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Abstract 
 
This study investigates the characteristics and mineral chemistry of biotite from porphyritic 
muscovite-biotite granite in the Prachuap Khiri Khan area, southern Thailand. The biotites in this 
granite exhibit distinctive features, including the presence of siderophyllite and Fe-biotite 
endmembers. The obtained mineral chemistry of biotite indicates that the granite's formation 
occurred in a collisional setting. The prevailing oxidizing conditions, as indicated by the nickel-
nickel oxide to fayalite-magnetite-quartz buffer range, played a crucial role in shaping the chemical 
composition of the biotites. Furthermore, the analysis suggests the involvement of hydrous 
conditions during the granite's formation. Based on biotite geothermobarometry, the crystallization 
temperature of the biotite ranges from 631 to 719 °C, and crystallization pressure ranges from 2.73 
to 4.05 kbar. These P-T conditions provide valuable insights into the thermal history and 
crystallization conditions of the granite. Additionally, the corresponding pressures are equivalent to 
an emplaced depth from 10.2 to 15.1 km of the granites in this area. 
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1. Introduction 

Mineral chemistry of biotite is a widely 
used approach in igneous petrology for 
understanding the evolution of magmas and 
their associated rocks (Jacobs and Parry, 1976, 
1979; Tang et al., 2019; Kazemi et al., 2022). 
Biotite, an common mineral in granitic rocks, is 
generally considered to be one of the last 
minerals to crystallize during the cooling of a 
magma (Bowen, 1922). As a result, it often 
contains important information regarding the 
chemical composition and conditions of 
formation of the rock. 

The chemical compositions of biotite 
can provide information about the source of the 
magma, temperature and pressure conditions 
during crystallization, and the evolution of the 
magma. Biotite chemistry is suggested to 
indicate original composition of the granitic 
magma (Abdel-Rahman, 1994).  Moreover, the 
oxygen fugacity ( fO2)  of the magmatic system 
can be carried out by the Fe2+-Fe3+-Mg ratio of 
biotite (Wones and Eugster, 1965). 

In the Prachuap Khiri Khan area, 
southern Thailand (Fig.1), there are extensive 
exposures of granitic rocks of porphyritic 
muscovite-biotite granite  presenting the biotite 
as one of the typical assemblages in the rock 
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(Putthapiban, 1984; Cobbing et al., 1992; 
Charusiri et al., 1993). 

Therefore, the objective of this study is 
to investigate mineral chemistry of biotite from 
granitic rocks in Prachuap Khiri Khan, southern 

Thailand to understand the magmatic processes, 
crystallization conditions, petrogenesis of 
granitic rocks in the Prachuap Khiri Khan, 
southern Thailand, and magmatism of granitic 
rocks in Thailand and Southeast Asia.   

 
Figure 1 (a) Distribution of granitic rocks and tectonic terranes in Thailand and Southeast Asia (modified 
after Cobbing et al., 1992; Hutchison, 2014) and (b) Simplified geologic map of the study area (modified 
after Sudasna et al., 1976). 
 
2. General geology 

In the southern part of Thailand, 
specifically in the Prachuap Khiri Khan area (as 
illustrated in Fig. 1b), there are three primary 
types of rock units, namely Paleozoic 
sedimentary rocks, Mesozoic sedimentary 
rocks, and granitic rocks (Sudasna et al., 1976).  

The Paleozoic sedimentary rocks are 
composed of two groups, namely the Kaeng 
Krachan and Ratburi Groups. The Kaeng 
Krachan Group predominantly consists of 

sandstone, pebbly mudstone, and shale, with 
NE-SW and NW-SE bedding trends (Piyasin, 
1975; Chaodumrong et al., 2004; Chaodumrong 
et al., 2007). The Ratburi Group is dominated by 
limestone, characterized by massive and bedded 
limestone with fossils, interbedded with 
feldspathic and calcareous sandstone (Brown, 
1951; Javanaphet and Dai, 1969). In addition, 
the Ratburi Group includes arkosic sandstone, 
and shale, characterized by massive and thick-
bedded, fine to medium-grained sandstone 
interbedded with thin-bedded limestone in the 
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lower part together with NE-SW and NW-SE 
bedding trending (Bunopas, 1992; 
Chaodumrong et al., 2004; Chaodumrong et al., 
2007). The Mesozoic sedimentary rocks are 
composed of reddish-brown shale, sandstone, 
and conglomerate, collectively known as the 
Thung Yai Group (Raksaskulwong, 2002). 
These non-marine deposits originate from the 
lower Middle Jurassic to Upper Cretaceous 
(Buffetaut et al., 1994; Teerarungsigul, 1999).  

The granitic rocks in the area are 
Cretaceous granites, such as fine to coarse-
grained biotite-muscovite granite, biotite 
granite, and tourmaline granite (Pongsapich et 
al., 1983; Charusiri et al., 1989; Charusiri et al., 
1993; Watkinson et al., 2011; Sanematsu et al., 
2015). These rocks were formed during 
collision between the West Burma terrane and 
the Sibumasu terrane around 100–60 million 
years ago (Charusiri et al., 1993; Searle et al., 
2012; Ridd and Watkinson, 2013; Li et al., 
2018; 2019). Figure 1a shows these granites 
from Eastern Belt Granite (EBG) in Indochina 
terrane, Central Belt Granite (CBG) and 
Western Belt Granite (WBG) in the Sibumasu 
Terrane. 

3. Methodology 

In this study, biotite was sampled from 
porphyritic muscovite-biotite granite in 
Prachuap Khiri Khan area, southern Thailand 
(Fig.1). The samples were prepared as polished 
thin sections and examined under a NIKON 
polarizing microscope at the Department of 
Geology, Faculty of Science, Chulalongkorn 
University, Thailand to identify their 
petrographic characteristics. The biotite 
chemistry was analyzed using an Electron Probe 

Microanalyzer (EPMA, model JEOL JXA-
8100) at the Department of Geology, Faculty of 
Sciences, Chulalongkorn University. The 
EPMA was operated at a 15.0 kV accelerating 
voltage and a 15 nA sample current. Calibration 
standards in the form of pure oxide and mineral 
standards were used. The analytical results were 
obtained using the automatic ZAF correction 
method provided by JEOL. The Fe2+ and Fe3+ 
ratios and logfO2 of biotite were calculated by 
the method described by Li et al., (2020b). The 
analytical results of representative biotite 
chemistry are presented in Table 1. 

4. Results 

The porphyritic muscovite-biotite granite 
referred to the WBG of Thailand is prevalent 
throughout the western part of the study area. 
These rocks are commonly observed as large 
natural outcrops and stream-cut outcrops in the 
study area (Fig. 2). 

These granites can be found in four 
different exposures in the study area (Fig. 1b). 
All granites in all exposures show similar 
petrological characteristics. The porphyritic 
muscovite-biotite granite in the study area is 
represented by porphyritic texture with 
prominent feldspar phenocrysts. These granites 
are composed of quartz (15 – 40%), K-feldspar 
(30 – 60%), plagioclase (5 – 25%), biotite (5 – 
20%), muscovite (1 – 5%), and minor accessory 
minerals (1 – 2%), such as zircon, apatite, 
monazite, tourmaline, and ilmenite (Fig. 3). The 
porphyritic muscovite-biotite granite also 
exhibits various igneous textures, including 
myrmekitic texture of quartz and K-feldspar, 
poikilitic, and perthitic textures, as shown in 
Figure 3. 



 
     Bulletin of Earth Sciences of Thailand  

 
 

Sirimongkonpun et al., 2023 Vol. 15, No. 1, 1-14 

 
Figure 2 Representative outcrop exposures of porphyritic muscovite-biotite granite samples (a) PK01, (b) 
PK12, (c) PK31, and (d) PK43. 
 

The mineral chemistry data obtained 
from EPMA analysis of biotite in the porphyritic 
muscovite-biotite granites are presented in 
Table 1. Table 1 provides information on the 
weight percentages of various components in 
biotite, including SiO2 (32.02 – 33.95%), Al2O3 
(16.34 – 18.90%), TiO2 (2.54 – 4.53%), FeOt 
(24.75 – 25.99%), MnO (0.26 – 0.40%), Na2O 
(0.05 – 0.17%), K2O (9.27 – 9.73%), and MgO 
(5.33 – 6.80%). 

The relationship between the mole 
fraction of magnesium (XMg) and the content of 
major oxides in biotite is depicted in Figure 4. 

The XMg value of biotite exhibits a positive 
correlation with the Al2O3 content while 
showing a negative correlation with the TiO2 
content. Moreover, the XMg value displays a 
scattered distribution pattern when compared to 
the SiO2, MnO, Na2O, and K2O contents. These 
findings, along with the XMg value, indicate that 
these granites are similar to the characteristics of 
biotite in the granitic rocks in the WBG (Li et 
al., 2020a). 
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Figure 3 Photomicrograph of porphyritic muscovite-biotite granite samples (a) PK01, (b) PK12, (c) PK31, 
and (d) PK43. Abbreviations: Pl = plagioclase; Kfs = K-feldspar; Qtz = quartz; Bt = biotite; Ms = muscovite; 
Ap = apatite; Mnz = monazite; Ilm = ilmenite. 
 
5. Discussion 

5.1 Biotite classification  

According to the classification scheme 
established by the International Mineralogical 
Association (IMA) for micas (Rieder et al., 
1998), the biotite can be classified into four end-
members: annite, phlogopite, siderophyllite, and 
eastonite. In the Mg/(Mg + Fe) vs. Al diagram 
(Fig. 5a) (Rieder et al., 1998), the biotite closely 
resembles the siderophyllite end-member, 
suggesting a considerable iron (Fe) enrichment. 
According to  nomenclature for trioctahedral 
mica classification of Foster (1960), all the 
biotite samples fall within the Fe-biotite field 
(Fig. 5b). The TiO2 content is commonly 
utilized as a discriminating parameter to 
characterize magmatic biotite, primarily due to 
its tendency to crystallize under higher 
temperatures compared to other types of biotite 

(Patiño Douce and Harris, 1998). This 
discernment further supports the hypothesis that 
the examined biotite samples were formed by a 
magmatic origin substantiated by their 
occurrence as phenocrysts intergrown with 
other magmatic minerals. Plotting the biotite 
samples on the TiO2-FeOt+MnO-MgO ternary 
diagram (Nachit et al., 2005), the biotites are 
fitted in primary magmatic biotite field within 
the expected range for biotite in common 
granitic rocks (Fig. 5c). These observations in 
all mentioned diagrams are consistent with the 
findings of previous research on the biotite 
composition in granite formations of WBG in 
southern Myanmar (Li et al., 2020a). 
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Table 1 Representative EPMA analyses of biotite in granitic rocks from Prachuap Khiri Khan, southern 
Thailand. Abbreviations: T. = tetrahedral, O. = octahedral, and A. = interlayer. 

Sample No. PK01  PK12  PK31  PK43 
Rock 
name 

Porphyritic muscovite-
biotite granite 

 Porphyritic muscovite-
biotite granite 

 Porphyritic muscovite-
biotite granite 

 Porphyritic muscovite-
biotite granite 

Latitude 11.247156  11.083913  11.473292  11.796429 

Longtitude 99.337862  99.339637  99.497184  99.700065 
Analysis 
No. bt4-2 bt6-2 bt7-2  bt1-1 bt7-1 bt8-2  bt2-1 bt4-1 bt9-1  bt2-2 bt7-2 bt9-2 

SiO2 33.08 33.15 32.02  33.28 33.23 33.06  33.57 33.95 33.35  33.51 33.17 33.19 

Al2O3 17.39 17.32 17.53  18.90 18.41 18.54  18.70 17.99 18.06  17.41 16.49 16.34 

TiO2 4.53 4.38 3.85  2.60 2.87 2.69  2.54 2.62 2.68  3.71 4.37 4.36 

FeOt 25.01 25.36 24.83  25.40 25.24 25.08  25.77 24.75 24.37  25.32 25.99 25.10 

MnO 0.37 0.40 0.40  0.39 0.40 0.36  0.33 0.36 0.34  0.28 0.34 0.26 

MgO 5.54 5.85 5.67  6.80 6.65 6.56  5.88 6.29 6.17  5.79 5.54 5.33 

CaO 0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

Na2O 0.05 0.12 0.17  0.11 0.07 0.09  0.05 0.08 0.04  0.13 0.08 0.07 

K2O 9.48 9.73 9.55  9.57 9.63 9.65  9.39 9.48 9.30  9.50 9.52 9.24 

Total 95.45 96.30 94.02  97.04 96.50 96.02  96.24 95.52 94.30  95.65 95.51 93.88 

O (11)                

T. Si 2.66 2.66 2.62  2.61 2.62 2.62  2.64 2.68 2.66  2.68 2.68 2.70 

T. Al 1.25 1.25 1.29  1.30 1.28 1.29  1.25 1.20 1.23  1.21 1.19 1.16 

T. Fe3+ 0.08 0.09 0.09  0.09 0.10 0.10  0.11 0.12 0.11  0.11 0.13 0.14 

Total T. 4.00 4.00 4.00  4.00 4.00 4.00  4.00 4.00 4.00  4.00 4.00 4.00 

M. Al 0.40 0.38 0.41  0.44 0.43 0.45  0.49 0.47 0.47  0.43 0.38 0.41 

M. Mg 0.73 0.75 0.77  0.81 0.81 0.81  0.72 0.78 0.79  0.74 0.73 0.73 

M. Fe2+ 1.51 1.51 1.50  1.45 1.46 1.47  1.49 1.43 1.44  1.49 1.52 1.49 

M. Fe3+ 0.09 0.10 0.11  0.12 0.11 0.10  0.10 0.08 0.08  0.09 0.10 0.08 

M. Ti 0.26 0.25 0.23  0.15 0.16 0.15  0.15 0.15 0.16  0.21 0.25 0.26 

M. Mn 0.03 0.03 0.03  0.03 0.03 0.02  0.02 0.02 0.02  0.02 0.02 0.02 

Total M. 3.01 3.02 3.04  3.00 3.00 3.00  2.97 2.95 2.96  2.98 3.01 2.98 

A. K 0.96 0.98 0.98  0.94 0.96 0.96  0.94 0.95 0.94  0.95 0.97 0.95 

A. Na 0.01 0.02 0.03  0.02 0.01 0.01  0.01 0.01 0.01  0.02 0.01 0.01 

A. Ca 0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 0.00 

Total A. 0.97 0.99 1.00  0.96 0.97 0.97  0.94 0.96 0.95  0.97 0.98 0.96 

XMg 0.33 0.33 0.34  0.36 0.36 0.36  0.33 0.35 0.35  0.33 0.33 0.32 

Ti (pfu) 0.52 0.50 0.45  0.29 0.33 0.31  0.29 0.31 0.32  0.43 0.50 0.51 

Alt (pfu) 3.30 3.27 3.38  3.49 3.42 3.46  3.47 3.35 3.40  3.28 3.14 3.06 

T (°C) 719 714 701  634 653 644  631 643 649  693 715 716 

P (kbar) 3.47 3.38 3.72  4.05 3.85 3.96  3.99 3.62 3.78  3.40 2.98 2.73 

h (km) 13.0 12.6 13.9  15.1 14.4 14.8  14.9 13.5 14.1  12.7 11.1 10.2 
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Figure 4 Binary plots for the biotite of porphyritic muscovite-biotite granite in Prachuap Khiri Khan area. 
(a) SiO2 vs. XMg; (b) TiO2 vs. XMg; (c) Al2O3 vs. XMg; (d) MnO vs. XMg; (e) Na2O vs. XMg; and (f) K2O vs. 
XMg. 
 

5.2 Crystallization conditions 

5.2.1 Temperature, pressure, and 
magma source 

As the titanium (Ti) content in biotite is 
influenced by temperature, the Ti-content in 
biotite has been used for Ti-in biotite 

geothermometer to estimate the crystallization 
temperature (Stussi and Cuney, 1996; Patiño 
Douce and Harris, 1998). In this study, the biotite 
geothermometer suggested by Henry et al. (2005) 
was employed to estimate the crystallization 
temperature of the granitic rocks. The calculation 
utilized the equation: T = {[ln (Ti) + 
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2.3594+1.7283(XMg)3]/4.6482 x10-9}0.333, where 
T represents the temperature in degrees Celsius, 
Ti denotes the number of atoms per formula unit 
(apfu) based on 22 oxygen atoms, and XMg refers 
to the ratio of magnesium (Mg) to the sum of 
magnesium and iron (Fe) (Table 1). The 
calculated temperature results range from 631 to 
719 °C. 

Given that the biotite is present in the 
porphyritic muscovite-biotite granite, 
crystallization pressure and depth can provide 
insights into the intrusion condition of the 
granitic rocks. In terms of the crystallization 
pressure of biotite, the biotite geobarometer of 
Uchida et al. (2007) was employed by using the 
calibration equation P (±0.33 kbar) = 3.03 x Alt – 
6.53, where Alt represents the total aluminum 
(Al) content in biotite assuming 22 oxygen 
atoms. The calculated crystallization pressures of 
the biotites range from 2.73 to 4.05 kbar, 
corresponding to emplacement depths of 
approximately 10.2–15.1 km. These results are 
consistent with the demonstrated crystallization 
pressure-temperature (P-T) conditions observed 
in granitic rocks by Chi and Reed (2008). The 
estimated intrusion depths are indicative of the 
crustal level, aligning with the previously 
reported granitic seat proposed by Tewari et al. 
(2018). 

The significant role of biotite chemistry in 
elucidating the petrogenesis of rocks has been 
provided by several researchers e.g., Wones and 
Eugster (1965), and Zhao et al. (2015). In the case 
of the biotites from porphyritic muscovite-biotite 
granite, the plots fall within the field of 
peraluminous collision magmatism related to S-
type granite affinity on the MgO-FeOt-Al2O3 
ternary diagrams (Abdel-Rahman, 1994) (Figs. 
6a and 6b). 

 

Figure 5 Plots of mineral chemistry for (a) feldspar 
(after Smith and Brown, 1974), (b) biotite (after 
Morimoto et al., 1988), (c) biotite classification (after 
Foster, 1960), and (d) 10xTiO2-FeOt+MnO-MgO 
ternary plots (after Nachit et al., 2005). 
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Figure 6 (a) Plots of biotite composition in the MgO 
vs. Al2O3 diagram (after Abdel-Rahman, 1994), (b) 
the FeOt-MgO-Al2O3 ternary diagram (after Abdel-
Rahman, 1994), and (c) the MgO and 
FeOt/(FeOt+MgO) diagram (after Zhou, 1986). 

These findings are consistent with the 
compositional characteristics of those granitic 
rocks from southern Myanmar (Li et al., 2020a). 
It is well-established that S-type granites 
commonly form in collision-related geological 
settings (Chappell and White, 1974). Therefore, 
these observations further support the previous 
suggestions that the WGB under investigation 

originated during the collision of the Sibumasu 
and West Burma terranes (Charusiri et al., 1993; 
Searle et al., 2012; Ridd and Watkinson, 2013; Li 
et al., 2018; Li et al., 2019). Furthermore, in the 
plots of MgO vs. FeO/(FeO + MgO) diagram 
(Zhou, 1986) (Fig. 6c), all biotites are clearly 
plotted within the field of crustal source. This 
result indicates that the porphyritic muscovite-
biotite granite originated from a magma with the 
crustal source, which is further supported by the 
calculated intrusion depths discussed in the 
section of crystallization conditions, reflecting a 
close relationship with the crustal level. 

5.2.2 Oxygen fugacity  

The Fe2+, Fe3+, and Mg contents within 
biotite minerals have been utilized to estimate the 
oxygen fugacity (fO2) of associated magmas and 
fluids, as documented by Wones and Eugster 
(1965). The ternary diagram (Fig. 7a) (Wones 
and Eugster, 1965; Buda et al., 2004) was used to 
plot the Fe2+-Fe3+-Mg composition of various 
samples. Notably, all the analyzed samples fell 
within the region bounded by the nickel-nickel 
oxide (NNO) and fayalite-magnetite-quartz 
(FMQ; Fe2SiO4- Fe3O4-SiO2) fields on the 
diagram. This study result implies that these 
samples were formed within an oxidizing 
environment and can be classified as ilmenite-
series granites. Additional evidence supporting 
this assertion arises from the presence of ilmenite 
in the porphyritic muscovite-biotite granite. 
Consequently, it can be inferred that the 
formation of biotites in the granitic rocks of the 
Prachuap Khiri Khan area occurred under 
oxidizing conditions. The mineral chemistry of 
biotite in this study is comparable to the WBG in 
other areas (Li et al., 2020a).  
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Figure 7 (a) Ternary Fe3+-Fe2+-Mg plot for the 
Prachuap Khiri Khan biotite (modified after Wones 
and Eugster, 1965; Buda et al., 2004), and (b) Plot of 
estimated T and P diagram for inferred crystallization 
conditions (after Bucholz et al., 2018). 

Furthermore, the relationship between 
estimated temperature and pressure (Fig. 7b) 
(Bucholz et al., 2018) indicates that the 
experimentally controlled mole fraction of H2O 
in the coexisting vapor phase (𝑋!"#$ ) ranges from 
approximately 1 to 0.5. The results imply that 
these samples were formed within a hydrous 
environment. This range well aligns with the 
characteristics of Archean and Proterozoic 
peraluminous granites (Anderson and Thomas, 
1985; Percival et al., 1985; Campion et al., 1986; 
Anderson and Bender, 1989; Feng and Kerrich, 
1990; Helms and Labotka, 1991; Nabelek et al., 
1992; Mulja et al., 1995; Parkinson and Arculus, 
1999).  

 

 

6. Conclusion 

1. Mineral chemistry of biotite from the 
porphyritic muscovite-biotite granite in Prachuap 
Khiri Khan area can be classified as 
siderophyllite and Fe biotite endmembers.  

2. Mineral chemistry of biotite shows that 
the granitic rocks were emplaced in the collision-
related setting, under oxidizing conditions ( the 
NNO to FMQ buffers) , hydrous condition, at 
temperature ranging 631 to 719 °C, pressure 
ranging 2.73 to 4.05 kbar, and emplacement 
depth from 10.2 to 15.1 km.  
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