primarily croplands. 
Agricultural burning practices are typically 
controlled, with fires confined to specific areas. 
 There has also been a study on the 
relationship between hotspots and geography-
meteorology factors. It was found that most fire 
occurrences are concentrated at 0-499 m, with 
the majority classified as low-intensity fires, 
possibly because they are often caused by 
human activities, such as agricultural burning. 
These occurrences decrease as elevation 
increases, aligning with the findings of Nami et 
al. (2008), which indicated that the likelihood of 
fires diminishes with higher elevations. 
However, in higher elevation tend to be more 
severe due to the abundance of natural resources 
and the availability of highly flammable dry 
fuels, such as dried leaves and plant debris. 
These factors contribute to the intensity of the 

fires, making them capable of spreading rapidly 
and expanding over larger areas. 

Hotspots are more frequent in areas with 
gentle slopes (0–3% and 3–12%), with low-
intensity fires being the most common. 
However, as the slope increases (>20%), the 
proportion of medium- and high-intensity fires 
rises, suggesting that steeper slopes exhibit 
greater intensity due to key factors like 
accumulated fuel loads or wind effects, which 
contribute to fire spread, which is consistent 
with previous research of Baltaci and Yildirim 
(2020) which stated that slope is a factor that 
positively impacts the spread and intensity of 
fires. 

Hotspot distribution appears relatively 
uniform across all directions, except for flat 
aspects, where the majority of fires are of low- 
and medium-intensity. However, a noticeable 
increase in high-intensity fires is observed in the 
south, southwest, and west aspects. This aligns 
with the findings of Pacaldo et al. (2025), who 
reported that south-facing slopes tend to 
experience more severe fires due to factors such 
as higher solar energy absorption, elevated 
temperatures, strong winds, low humidity, and 
low fuel moisture (Adab et al., 2013). 

In terms of meteorological factors 
(temperature, precipitation, and relative humidity), 
they reveal the recurring periods of hotspot 
occurrences in the same timeframe each year. 
Although their influence varies among zones, it 
is generally weak. Rising temperatures have no 
significant effect on FRP. Most hotspots tend to 
occur during periods without rainfall, and the 
intensity of fires ranges from low to high. 
However, a negative correlation is observed 
between relative humidity and FRP, suggesting 
that higher humidity levels tend to reduce fire 
intensity, likely due to increased moisture in 
vegetation and reduced flammability. 
Nonetheless, the weak correlation indicates that 
while humidity plays a role, it is not the sole 
determining factor of fire intensity. Instead, 
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other factors, such as fuel availability or human 
activities, may have a more significant impact 
(Ganteaume et al., 2013; Rogers et al., 2020; 
Sjöström & Granström, 2023).  

We found that hotspots typically occur 
during the dry season, which corresponds with 
the period of agricultural burning. They are most 
frequently detected around midday. Areas with 
high hotspot density are commonly found in 
agricultural lands or forested areas that have 
been encroached upon. These findings support 
the conclusion that human activities are the 
primary drivers of hotspot occurrences. 
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