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Reservoir characterization is a critical objective in order to understand the subsurface geology
and develop geological models that support sustainable and economic oil and gas exploitation. By
measuring and analyzing electrical responses of the penetrated successions, it is possible to infer
properties about rock matrix and fluid content, among others, that are indirectly related to
petrophysical properties of the rocks. Machine Learning (ML) is a data science tool that fits models
that are then used to identify patterns or similarities among observations in a dataset in order to make
predictions about unobserved data. The main objective of this study is to build a supervised
classification model applying AutoML (Automatic Machine Learning) to identify pay zones using
information derived from well logs. Twenty wells from the Mckee field, Taranaki Basin, New
Zealand were selected containing a basic set of electric logs. For the response variable, reservoir pay
properties were estimated. The classification model was first trained with a proportion of the
observed data for the independent and response variables and then tested against the remained data
set not observed by the model. Model definition and implementation were done with the AutoML
function from H20 open source, and model performance was assessed by means of the confusion
matrix method. The results indicate that XGBoost (Extreme Gradient Boosting) is the best model
for the classification of the Mckee field and that the correct classification of the pay properties is
high in all tested wells. This suggests that AutoML procedures can be a valuable tool for the
exploration and assessment of the geological properties of the area, helping to reduce operating costs
by optimizing the decision-making time during the well evaluation phase as well as the initial
petrophysical evaluation to understand reservoir characteristics.

Keywords: Automatic Machine Learning, Supervised Classification, Petrophysical Evaluation,
Well Logs, Reservoir Characterization.

1. Introduction results in a constant search for alternatives to
evaluate a given formation.

Proper estimation of petrophysical
variables such as porosity, clay volume, and
water saturation requires that various reservoir
properties must be assessed and understood.
Accurate characterization of the reservoir is also
fundamental to other petrophysical analyses and
further exploration and hydrocarbon production
(Abbey et al., 2018).

Reservoir  characterization can  be
conducted by either direct or indirect methods.
Direct methods often comprise the examination
of core samples from the interval of interest by

Reservoir characterization is a crucial step
during the exploration and development projects
in oil and gas companies. One of the main
objectives of characterizing a reservoir is to
understand the subsurface geology to develop
geological models that serve as support for
sustainable and economic oil and gas
exploitation.

Frequently, geoscientists deal with a
limited amount of available information to
develop geological models that allow, with
tolerable uncertainty, to identify areas of
interest. This shortage of information often
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an experienced geologist. However,
methods have some associated difficulties.

On the one hand, the extraction of core
samples for analysis is limited and often
represents a substantial increase in the overall
cost and time spent in the exploration phase
(Vasini etal., 2018). On the other hand, different
qualified specialists examining the core data can
provide contrasting interpretations rendering the
examination partially reliable. Indirect methods
include the use of well logs data to derivate the
geophysical properties of the formation, which
are the basis of the data available for the
characterization.

However, these methods underperform
when compared with the former ones (Thomas
et al., 1995). These differences in performance
augment as the number of logs to evaluate
increases (Vasani et al., 2018). Thus, the use of
computational technologies to assist the
specialist in characterizing the reservoir can
improve the efficiency and overall accuracy of
the process (Yang et al., 2017).

Recently, automated log analyses have
gained increased popularity in the oil and gas
industry (Bangert, 2021; Zhong et al., 2020),
offering a series of advantages over traditional
methods like a faster initial assessment of
reservoir properties (Otchere et al., 2021;
Ippolito et al., 2021; Gu et al., 2021) which, in
turn, translate in reduction of operational costs
and optimization of decision-making time
during the well evaluation phase.

Furthermore, novel developments in
automated analyses have been proved
fundamental to the process as, generally, models
are developed manually, a task that is both time-
consuming and prone to errors (Saporetti et al.,
2020).

Automated Machine Learning (AutoML)
is the process of defining, building, and training
a suite of models through a series of techniques
to automatically select the best model (or set of
models) for the data. The process is based on
training scores, applying the selected model to
perform regression, classification, or clustering
on the newly observed data. In the context of
petroleum geosciences, the main application of
AutoML is lithologies identification. For it,

these
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different families of models have been
employed aiming for more efficient, fast, and
unbiased search for the proper variable settings.
It allows to performing reservoir and rock
characterization as best and consistent as
possible (Min et al., 2020; Zeng et al., 2020).

Results on applying machine learning
methods in reservoir characterization have
resulted in a variety of models that best fit the
data. For instance, Li and Anderson-Sprecher
(2006) compared the performance of
Discriminant Analysis (DA) against Naive
Bayes Classifier (NBC) and concluded that the
latter is more suitable for facies identification.
Similarly, Xie et al.,, (2018) presented a
comparison of a variety of Machine Learning
methods for lithology identification. They
concluded that, of the models tested, Gradient
Tree Boosting (GTB) and Random Forest
Classifier (RFC) presented the lower error
values for the classification, suggesting that
GTB is the more suitable option.

Finally, Imamverdiyev and Sukhostat,
(2019) employed a Convolutional Neural
Network (CNN) approach for the classification
of facies based on conventional well logs data
and compared the result with Support Vector
Machine (SVM) and K-Nearest Neighbor (K-
NN) outcome among others. Their results
indicated that CNN performed better than the
other models proposing it as a good candidate
model for facies identification.

Under this premise, machine learning
algorithms present themselves as a robust
alternative to traditional methods for faster
reservoir characterization. These algorithms
take some initial training data (variables) as
input to classify and predict some response
variable's behavior. Defined series of models are
subsequently refined by a recursive method (the
defined model), and its associated parameters
(Xie etal., 2018).

In the context of a classification approach,
the model is first trained with a proportion of the
observed data for the independent and response
variables. Then, the model is tested against the
unseen remaining data set. Based on the
measurement of performance and cross-
validation, the model parameters are adjusted to
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maximize execution and minimize the number
of incorrect classifications to the desired level of
accuracy and precision. Subsequently, the
model can be applied to new data to obtain an
initial rapid assessment of the reservoir
properties.

This study aims to evaluate the
applicability of machine learning algorithms to
accurately predict the reservoir's pay properties,
improving efficiency and objectivity during the
reservoir characterization phase.

2. Geological Setting

This study was conducted for the oil and
gas onshore Mckee field, located in the Taranaki
Basin (Fig. 1). The Taranaki Basin is a
Cretaceous and Tertiary sedimentary basin
situated along the western side of the North
Island, New Zealand. The roughly north-south
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Figure 1. Mckee field location. Modified after
Ministry  of  Business, Innovation, and
Employment, New Zealand. 2014.
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trending Taranaki fault defines the eastern
margin of the basin.

The basin extends westwards, underlying
the onshore Taranaki Peninsula and continuing
offshore beyond the continental shelf edge
(Ministry of Business, Innovation, and
Employment, New Zealand. 2014). The McKee
Field is developed in a thrust-faulted anticline
within the Tarata Thrust Zone. As a result of
regional compression in the Early to Mid-
Miocene, the main structure of the Mckee field
evolved westward overthrusting on a low-angle
fault (Dong et al., 2018).

The generalized stratigraphy of the
Taranaki Basin (Fig. 2) consists of the Pakawau
Group, Kapuni Group, Moa Group, Ngatoro
Group, Wai-iti Group, and Rotokare Group
from the Late Cretaceous to the Pleistocene
(King & Thrasher, 1996).

In this study, only the stratigraphic groups
comprised by the interval logged in most of the
wells selected for the evaluation, and
subsequent identification of pay zones, were
considered. Therefore, they will be summarized
in the petrophysical evaluation section.
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Figure 2. The generalized stratigraphy of the
Taranaki Basin. Image taken from Dong et al., 2018
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3. Methodology

Pay properties from petrophysical
evaluation and associated well log variables
from the McKee field, Taranaki Basin, New
Zealand were used as the input data for the
AutoML classification model. This model was
then used to predict the pay zones based on the
training dataset. Performance evaluation was
conducted in parallel with the testing set metrics
analysis.

To determine the pay reservoir properties
to be used as the predicted variable, the electric
logs of the 20 selected wells were analyzed by
conventional log analysis.

The petrophysical evaluation  was
conducted for the interval between the
formations Tikorangi and Mangahewa, whose
general lithology characteristics are:

Tikorangi: Sandy to silty, occasionally
glauconitic limestone.

Otaraoa: Transition from limestone to
clastics- siltstone, claystone, sandstone
and trace limestone.

Turi: First appearance of non-calcareous
siltstone and sandstone.

Mckee: Sandstone, siltstone and trace
coal.

Mangahewa: Siltstone, sandstone coal,
trace claystone and sandstone.

First, the shale volume (VSH) was
estimated using the arithmetic mean method
from the linear model, with the gamma ray (GR)
and the combined use of the density-neutron
(DEN-NEU) cross plot. Then, total porosity
(PHIA) was calculated from the DEN-NEU
curves and corrected for the shale volume
content to obtain the effective porosity (PHIE).
Next, the water saturation estimation was
performed using the Indonesia model. Finally,
all petrophysical results were calibrated with
available core data and production information.

Identification of the pay properties, such
as, gross rock volume (GRV), net pore volume
(NPV), and hydrocarbon pore volume (HCPV)
during the petrophysical evaluation, is a
fundamental process for reservoir
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characterization, and to estimate in-place
volumetrics. These properties are calculated
based on specific cut-off values to each study
area and operating company. However, for this
study default cut-offs were used as shown in
Table 1.

Table 1. Cut-off values used for the field under
study.

VSH <50%
PHIE >10%
SwW <50%

Pay properties parameters result in a
significant impact on subsequent decisions in a
field development project. For this reason, this
task requires experience, many hours of work,
and not only well logs but other sources of
information, for instance, core data, lithological
description, and production data, among others.

4. AutoML Implementation

Twenty wells were selected containing a
basic set of electric logs. In addition, a proxy
variable was estimated containing the target
reservoir properties (classes), such as GRV,
NPV, and HCPV. All analyses were conducted
in Phyton 3.8.5 version. Model definition and
implementation were done with the H20
function: AutoML. The model training phase
was made using 80% of the total data matrix,
and the initial parameters default values. Model
performance was assessed by the mean per class
error and other cross-validation metrics.
Classification results were then visualized and
interpreted in the form of a confusion matrix and
log plot.

The data matrix used for this study
comprises five log measurements (features):
gamma-ray (GR), deep resistivity (RESD), bulk
density (DEN), neutron (NEU), compressional
slowness (DT), and the target variable
containing the reservoir properties to classify:
GRV, NPV, HCPV, and non-reservoir (SHL).

Model training was performed by
dropping the well of interest from the dataset to
avoid the model being exposed to the test data.
The model parameters were as follow: The
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model searching time was set to 5 minutes, the
maximum number of models to be evaluated by
AutoML was set to 25, and the number of cross-
validation events used to validate the trained
data set was set to 10. The best model was
selected following the AutoML evaluation
metrics, and in all cases, the stacked ensemble
models were omitted. Three wells were
randomly selected for the testing phase, dropped
from the training set, and used as testing datasets
independently.

5. Results and Discussion

Working with a data matrix based on well
logs implies a high possibility of missing values
due to several operating acquisitions, and data
processing issues. Handling missing values
represents an essential task in the data
preparation process in machine learning because
many algorithms do not support missing values.
For this reason, several ways to manage missing
values have been reported, such as those
described by Elhassan et al., (2021). However,
in the present study, the missing values were
replaced by (-999), an alternative that AutoML
can identify and process. Figure 3 presents the
distribution of missing values per feature within
the study data matrix.

Figure 3. Missing values per feature contained in the
complete data set.

Another critical factor considered in this
study was the data set imbalance. This condition
has been extensively studied, searching for an
optimum technique to handle the class
imbalance classification problems (Japkowicz,
2000; Li et al., 2006; Vasini, 2018). In brief, it
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refers to the fact that the classes are not
represented equally. This condition causes a
direct impact on the selection of the metric to
assess classification results. For example,
Figure 4 shows a reduced number of data for the
GRV class, in contrast with the amount of data
collected for the other classes (NPV, HCPV, and
SHL).

Results were analyzed considering three
performance  factors: the model, the
classification, and the prediction.

According to the data set and the defined
task (multi-class classification), the best
AutoML model was selected using the mean per
class error metric. It represented the error
average of each class and was interpreted as the
ability of the algorithm to correctly identify any
data point as belonging to one class or another.
Under the described parameters, the extreme
gradient boosting (XGBoost) was identified as

the best algorithm model (Fig. 5).
SHL

Figure 4. Data distribution per class in the complete

HCPV
data set.
F XRT GBM DL

Figure 5. Average mean per class error from the
selected wells under the study area.
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The unusual high values observed for the
accuracy suggested that class imbalance
classification gave inexact and misleading
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information about the classifier performance, as
shown by Aida et al., (2013). Therefore,
classification performance was analyzed based
on the confusion matrix outcomes obtained from
the test set, as in Figures 6 and 7 In this
approach, classifier performance can be
assessed based on the element's distribution per
class within the data matrix. In a confusion
matrix, the values showed on the diagonal

represent correct predictions, whereas off-
diagonal represent incorrect predictions.
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Figure 6. Confusion matrix of the test data
representing true versus predicted pay properties for
the well Mckee-10.
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Figure 7. Confusion matrix of the test data
representing true versus predicted pay properties for
the well Mckee-2A
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The classification performance was
satisfactory, considering that the error rate was
under 20% in all test sets (Fig. 8). Furthermore,
it is relevant that the most important class, the
HCPV, related directly to the possible presence

of hydrocarbons was classified with
considerable high precision in all cases.
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Figure 8. Graphic shown the classification error per
well.

Prediction results are illustrated in Figures
9 and 10 The log plot in depth shows the true vs.
predicted pay properties allowing the
identification of incorrect predictions intervals
and the possible causes for the misclassified
observations.

The Mckee-10, for example, presents an
outstanding relationship between the true pay
properties compared with the predicted one,
with an error of 5%. In contrast, the well Mckee
2A exhibits a prediction error of 20%. To
understand the possible causes for the
significant difference between the wells, it was
noticed that for the same depth interval (1800 to
1900 m.), the behavior of the neutron log does
not follow the typical pattern. In other words, it
presents values slightly higher than what was
learned by the algorithm.

This behavior underlines the importance
of understanding, consider, and manage the
automatic machine learning limitations in
predicted pay zones. It will mitigate potential
errors when using a limited source of
information, allowing a better interpretation of
what the model can predict (Malik, 2020).

Cuddy (2021) stated that machine learning
cannot generate information by itself. They
only do what it is told to do.
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Figure 9. Top, Mckee-10 log plot in depth Figure 10. Top, Mckee-2A log plot in depth
showing true vs. prediction pay properties. showing true vs. prediction pay properties.
Bottom, Mckee-10 prediction error between true Bottom, Mckee-2A prediction error between true
vs. prediction. vs. prediction.
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Making decisions from machine learning
models implies a complete understanding of
how the training data contributes to the final
model. In AutoML, the model characteristics
and description provide a table with the
percentage of importance for the features (or
explanatory  variables), allowing  the
identification of the feature with the higher
impact in the training of the model.

According to the nature of the classified
properties, the distribution of the features’
importance in Figure 11 was as expected,
considering the physical principle of the logging
tools and the primary uses of the properties they
measure.

Otchere et al. (2021) reported that the
density and the resistivity features were the most
important in their study. This observation is in
accordance with our results, where both features
represent around the 50% of the classification
power. This result could be interpreted in terms
of the possible presence of pore volume, and its
corresponding saturating fluid.

RESD

DEN

NEU
GR

DT I

0% 5% 10% 15% 20% 25% 30%
Figure 11. Input variables average percentage of
importance for the classification of the pay

properties.

The model showed a reduction in its
classification power when one or more
explanatory variables were dropped. However,
acceptable error values were obtained. This
observation suggests that for small datasets, the
number of features to consider is more flexible
than for the larger datasets. However, it is
important to note the impact in the performance
results according to the variable importance
distribution for the reservoir properties
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classification. For instance, the density and
neutron features were dropped from the well
Tuhua-6, as shown in Figure 12. The high error
obtained could be due to the fact that these two
features are two of the three more important in
the ranking distribution.

Wwell: Tuhua-6

10¢° 06 04020020 25
RESD NEU DEN

True

Figure 12. Top, Tuhua-6 log plot in depth showing
true vs. prediction pay properties. Bottom, Tuhua-6
prediction error between true vs. prediction.
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6. Conclusions

This study suggests that automatic
machine learning is a promising tool in reservoir
characterization since it does not require prior
knowledge of reservoir properties, needs
minimum intervention from the specialist, and
works faster than conventional interpretation
methods.

Automatic machine learning methods
provide many  benefits to  reservoir
characterization projects by automating tasks
that are both time consuming and prone to
subjectivity, helping to reduce operating costs
by optimizing the decision-making time during
the well evaluation phase and the initial
petrophysical evaluation to understand reservoir
characteristics.

For the pay properties prediction of the
Mckee field, the performance of the automatic
machine learning method could be limited in
those cases in which logs (features) present
changes in the curves' behavior used to train the
model, such as unexpected fractures,
mineralogy changes, formation damage during
drilling operations, drilling fluids additives and
logging operation/processing issues, among
others., resulting in high prediction errors.

This study demonstrates that the XGBoost
algorithm works well to predict reservoir pay
properties in the Mckee field. However, it was
not established that the algorithm could work in
other reservoirs.
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