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Abstract

Accurately identification of faults in seismic images is critical in reservoir characterization, structural
geological interpretation, and well placement. While traditional methods rely on horizontal discontinuities in seismic
reflectivity, they are often plagued by artifacts and require manual correction as post-processing. SegFormer, based on
a backbone transformer, has successfully tackled this challenge by utilizing the open-source dataset from the Thebe
gas field located in Australia's Carnarvon Basin. The experiment involved comparing three primary backbone models,
namely, MiT-B1, MiT-B3, and MiT-B5, along with hyperparameter tuning. The tests demonstrate that the lowest cross-
entropy loss is MiT-B5 with 98.8% accuracy. In addition, it is important to highlight that SegFormer demonstrates
excellent accuracy in predicting faults during 3D post-stack seismic migration and generates minimal artifacts. This
suggests that the technology has the potential to supplant traditional seismic attributes in fault interpretation processes,

indicating its promising role in fault analysis.
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1. Introduction

Faults are geological features that form
in the upper crust of the Earth because of brittle
deformation  (Fossen, 2010). Accurately
mapping faults is crucial for predicting the
distribution and size of natural resources and
mitigating geohazard risks (Richards et al.,
2015; Fossen, 2010). Traditionally, fault
mapping was conducted through the
examination of natural outcrops or mines (Lisle,
2004). However, due to remote or poorly
exposed study areas, remote-sensing techniques,
and borehole data, such as well data, have
become increasingly utilized in fault mapping
(Csillag and Stogicza, 1987). The most
significant advancement in recent times for fault
mapping is the widespread availability of 3D
seismic reflection surveys. These surveys
provide detailed images of extensive rock
volumes and the intricate 3D fault networks
within them. A seismic reflection survey
generates a subsurface image by detecting
density contrasts between different rock layers,
resulting in continuous reflections at their
interfaces. Faults, although not directly imaged,

can be identified by the disruptions they cause
in these continuous reflections. Manual
digitization of faults, represented as lines where
multiple reflections are offset, forms a
significant part of subsurface interpretation
based on seismic data (Biondi et al., 2007;
Robein, 2010). Traditionally, the interpretation
of faults from seismic reflection data has been a
manual process relying on the expertise and
experience of interpreters (Gibson et al., 2012;
Alcalde et al., 2019). While fault mapping from
high-quality seismic data is relatively objective,
it is a time-consuming and repetitive task, often
taking weeks to months to complete the
interpretation of a single dataset (Gibson et al.,
2012). Despite the use of good quality seismic
datasets, there are often signal disturbances in
the data, especially in areas with numerous
faults. These disturbances can lead to poorly
resolved discontinuities in seismic reflectors,
resulting in imprecise fault locations or
misinterpretations (Badley et al., 1991; lacopini
et al., 2016; Alcalde et al., 2019). Consequently,
the interpretation results may have a higher level
of uncertainty, which is frequently overlooked
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and challenging to quantify. Meanwhile, the
rapid growth in seismic data acquisition has
created challenges associated with big data for
many oil and gas companies and research groups
(Mohammadpoor and Torabi, 2018). Associated
increasing demands for automatic or semi-
automatic seismic fault interpretation reflect
geologists’ and geophysicists’ requirements
within the oil and gas industry. In some early
work, researchers were mainly focused on
creating and utilizing several derivative volumes
and attributes to supplement the standard fault
interpretation workflow, including dip and
azimuth, coherence (Marfurt et al., 1999),
curvature (Roberts, 2001), variance (Silva et al.,
2005) and semblance (Marfurt et al., 1998).
Recent technological advancements have led to
semi-automatic computer solutions that utilize
basic feature analysis techniques such as Ant
Tracking (Silva et al., 2005) and Hough
transform (Wang and AlRegib, 2014). These
techniques have shown great potential in
addressing various challenges in the field.
However, because most of those methods are
sensitive to noise (Marfurt et al., 1998; Silva et
al., 2005; Cohen et al., 2006; Yan et al., 2019),
seismic datasets often need to be preprocessed
to a certain signal-to-noise level (Yuan et al.,
2019), which in view of the unique geological
structure and data quality of different datasets, it
is wusually necessary to manually adjust
parameters by trial and error.

Previous methods in fault interpretation
often relied on manual selection of a few
features, which introduced subjectivity into the
process. To overcome this limitation, machine
learning techniques involving multiple features,
such as support vector machine (SVM) and
multilayer perceptron (MLP), have been
explored to achieve more accurate interpretation
results (Kortstrom et al., 2016; Di et al., 2017,
Guitton et al., 2017; Di et al., 2019). Although
these methods have had a positive impact on
minimizing the need for manual intervention,
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there is still ample opportunity for progress in
terms of accuracy, efficiency, and ease of use.
Advancements must be made to effectively
achieve these objectives.

In the past decade, deep convolutional
neural networks (DCNNs) have emerged as a
promising approach that surpasses human
performance in various computer vision tasks,
as demonstrated by the well-known ImageNet
large-scale  visual recognition challenge
(Russakovsky et al., 2014). In recent years, there
have been advancements in applying deep
learning algorithms to fault interpretation, but
these efforts are still in the early stages of
development. Most of the current research
utilizes synthetic data, disregarding the complex
geological structures and noise present in real
field data (Wu et al., 2019). As a result, manual
interpretation of seismic data remains the
dominant workflow in the industry and
academia.

Recently, some convolutional-neural-
network (CNN) methods have been introduced
to detect faults by pixel-wise fault classification
(fault or nonfault) with multiple seismic
attributes (Huang et al., 2017; D1, 2018; Guitton,
2018; Guo et al, 2018; Zhao and
Mukhopadhyay, 2018). Wu et al. (2018) use a
CNN-based pixelwise classification method to
not only predict the fault probability but also
estimate the fault orientations at the same time.
These methods need to choose a local window
or cube to make fault prediction at every image
pixel, which 1is computationally highly
expensive, especially in 3D fault detection.

The research aims to accomplish two
primary objectives. Firstly, this study proposes a
solution to address the class imbalance issue in
fault binary images by leveraging the
SegFormer model. The SegFormer model is
specifically selected due to its exceptional
capability to capture global contextual
information  and  comprehend spatial
relationships, rendering it highly suitable for
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fault prediction tasks in geology, oil exploration,
and earthquake risk assessment. Through the
integration of attention blocks and the
combination of transformer-based attention
mechanisms ~ with  CNN-based  feature
extraction, the SegFormer model demonstrates
its proficiency in comprehensively analyzing
seismic signals and accurately identifying
intricate fault patterns. Additionally, the model
utilizes lightweight multilayer perceptron
(MLP) decoders to simplify the architecture and
aggregate information from multiple layers,
thereby facilitating the generation of robust
representations. The amalgamation of local and
global attention mechanisms empowers
SegFormer to efficiently perform segmentation
tasks using Transformers, as highlighted by Xie
et al. (2021) and Vaswani et al. (2017).

Secondly, this research aims to enhance
the fault recognition performance by employing
a balanced cross-entropy loss function in the
SegFormer model. This loss function effectively
tackles the class imbalance issue that arises from
the considerable number of zero-labeled pixels
compared to the limited number of one-labeled
pixels representing faults. By considering both
positive and negative samples during the
optimization process, the model is trained to
accurately capture fault patterns. The widely
used cross-entropy loss, commonly employed in
deep learning for classification tasks, quantifies
the dissimilarity between predicted probabilities
and true labels. Smith et al. (2017) provide a
comprehensive analysis of the cross-entropy
loss, emphasizing its crucial role in training
neural networks and exploring strategies for its
effective application. Moreover, Li and
Vasconcelos (2018) investigate the relationships
between the cross-entropy loss and alternative
loss functions, offering insights into their trade-
offs and suitability in different contexts.

2. Methodology

In this study, our primary focus is on the
pre-processing pipeline and the
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training/validation process employed for
training the SegFormer model with a specific
emphasis on fault prediction. The pre-
processing pipeline consists of a series of
carefully designed steps that aim at efficiently
preparing the data and maximizing the model's
performance.

1.Data preparation
Data Loading:

In deep learning models, datasets are
typically divided into training, validation, and
test sets. The training set is utilized to train the
model's parameters, while the validation set
assists in fine-tuning these parameters. For this
study, we primarily utilized a publicly available
dataset from the Thebe Gas Field in the
Exmouth Plateau of the Carnarvon Basin in
Australia. To investigate the structural
characteristics and evolution of the basin, expert
interpreters manually labeled faults from
seismic data. The dataset is presented in a
numpy array format, representing a seismic
volume pixelated at the same resolution as the
seismic data. The seismic data images depths of
approximately 4.5 seconds Two-Way Travel
Time (TWT), equivalent to a depth of around 3.7
kilometers. The dataset is presented in a numpy
array format, representing a seismic volume
pixelated at the same resolution as the seismic
data. The seismic data images depths of
approximately 4.5 seconds Two-Way Travel
Time (TWT), equivalent to a depth of around 4
kilometers. The dataset covers an area of 45
kilometers by 39 kilometers, providing a total
areal extent of 1200 square kilometers. The
crosslines are spaced at 25 meters, and the
inlines are spaced at 12.5 meters.

The dimensions of the numpy array are
1803[crossline] x 1537[sample] x 3174 [inline].
The sample dimension represents the vertical
axis, typically representing different time slices
or depth levels. In this case, there are 1537
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samples, indicating that the seismic data is
divided into 1537 layers or slices along the
vertical direction. Each sample represents a
specific depth or time slice, allowing for
detailed analysis of the subsurface structure. To
maintain consistency, the first four out of 1807
crosslines were excluded from the dataset due to
a lack of corresponding annotations. Figure 1
illustrates the processed dataset.

Data Splitting:

Random splitting is a common approach
to divide data into training and test sets in
machine learning. However, for geological
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splitting is not appropriate as it could lead to
"peeking" into the test set, resulting in an overly
optimistic model. Instead, we divided the
dataset into blocks in a ratio of approximately
5:1:4, corresponding to the training, validation,
and test sets, respectively. Specifically, the
decision to choose crosslines as part of the
training set was driven by their ability to
represent the geological structures in a
perpendicular manner to the main fault's strike.
The training set comprised the first 900 pairs of
crosslines, consisting of seismic data traces and
their corresponding fault masks. Additionally,
the subsequent 200 pairs were allocated to the

faults, adjacent slices often exhibit highly validation set, and the remaining 703 pairs
similar  distributions. Therefore, random constituted the test set.
Data Loading Data Splitting
»
77 — Training smEC/ 900 Crosslines
= Iy n
NumPy
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—— Test set 703 Crosslines
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»0 : Background
797707,
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Figure 1 The procedure for data preparation
Data Augmentation: Data augmentation techniques were

employed to double the diversity of the training
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dataset. and improve the model's generalization.
In this study, we adjusted the contrast and added
color to the seismic data using seismic data
augmentation techniques.

Slicing Window Algorithm:

The geological interpretation of the
Thebes dataset was conducted by expert
interpreters from the Fault Analysis Group at
University College Dublin (An et al., 2021).
Their primary focus was on identifying faults
with vertical displacements exceeding 20 m
within a specific area of interest and depth
range, which encompassed approximately 2 km
to 4 km. The shallower and deeper parts of the
seismic volume were generally disregarded. To
ensure clarity and optimize Graphics Processing
Unit (GPU) memory usage while generating a
sufficiently large training set, we utilized a
slicing window algorithm. This algorithm
divided the seismic volume into patches
measuring 512 x 512 pixels. Patch pairs lacking
fault label or having an insufficient proportion
of labeled pixels were filtered out. Reflective
padding was applied to ensure a whole number
of patch pairs. Consequently, the training set
consisted of 6,827 patch pairs, while the
validation set contained 2,115 patch pairs.

Normalization:

Normalization was performed to
standardize the pixel values of the input images.
In this study, we employed min-max
normalization. Fault interpretations were
represented by binary images for each crossline.
Resolution of these images was identical to the
original seismic data. Fault pixels were marked
as 1, indicating the presence of a fault, while
non-fault pixels were marked as 0. The
processed dataset is depicted in Figure 1.

Mask Encoding:

Segmentation masks are typically
represented as pixel-wise labels, where each
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pixel is assigned a specific class value indicating
the object it belongs to. In our case, fault masks
were encoded into a suitable format for training
by assigning a value of 1 to faults and 0 to the
background class.

2. Training and validation of fault recognition
models.

The SegFormer model is a deep learning
architecture specifically designed for semantic
segmentation tasks (Xie et al., 2021). It
combines the advantages of transformers,
commonly used in natural language processing,
with the effectiveness of convolutional neural
networks (CNNs) in computer vision. The
model architecture employs a hybrid structure
that consists of a convolutional backbone
followed by a transformer encoder-decoder, as
shown in Figure 2. As depicted in Figure 3,
SegFormer architecture consists of two main
modules: a hierarchical Transformer encoder
and a lightweight All-MLP decoder.
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Figure 2 The Transformer — model architecture
(Vaswani et al., 2017)
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The transformer encoder-decoder is
responsible for capturing global dependencies
and generating high-resolution segmentation
maps. The encoder consists of multiple
transformer blocks that sequentially process the
feature maps from the convolutional backbone.
Each transformer block contains self-attention
mechanisms that attend to different parts of the
input feature maps, enabling the model to
capture long-range dependencies and contextual
information. The decoder uses a combination of
upsampling and convolutional layers to generate
the final segmentation maps.

The training process:

The SegFormer model involves several key
steps to optimize its performance in fault
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segmentation. The dataset is prepared by
dividing it into batches, each containing images
and their corresponding ground truth
segmentation  masks. An  optimization
algorithm, in this study use AdamW, is utilized
to update the model's parameters, with carefully
tuned hyperparameters like learning rate and
weight decay. The choice of loss function, such
as cross-entropy or mean squared error, plays a
significant role in training the model by
measuring the discrepancy between predicted
and ground truth segmentation maps. Model
initialization techniques, including random
initialization, pre-training on ImageNet, or
transfer learning, are employed to enhance
performance.
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Figure 3 The proposed SegFormer framework consists of two main modules: A hierarchical Transformer encoder to
extract coarse and fine features; and a lightweight AII-MLP decoder to directly fuse these multi-level features and predict
the semantic segmentation mask. “FFN” indicates feed-forward network (Xie et al., 2021).
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The validation process:

This process is critical for assessing the
model's performance and selecting the best
version. A separate dataset, distinct from the

training set, is used for evaluation, and metrics
like accuracy, precision, recall, and Intersection
over Union (IoU) are computed. These metrics
provide quantitative measures of the model's
ability to classify pixels accurately and delineate
fault boundaries. Based on the validation results,
the best-performing model is chosen according
to specific task requirements.

The iterative training:

The pre-processed data is fed into the
SegFormer model, which learns to map input
images to pixel-wise segmentation masks. The
model's internal parameters are adjusted through
backpropagation and optimization algorithms to
minimize the difference between predicted and
ground truth masks. The training process
continues for a specified number of epochs,
monitoring metrics like loss and accuracy. The
iterative training continues until the model
achieves a satisfactory level of fault
segmentation performance, as determined by
validation metrics and analysis of the model's
output.

3. Results and Discussion

We conducted a comprehensive
evaluation of SegFormer's performance by
examining the effects of different learning rates
and backbone models, which are MiT-B1, MiT-
B3, and MiT-B5, on the model's performance.
Table 1 shows that the Mix Transformer encoder
backbone introduced in SegFormer. We utilized
various evaluation metrics, such as accuracy and
loss value to assess the model's performance.
Table 2 presents parameters of each model with
vary learning rate in MiT-B1

Figure 4(a) to 4(d) depict the loss values
obtained from the trained and validation data
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using the MiT-Bl, MiT-B3, and MiT-B5
backbone models. Lower loss values indicate
higher efficiency of the learning model. Among
the three backbone models, MiT-B5
demonstrates the lowest loss value, followed by
MiT-B3 and MiT-B1, respectively.

Compared with the MiT-B1 results, it is
observed that higher learning rates correspond
to higher loss values. Additionally, in the case of
the MiT-B1 model, the loss values for both the
validation and trained data remain parallel
across the number of epochs. This indicates that
increasing the number of epochs does not
significantly impact the loss value for this
specific dataset.

In contrast, when training the MiT-B3
and MiT-B5 models for 100 epochs, the stability
of their loss values cannot be definitively
concluded. However, a higher number of epochs
might show a parallel alignment of loss values
for both the validation and trained data.

These findings shed light on the
relationship between backbone models, learning
rates, and loss values. Further analysis and
experimentation are recommended to fully
understand the stability and convergence
behavior of the MiT-B3 and MiT-B5 models
with varying numbers of epochs.

Figure 5 is crossline: 1111 which provides a
visual representation of the fault recognition
results obtained from the experiment. The
accuracy of the MiT-bl, MiT-b3, and MiT-b5
models, each trained with a learning rate of
0.001, are 97.6%, 98.5%, and 98.8%
respectively.

Figure 6 presents difference between
fault interpretation by human and models.
Human sometimes leverage personal experience
in the interpretation as seeing the white line
draw from top of the seismic to the lower part,
although the models can capture the
discontinuous only where the orange arrows
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pointed. It is important to acknowledge that has valid evidence then human can utilize its
uncertainties exist in seismic data, leading to  result with experience to identify additional
faults that may go undetected due to limited possible fault prediction in the seismic.
resolution. The model help capture the fault that

Table 1 The Mix Transformer encoder backbone introduced in SegFormer.

Model variant Depths Hidden sizes Decoder hidden ImageNet-1k
size Top 1
MiT-b0 [2,2,2,2] [32, 64, 160, 256] 256 3.7 70.5
MiT-bl [2,2,2,2] [64, 128, 320, 512] 256 14 78.7
MiT-b2 [3,4,6,3] [64, 128, 320, 512] 768 254 81.6
MiT-b3 [3,4,18,3] | [64, 128,320, 512] 768 45.2 83.1
MiT-b4 [3,8,27,3] | [64, 128,320, 512] 768 62.6 83.6
MiT-b5 [3,6,40,3] | [64, 128,320, 512] 768 82 83.8
Table 2 The parameters are set in this experiment in SegFormer.
Backbone Models epoch Optimization I:Iyperparameter :
learning rate | batch size
MiT-Bl 100 AdamW (PyTorch) 0.001 8
MiT-Bl 100 AdamW (PyTorch) 0.01 8
MiT-B3 100 AdamW (PyTorch) 0.001 8
MiT-B5 100 AdamW (PyTorch) 0.001 8
. 1r0.001_Wd0.0001_G_0.01_b1: Loss ( a N 1r0.01_Wd0.0001_G_0.01_b1 : Loss (b
1r0.001_Wd0.0001_G_0.01_b3 : Loss ( ¢ 1r0.001_Wd0.0001_G_0.01_b5 : Loss ( d
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Figure 4 The loss values obtained from each experiment were compared as follows: (a) Experiment with MiT-B1
backbone model and learning rate of 0.001. (b) Experiment with MiT-B1 backbone model and learning rate of 0.01. (c)
Experiment with MiT-B3 backbone model and learning rate of 0.001. (d) Experiment with MiT-B5 backbone model and
learning rate of 0.001
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Figure 5 The comparison of fault recognition results is presented in the figure. The subfigures are described as follows:
(a) Seismic data and fault interpretation by expert interpreters from the Fault Analysis Group at University College
Dublin (An et al., 2021). (b) Seismic data overlayed with fault predictions using MiT-B1. (c) Seismic data overlayed
with fault predictions using MiT-B3. (d) Seismic data overlayed with fault predictions using MiT-BS5. Orange arrows

show the varying outputs of different models and humans’ interpretation. Blue arrows indicate the model's interpretation,
but humans may not interpret them
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Figure 6 The comparison of fault recognition results is
presented in the figure. The subfigures are described as
follows: (a) Seismic data and fault interpretation by expert
interpreters from the Fault Analysis Group at University
College Dublin (An et al., 2021). (b) Seismic data
overlayed with fault predictions using MiT-Bl. (c)
Seismic data overlayed with fault predictions using MiT-
B3. (d) Seismic data overlayed with fault predictions
using MiT-B5. Orange arrows indicate faults base on
discontinuous sequence in seismic section but red arrows
point the area that does not show discontinuous sequence
in seismic section.

we summarize the impact of the experiments in
two main areas:

1.Performance across Backbone Models

In this study, we evaluated SegFormer's
performance using different backbone models,
specifically MiT-B1, MiT-B3, and MiT-BS.
Through extensive evaluation, we observed that
SegFormer consistently demonstrates
exceptional fault recognition capabilities across
all tested backbone models. Notably, the MiT-
B5 model achieved the highest accuracy and
showed the lowest loss value. However, it is
important to note that the MiT-B5 model
required the longest training time among the
three models.

2.Impact of Learning Rate

We investigated the influence of
adjusting the learning rate on the convergence
speed and stability of the training process. The
results of our study indicate that using a lower
learning rate leads to lower loss values,
suggesting better convergence. However, it is
crucial to note that further experimentation is
required to identify the optimal learning rate that
balances loss value and convergence speed.
Exploring a range of learning rates in future
experiments will allow for a more
comprehensive understanding of this trade-off.

By providing these insights, our study
contributes to the understanding of SegFormer's
performance in fault recognition tasks. These
findings can guide researchers and practitioners
in selecting appropriate backbone models and
learning rates, ultimately enhancing the
accuracy and efficiency of fault recognition
systems based on SegFormer.

4. Conclusion

In conclusion, this paper highlights the
superiority of the MiT-B5 backbone model in
the context of fault recognition tasks when
integrated within the SegFormer architecture.
Through a comprehensive evaluation, we have
demonstrated the effectiveness of SegFormer in
accurately identifying faults in diverse
scenarios. The experimental results
unequivocally establish MiT-B5 as the best
backbone model for fault recognition within the
SegFormer framework.

Furthermore, we have investigated the
impact of varying learning rates on the
performance of fault recognition algorithms
integrated within SegFormer. Our findings
emphasize the critical role of the learning rate in
achieving high accuracy in fault recognition. We
have shown that fine-tuning the learning rate is
crucial for optimizing the performance of
SegFormer for fault recognition tasks.
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The data regarding fault recognition
systems indicates that such systems can be
applied to various geographical areas as long as
the training dataset includes different types of
faults, such as normal faults, reverse faults, or
thrust faults. The study's insights hold practical
implications for both practitioners and
researchers who are utilizing fault recognition
systems based on SegFormer.

The insights gained from this study have
practical implications for practitioners and
researchers working with fault recognition
systems based on SegFormer. By considering
the use of the MiT-B5 backbone model and
appropriately fine-tuning the learning rate, they
can significantly improve the performance of
their fault recognition systems. These findings
provide valuable guidance for configuring and
optimizing SegFormer.

Looking ahead, there are promising
research directions to explore regarding the
application of SegFormer in fault recognition
tasks, particularly in the domain of seismic fault
prediction. To further advance the field and
expand the practical applications of SegFormer,
it is important to investigate its performance on
larger and more diverse datasets. By
incorporating a wide range of fault recognition
scenarios and leveraging these datasets, we can
gain a more comprehensive understanding of
SegFormer's capabilities and its ability to
generalize to various fault recognition scenarios.

This avenue of research holds significant
potential for advancing fault recognition
techniques and extending the practical utility of
SegFormer in the seismic domain. The
development of a robust fault prediction model
based on SegFormer, informed by a broader
evaluation on diverse datasets, would contribute
significantly to the field and have implications
for various real-world applications.

In summary, this study has made a
substantial  contribution to the existing
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knowledge by showcasing the exceptional fault
recognition  capabilities of  SegFormer,
particularly when coupled with the MiT-B5
backbone model. We have highlighted the
crucial role of the learning rate in enhancing
fault recognition accuracy within the SegFormer
framework. By providing valuable insights into
optimizing learning rates and backbone models,
this research aims to advance the field of fault
recognition and  further enhance the
performance of SegFormer-based systems in
fault recognition applications.
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