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Abstract 
 

 Accurately identification of faults in seismic images is critical in reservoir characterization, structural 
geological interpretation, and well placement. While traditional methods rely on horizontal discontinuities in seismic 
reflectivity, they are often plagued by artifacts and require manual correction as post-processing. SegFormer, based on 
a backbone transformer, has successfully tackled this challenge by utilizing the open-source dataset from the Thebe 
gas field located in Australia's Carnarvon Basin. The experiment involved comparing three primary backbone models, 
namely, MiT-B1, MiT-B3, and MiT-B5, along with hyperparameter tuning. The tests demonstrate that the lowest cross-
entropy loss is MiT-B5 with 98.8% accuracy. In addition, it is important to highlight that SegFormer demonstrates 
excellent accuracy in predicting faults during 3D post-stack seismic migration and generates minimal artifacts. This 
suggests that the technology has the potential to supplant traditional seismic attributes in fault interpretation processes, 
indicating its promising role in fault analysis.  
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1. Introduction 

Faults are geological features that form 
in the upper crust of the Earth because of brittle 
deformation (Fossen, 2010). Accurately 
mapping faults is crucial for predicting the 
distribution and size of natural resources and 
mitigating geohazard risks (Richards et al., 
2015; Fossen, 2010). Traditionally, fault 
mapping was conducted through the 
examination of natural outcrops or mines (Lisle, 
2004). However, due to remote or poorly 
exposed study areas, remote-sensing techniques, 
and borehole data, such as well data, have 
become increasingly utilized in fault mapping 
(Csillag and Stogicza, 1987). The most 
significant advancement in recent times for fault 
mapping is the widespread availability of 3D 
seismic reflection surveys. These surveys 
provide detailed images of extensive rock 
volumes and the intricate 3D fault networks 
within them. A seismic reflection survey 
generates a subsurface image by detecting 
density contrasts between different rock layers, 
resulting in continuous reflections at their 
interfaces. Faults, although not directly imaged, 

can be identified by the disruptions they cause 
in these continuous reflections. Manual 
digitization of faults, represented as lines where 
multiple reflections are offset, forms a 
significant part of subsurface interpretation 
based on seismic data (Biondi et al., 2007; 
Robein, 2010). Traditionally, the interpretation 
of faults from seismic reflection data has been a 
manual process relying on the expertise and 
experience of interpreters (Gibson et al., 2012; 
Alcalde et al., 2019). While fault mapping from 
high-quality seismic data is relatively objective, 
it is a time-consuming and repetitive task, often 
taking weeks to months to complete the 
interpretation of a single dataset (Gibson et al., 
2012). Despite the use of good quality seismic 
datasets, there are often signal disturbances in 
the data, especially in areas with numerous 
faults. These disturbances can lead to poorly 
resolved discontinuities in seismic reflectors, 
resulting in imprecise fault locations or 
misinterpretations (Badley et al., 1991; Iacopini 
et al., 2016; Alcalde et al., 2019). Consequently, 
the interpretation results may have a higher level 
of uncertainty, which is frequently overlooked 
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and challenging to quantify. Meanwhile, the 
rapid growth in seismic data acquisition has 
created challenges associated with big data for 
many oil and gas companies and research groups 
(Mohammadpoor and Torabi, 2018). Associated 
increasing demands for automatic or semi-
automatic seismic fault interpretation reflect 
geologists’ and geophysicists’ requirements 
within the oil and gas industry. In some early 
work, researchers were mainly focused on 
creating and utilizing several derivative volumes 
and attributes to supplement the standard fault 
interpretation workflow, including dip and 
azimuth, coherence (Marfurt et al., 1999), 
curvature (Roberts, 2001), variance (Silva et al., 
2005) and semblance (Marfurt et al., 1998). 
Recent technological advancements have led to 
semi-automatic computer solutions that utilize 
basic feature analysis techniques such as Ant 
Tracking (Silva et al., 2005) and Hough 
transform (Wang and AlRegib, 2014). These 
techniques have shown great potential in 
addressing various challenges in the field. 
However, because most of those methods are 
sensitive to noise (Marfurt et al., 1998; Silva et 
al., 2005; Cohen et al., 2006; Yan et al., 2019), 
seismic datasets often need to be preprocessed 
to a certain signal-to-noise level (Yuan et al., 
2019), which in view of the unique geological 
structure and data quality of different datasets, it 
is usually necessary to manually adjust 
parameters by trial and error. 

Previous methods in fault interpretation 
often relied on manual selection of a few 
features, which introduced subjectivity into the 
process. To overcome this limitation, machine 
learning techniques involving multiple features, 
such as support vector machine (SVM) and 
multilayer perceptron (MLP), have been 
explored to achieve more accurate interpretation 
results (Kortström et al., 2016; Di et al., 2017; 
Guitton et al., 2017; Di et al., 2019). Although 
these methods have had a positive impact on 
minimizing the need for manual intervention, 

there is still ample opportunity for progress in 
terms of accuracy, efficiency, and ease of use. 
Advancements must be made to effectively 
achieve these objectives.       

In the past decade, deep convolutional 
neural networks (DCNNs) have emerged as a 
promising approach that surpasses human 
performance in various computer vision tasks, 
as demonstrated by the well-known ImageNet 
large-scale visual recognition challenge 
(Russakovsky et al., 2014). In recent years, there 
have been advancements in applying deep 
learning algorithms to fault interpretation, but 
these efforts are still in the early stages of 
development. Most of the current research 
utilizes synthetic data, disregarding the complex 
geological structures and noise present in real 
field data (Wu et al., 2019). As a result, manual 
interpretation of seismic data remains the 
dominant workflow in the industry and 
academia. 

Recently, some convolutional-neural-
network (CNN) methods have been introduced 
to detect faults by pixel-wise fault classification 
(fault or nonfault) with multiple seismic 
attributes (Huang et al., 2017; Di, 2018; Guitton, 
2018; Guo et al., 2018; Zhao and 
Mukhopadhyay, 2018). Wu et al. (2018) use a 
CNN-based pixelwise classification method to 
not only predict the fault probability but also 
estimate the fault orientations at the same time. 
These methods need to choose a local window 
or cube to make fault prediction at every image 
pixel, which is computationally highly 
expensive, especially in 3D fault detection. 

 The research aims to accomplish two 
primary objectives. Firstly, this study proposes a 
solution to address the class imbalance issue in 
fault binary images by leveraging the 
SegFormer model. The SegFormer model is 
specifically selected due to its exceptional 
capability to capture global contextual 
information and comprehend spatial 
relationships, rendering it highly suitable for 
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fault prediction tasks in geology, oil exploration, 
and earthquake risk assessment. Through the 
integration of attention blocks and the 
combination of transformer-based attention 
mechanisms with CNN-based feature 
extraction, the SegFormer model demonstrates 
its proficiency in comprehensively analyzing 
seismic signals and accurately identifying 
intricate fault patterns. Additionally, the model 
utilizes lightweight multilayer perceptron 
(MLP) decoders to simplify the architecture and 
aggregate information from multiple layers, 
thereby facilitating the generation of robust 
representations. The amalgamation of local and 
global attention mechanisms empowers 
SegFormer to efficiently perform segmentation 
tasks using Transformers, as highlighted by Xie 
et al. (2021) and Vaswani et al. (2017). 

Secondly, this research aims to enhance 
the fault recognition performance by employing 
a balanced cross-entropy loss function in the 
SegFormer model. This loss function effectively 
tackles the class imbalance issue that arises from 
the considerable number of zero-labeled pixels 
compared to the limited number of one-labeled 
pixels representing faults. By considering both 
positive and negative samples during the 
optimization process, the model is trained to 
accurately capture fault patterns. The widely 
used cross-entropy loss, commonly employed in 
deep learning for classification tasks, quantifies 
the dissimilarity between predicted probabilities 
and true labels. Smith et al. (2017) provide a 
comprehensive analysis of the cross-entropy 
loss, emphasizing its crucial role in training 
neural networks and exploring strategies for its 
effective application. Moreover, Li and 
Vasconcelos (2018) investigate the relationships 
between the cross-entropy loss and alternative 
loss functions, offering insights into their trade-
offs and suitability in different contexts. 

2. Methodology 

 In this study, our primary focus is on the 
pre-processing pipeline and the 

training/validation process employed for 
training the SegFormer model with a specific 
emphasis on fault prediction. The pre-
processing pipeline consists of a series of 
carefully designed steps that aim at efficiently 
preparing the data and maximizing the model's 
performance. 

1.Data preparation 

Data Loading: 

In deep learning models, datasets are 
typically divided into training, validation, and 
test sets. The training set is utilized to train the 
model's parameters, while the validation set 
assists in fine-tuning these parameters. For this 
study, we primarily utilized a publicly available 
dataset from the Thebe Gas Field in the 
Exmouth Plateau of the Carnarvon Basin in 
Australia. To investigate the structural 
characteristics and evolution of the basin, expert 
interpreters manually labeled faults from 
seismic data. The dataset is presented in a 
numpy array format, representing a seismic 
volume pixelated at the same resolution as the 
seismic data. The seismic data images depths of 
approximately 4.5 seconds Two-Way Travel 
Time (TWT), equivalent to a depth of around 3.7 
kilometers. The dataset is presented in a numpy 
array format, representing a seismic volume 
pixelated at the same resolution as the seismic 
data. The seismic data images depths of 
approximately 4.5 seconds Two-Way Travel 
Time (TWT), equivalent to a depth of around 4 
kilometers. The dataset covers an area of 45 
kilometers by 39 kilometers, providing a total 
areal extent of 1200 square kilometers. The 
crosslines are spaced at 25 meters, and the 
inlines are spaced at 12.5 meters.   
     
 The dimensions of the numpy array are 
1803[crossline] × 1537[sample] × 3174 [inline]. 
The sample dimension represents the vertical 
axis, typically representing different time slices 
or depth levels. In this case, there are 1537 
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samples, indicating that the seismic data is 
divided into 1537 layers or slices along the 
vertical direction. Each sample represents a 
specific depth or time slice, allowing for 
detailed analysis of the subsurface structure. To 
maintain consistency, the first four out of 1807 
crosslines were excluded from the dataset due to 
a lack of corresponding annotations. Figure 1 
illustrates the processed dataset.  

Data Splitting: 

 Random splitting is a common approach 
to divide data into training and test sets in 
machine learning. However, for geological 
faults, adjacent slices often exhibit highly 
similar distributions. Therefore, random 

splitting is not appropriate as it could lead to 
"peeking" into the test set, resulting in an overly 
optimistic model. Instead, we divided the 
dataset into blocks in a ratio of approximately 
5:1:4, corresponding to the training, validation, 
and test sets, respectively. Specifically, the 
decision to choose crosslines as part of the 
training set was driven by their ability to 
represent the geological structures in a 
perpendicular manner to the main fault's strike. 
The training set comprised the first 900 pairs of 
crosslines, consisting of seismic data traces and 
their corresponding fault masks. Additionally, 
the subsequent 200 pairs were allocated to the 
validation set, and the remaining 703 pairs 
constituted the test set. 

  

 
Figure 1 The procedure for data preparation 

Data Augmentation: Data augmentation techniques were 
employed to double the diversity of the training 
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dataset. and improve the model's generalization. 
In this study, we adjusted the contrast and added 
color to the seismic data using seismic data 
augmentation techniques. 

Slicing Window Algorithm: 

The geological interpretation of the 
Thebes dataset was conducted by expert 
interpreters from the Fault Analysis Group at 
University College Dublin (An et al., 2021). 
Their primary focus was on identifying faults 
with vertical displacements exceeding 20 m 
within a specific area of interest and depth 
range, which encompassed approximately 2 km 
to 4 km. The shallower and deeper parts of the 
seismic volume were generally disregarded. To 
ensure clarity and optimize Graphics Processing 
Unit (GPU) memory usage while generating a 
sufficiently large training set, we utilized a 
slicing window algorithm. This algorithm 
divided the seismic volume into patches 
measuring 512 × 512 pixels. Patch pairs lacking  
fault label or having an insufficient proportion 
of labeled pixels were filtered out. Reflective 
padding was applied to ensure a whole number 
of patch pairs. Consequently, the training set 
consisted of 6,827 patch pairs, while the 
validation set contained 2,115 patch pairs. 

Normalization: 

Normalization was performed to 
standardize the pixel values of the input images. 
In this study, we employed min-max 
normalization. Fault interpretations were 
represented by binary images for each crossline. 
Resolution of these images was identical to the 
original seismic data. Fault pixels were marked 
as 1, indicating the presence of a fault, while 
non-fault pixels were marked as 0. The 
processed dataset is depicted in Figure 1. 

Mask Encoding: 

Segmentation masks are typically 
represented as pixel-wise labels, where each 

pixel is assigned a specific class value indicating 
the object it belongs to. In our case, fault masks 
were encoded into a suitable format for training 
by assigning a value of 1 to faults and 0 to the 
background class.  

2. Training and validation of fault recognition 
models. 

The SegFormer model is a deep learning 
architecture specifically designed for semantic 
segmentation tasks (Xie et al., 2021). It 
combines the advantages of transformers, 
commonly used in natural language processing, 
with the effectiveness of convolutional neural 
networks (CNNs) in computer vision. The 
model architecture employs a hybrid structure 
that consists of a convolutional backbone 
followed by a transformer encoder-decoder, as 
shown in Figure 2.  As depicted in Figure 3, 
SegFormer architecture consists of two main 
modules: a hierarchical Transformer encoder 
and a lightweight All-MLP decoder.  

Figure 2 The Transformer – model architecture 
(Vaswani et al., 2017)



     Bulletin of Earth Sciences of Thailand  
 
 

Meenak and Thongsang, 2023 Vol. 15, No. 2, 33-35 

The transformer encoder-decoder is 
responsible for capturing global dependencies 
and generating high-resolution segmentation 
maps. The encoder consists of multiple 
transformer blocks that sequentially process the 
feature maps from the convolutional backbone. 
Each transformer block contains self-attention 
mechanisms that attend to different parts of the 
input feature maps, enabling the model to 
capture long-range dependencies and contextual 
information. The decoder uses a combination of 
upsampling and convolutional layers to generate 
the final segmentation maps. 

The training process: 

The SegFormer model involves several key 
steps to optimize its performance in fault 

segmentation. The dataset is prepared by 
dividing it into batches, each containing images 
and their corresponding ground truth 
segmentation masks. An optimization 
algorithm, in this study use AdamW, is utilized 
to update the model's parameters, with carefully 
tuned hyperparameters like learning rate and 
weight decay. The choice of loss function, such 
as cross-entropy or mean squared error, plays a 
significant role in training the model by 
measuring the discrepancy between predicted 
and ground truth segmentation maps. Model 
initialization techniques, including random 
initialization, pre-training on ImageNet, or 
transfer learning, are employed to enhance 
performance. 

 

 

 

Figure 3 The proposed SegFormer framework consists of two main modules: A hierarchical Transformer encoder to 
extract coarse and fine features; and a lightweight All-MLP decoder to directly fuse these multi-level features and predict 
the semantic segmentation mask. “FFN” indicates feed-forward network (Xie et al., 2021).
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The validation process:  

This process is critical for assessing the 
model's performance and selecting the best 
version. A separate dataset, distinct from the  

training set, is used for evaluation, and metrics 
like accuracy, precision, recall, and Intersection 
over Union (IoU) are computed. These metrics 
provide quantitative measures of the model's 
ability to classify pixels accurately and delineate 
fault boundaries. Based on the validation results, 
the best-performing model is chosen according 
to specific task requirements. 

The iterative training: 

The pre-processed data is fed into the 
SegFormer model, which learns to map input 
images to pixel-wise segmentation masks. The 
model's internal parameters are adjusted through 
backpropagation and optimization algorithms to 
minimize the difference between predicted and 
ground truth masks. The training process 
continues for a specified number of epochs, 
monitoring metrics like loss and accuracy. The 
iterative training continues until the model 
achieves a satisfactory level of fault 
segmentation performance, as determined by 
validation metrics and analysis of the model's 
output. 

3. Results and Discussion 

We conducted a comprehensive 
evaluation of SegFormer's performance by 
examining the effects of different learning rates 
and backbone models, which are MiT-B1, MiT-
B3, and MiT-B5, on the model's performance. 
Table 1 shows that the Mix Transformer encoder 
backbone introduced in SegFormer. We utilized 
various evaluation metrics, such as accuracy and 
loss value to assess the model's performance. 
Table 2 presents parameters of each model with 
vary learning rate in MiT-B1  

Figure 4(a) to 4(d) depict the loss values 
obtained from the trained and validation data 

using the MiT-B1, MiT-B3, and MiT-B5 
backbone models. Lower loss values indicate 
higher efficiency of the learning model. Among 
the three backbone models, MiT-B5 
demonstrates the lowest loss value, followed by 
MiT-B3 and MiT-B1, respectively. 

Compared with the MiT-B1 results, it is 
observed that higher learning rates correspond 
to higher loss values. Additionally, in the case of 
the MiT-B1 model, the loss values for both the 
validation and trained data remain parallel 
across the number of epochs. This indicates that 
increasing the number of epochs does not 
significantly impact the loss value for this 
specific dataset. 

In contrast, when training the MiT-B3 
and MiT-B5 models for 100 epochs, the stability 
of their loss values cannot be definitively 
concluded. However, a higher number of epochs 
might show a parallel alignment of loss values 
for both the validation and trained data.  

These findings shed light on the 
relationship between backbone models, learning 
rates, and loss values. Further analysis and 
experimentation are recommended to fully 
understand the stability and convergence 
behavior of the MiT-B3 and MiT-B5 models 
with varying numbers of epochs. 

Figure 5 is crossline: 1111 which provides a 
visual representation of the fault recognition 
results obtained from the experiment. The 
accuracy of the MiT-b1, MiT-b3, and MiT-b5 
models, each trained with a learning rate of 
0.001, are 97.6%, 98.5%, and 98.8% 
respectively.  

Figure 6 presents difference between 
fault interpretation by human and models. 
Human sometimes leverage personal experience 
in the interpretation as seeing the white line 
draw from top of the seismic to the lower part, 
although the models can capture the 
discontinuous only where the orange arrows 



     Bulletin of Earth Sciences of Thailand  
 
 

Meenak and Thongsang, 2023 Vol. 15, No. 2, 33-35 

pointed. It is important to acknowledge that 
uncertainties exist in seismic data, leading to 
faults that may go undetected due to limited 
resolution. The model help capture the fault that 

has valid evidence then human can utilize its 
result with experience to identify additional 
possible fault prediction in the seismic.  

 

Table 1 The Mix Transformer encoder backbone introduced in SegFormer. 

Model variant Depths Hidden sizes Decoder hidden 
size 

ImageNet-1k 
Top 1 

MiT-b0 [2, 2, 2, 2] [32, 64, 160, 256] 256 3.7 70.5 
MiT-b1 [2, 2, 2, 2] [64, 128, 320, 512] 256 14 78.7 
MiT-b2 [3, 4, 6, 3] [64, 128, 320, 512] 768 25.4 81.6 
MiT-b3 [3, 4, 18, 3] [64, 128, 320, 512] 768 45.2 83.1 
MiT-b4 [3, 8, 27, 3] [64, 128, 320, 512] 768 62.6 83.6 
MiT-b5 [3, 6, 40, 3] [64, 128, 320, 512] 768 82 83.8 

 

Table 2 The parameters are set in this experiment in SegFormer. 

Backbone Models epoch Optimization Hyperparameter 
learning rate batch size 

MiT-B1 100 AdamW (PyTorch) 0.001 8 
MiT-B1 100 AdamW (PyTorch) 0.01 8 
MiT-B3 100 AdamW (PyTorch) 0.001 8 
MiT-B5 100 AdamW (PyTorch) 0.001 8 

 

 

 

Figure 4 The loss values obtained from each experiment were compared as follows: (a) Experiment with MiT-B1 
backbone model and learning rate of 0.001. (b) Experiment with MiT-B1 backbone model and learning rate of 0.01. (c) 
Experiment with MiT-B3 backbone model and learning rate of 0.001. (d) Experiment with MiT-B5 backbone model and 
learning rate of 0.001 

 

(a
) 

(b
) 

(c
) 

(d
) 
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Figure 5 The comparison of fault recognition results is presented in the figure. The subfigures are described as follows: 
(a) Seismic data and fault interpretation by expert interpreters from the Fault Analysis Group at University College 
Dublin (An et al., 2021). (b) Seismic data overlayed with fault predictions using MiT-B1. (c) Seismic data overlayed 
with fault predictions using MiT-B3. (d) Seismic data overlayed with fault predictions using MiT-B5. Orange arrows 
show the varying outputs of different models and humans’ interpretation. Blue arrows indicate the model's interpretation, 
but humans may not interpret them
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Figure 6 The comparison of fault recognition results is 
presented in the figure. The subfigures are described as 
follows: (a) Seismic data and fault interpretation by expert 
interpreters from the Fault Analysis Group at University 
College Dublin (An et al., 2021). (b) Seismic data 
overlayed with fault predictions using MiT-B1. (c) 
Seismic data overlayed with fault predictions using MiT-
B3. (d) Seismic data overlayed with fault predictions 
using MiT-B5. Orange arrows indicate faults base on 
discontinuous sequence in seismic section but red arrows 
point the area that does not show discontinuous sequence 
in seismic section. 

we summarize the impact of the experiments in 
two main areas: 

1.Performance across Backbone Models 

In this study, we evaluated SegFormer's 
performance using different backbone models, 
specifically MiT-B1, MiT-B3, and MiT-B5. 
Through extensive evaluation, we observed that 
SegFormer consistently demonstrates 
exceptional fault recognition capabilities across 
all tested backbone models. Notably, the MiT-
B5 model achieved the highest accuracy and 
showed the lowest loss value. However, it is 
important to note that the MiT-B5 model 
required the longest training time among the 
three models. 

2.Impact of Learning Rate 

We investigated the influence of 
adjusting the learning rate on the convergence 
speed and stability of the training process. The 
results of our study indicate that using a lower 
learning rate leads to lower loss values, 
suggesting better convergence. However, it is 
crucial to note that further experimentation is 
required to identify the optimal learning rate that 
balances loss value and convergence speed. 
Exploring a range of learning rates in future 
experiments will allow for a more 
comprehensive understanding of this trade-off. 

By providing these insights, our study 
contributes to the understanding of SegFormer's 
performance in fault recognition tasks. These 
findings can guide researchers and practitioners 
in selecting appropriate backbone models and 
learning rates, ultimately enhancing the 
accuracy and efficiency of fault recognition 
systems based on SegFormer. 

4. Conclusion 

In conclusion, this paper highlights the 
superiority of the MiT-B5 backbone model in 
the context of fault recognition tasks when 
integrated within the SegFormer architecture. 
Through a comprehensive evaluation, we have 
demonstrated the effectiveness of SegFormer in 
accurately identifying faults in diverse 
scenarios. The experimental results 
unequivocally establish MiT-B5 as the best 
backbone model for fault recognition within the 
SegFormer framework.  

Furthermore, we have investigated the 
impact of varying learning rates on the 
performance of fault recognition algorithms 
integrated within SegFormer. Our findings 
emphasize the critical role of the learning rate in 
achieving high accuracy in fault recognition. We 
have shown that fine-tuning the learning rate is 
crucial for optimizing the performance of 
SegFormer for fault recognition tasks. 
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The data regarding fault recognition 
systems indicates that such systems can be 
applied to various geographical areas as long as 
the training dataset includes different types of 
faults, such as normal faults, reverse faults, or 
thrust faults. The study's insights hold practical 
implications for both practitioners and 
researchers who are utilizing fault recognition 
systems based on SegFormer. 

The insights gained from this study have 
practical implications for practitioners and 
researchers working with fault recognition 
systems based on SegFormer. By considering 
the use of the MiT-B5 backbone model and 
appropriately fine-tuning the learning rate, they 
can significantly improve the performance of 
their fault recognition systems. These findings 
provide valuable guidance for configuring and 
optimizing SegFormer. 

Looking ahead, there are promising 
research directions to explore regarding the 
application of SegFormer in fault recognition 
tasks, particularly in the domain of seismic fault 
prediction. To further advance the field and 
expand the practical applications of SegFormer, 
it is important to investigate its performance on 
larger and more diverse datasets. By 
incorporating a wide range of fault recognition 
scenarios and leveraging these datasets, we can 
gain a more comprehensive understanding of 
SegFormer's capabilities and its ability to 
generalize to various fault recognition scenarios. 

This avenue of research holds significant 
potential for advancing fault recognition 
techniques and extending the practical utility of 
SegFormer in the seismic domain. The 
development of a robust fault prediction model 
based on SegFormer, informed by a broader 
evaluation on diverse datasets, would contribute 
significantly to the field and have implications 
for various real-world applications. 

In summary, this study has made a 
substantial contribution to the existing 

knowledge by showcasing the exceptional fault 
recognition capabilities of SegFormer, 
particularly when coupled with the MiT-B5 
backbone model. We have highlighted the 
crucial role of the learning rate in enhancing 
fault recognition accuracy within the SegFormer 
framework. By providing valuable insights into 
optimizing learning rates and backbone models, 
this research aims to advance the field of fault 
recognition and further enhance the 
performance of SegFormer-based systems in 
fault recognition applications. 
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