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Abstract 

Reservoir characterization is a critical objective in order to understand the subsurface geology 

and develop geological models that support sustainable and economic oil and gas exploitation. By 

measuring and analyzing electrical responses of the penetrated successions, it is possible to infer 

properties about rock matrix and fluid content, among others, that are indirectly related to 

petrophysical properties of the rocks. Machine Learning (ML) is a data science tool that fits models 

that are then used to identify patterns or similarities among observations in a dataset in order to make 

predictions about unobserved data. The main objective of this study is to build a supervised 

classification model applying AutoML (Automatic Machine Learning) to identify pay zones using 

information derived from well logs. Twenty wells from the Mckee field, Taranaki Basin, New 

Zealand were selected containing a basic set of electric logs. For the response variable, reservoir pay 

properties were estimated. The classification model was first trained with a proportion of the 

observed data for the independent and response variables and then tested against the remained data 

set not observed by the model. Model definition and implementation were done with the AutoML 

function from H2O open source, and model performance was assessed by means of the confusion 

matrix method. The results indicate that XGBoost (Extreme Gradient Boosting) is the best model 

for the classification of the Mckee field and that the correct classification of the pay properties is 

high in all tested wells. This suggests that AutoML procedures can be a valuable tool for the 

exploration and assessment of the geological properties of the area, helping to reduce operating costs 

by optimizing the decision-making time during the well evaluation phase as well as the initial 

petrophysical evaluation to understand reservoir characteristics. 

Keywords: Automatic Machine Learning, Supervised Classification, Petrophysical Evaluation, 

Well Logs, Reservoir Characterization. 

1. Introduction

Reservoir characterization is a crucial step 

during the exploration and development projects 

in oil and gas companies. One of the main 

objectives of characterizing a reservoir is to 

understand the subsurface geology to develop 

geological models that serve as support for 

sustainable and economic oil and gas 

exploitation.  

Frequently, geoscientists deal with a 

limited amount of available information to 

develop geological models that allow, with 

tolerable uncertainty, to identify areas of 

interest. This shortage of information often 

results in a constant search for alternatives to 

evaluate a given formation.  

Proper estimation of petrophysical 

variables such as porosity, clay volume, and 

water saturation requires that various reservoir 

properties must be assessed and understood. 

Accurate characterization of the reservoir is also 

fundamental to other petrophysical analyses and 

further exploration and hydrocarbon production 

(Abbey et al., 2018). 

Reservoir characterization can be 

conducted by either direct or indirect methods. 

Direct methods often comprise the examination 

of core samples from the interval of interest by 
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an experienced geologist. However, these 

methods have some associated difficulties. 

On the one hand, the extraction of core 

samples for analysis is limited and often 

represents a substantial increase in the overall 

cost and time spent in the exploration phase 

(Vasini et al., 2018). On the other hand, different 

qualified specialists examining the core data can 

provide contrasting interpretations rendering the 

examination partially reliable. Indirect methods 

include the use of well logs data to derivate the 

geophysical properties of the formation, which 

are the basis of the data available for the 

characterization.  

However, these methods underperform 

when compared with the former ones (Thomas 

et al., 1995). These differences in performance 

augment as the number of logs to evaluate 

increases (Vasani et al., 2018). Thus, the use of 

computational technologies to assist the 

specialist in characterizing the reservoir can 

improve the efficiency and overall accuracy of 

the process (Yang et al., 2017).  

Recently, automated log analyses have 

gained increased popularity in the oil and gas 

industry (Bangert, 2021; Zhong et al., 2020), 

offering a series of advantages over traditional 

methods like a faster initial assessment of 

reservoir properties (Otchere et al., 2021; 

Ippolito et al., 2021; Gu et al., 2021) which, in 

turn, translate in reduction of operational costs 

and optimization of decision-making time 

during the well evaluation phase.  

Furthermore, novel developments in 

automated analyses have been proved 

fundamental to the process as, generally, models 

are developed manually, a task that is both time-

consuming and prone to errors (Saporetti et al., 

2020). 

Automated Machine Learning (AutoML) 

is the process of defining, building, and training 

a suite of models through a series of techniques 

to automatically select the best model (or set of 

models) for the data. The process is based on 

training scores, applying the selected model to 

perform regression, classification, or clustering 

on the newly observed data. In the context of 

petroleum geosciences, the main application of 

AutoML is lithologies identification. For it, 

different families of models have been 

employed aiming for more efficient, fast, and 

unbiased search for the proper variable settings. 

It allows to performing reservoir and rock 

characterization as best and consistent as 

possible (Min et al., 2020; Zeng et al., 2020).  

Results on applying machine learning 

methods in reservoir characterization have 

resulted in a variety of models that best fit the 

data. For instance, Li and Anderson-Sprecher 

(2006) compared the performance of 

Discriminant Analysis (DA) against Naïve 

Bayes Classifier (NBC) and concluded that the 

latter is more suitable for facies identification. 

Similarly, Xie et al., (2018) presented a 

comparison of a variety of Machine Learning 

methods for lithology identification. They 

concluded that, of the models tested, Gradient 

Tree Boosting (GTB) and Random Forest 

Classifier (RFC) presented the lower error 

values for the classification, suggesting that 

GTB is the more suitable option.  

Finally, Imamverdiyev and Sukhostat, 

(2019) employed a Convolutional Neural 

Network (CNN) approach for the classification 

of facies based on conventional well logs data 

and compared the result with Support Vector 

Machine (SVM) and K-Nearest Neighbor (K-

NN) outcome among others. Their results 

indicated that CNN performed better than the 

other models proposing it as a good candidate 

model for facies identification.  

Under this premise, machine learning 

algorithms present themselves as a robust 

alternative to traditional methods for faster 

reservoir characterization. These algorithms 

take some initial training data (variables) as 

input to classify and predict some response 

variable's behavior. Defined series of models are 

subsequently refined by a recursive method (the 

defined model), and its associated parameters 

(Xie et al., 2018).  

In the context of a classification approach, 

the model is first trained with a proportion of the 

observed data for the independent and response 

variables. Then, the model is tested against the 

unseen remaining data set. Based on the 

measurement of performance and cross-

validation, the model parameters are adjusted to 

90



De Castro Arce and Thongsang, 2021. Vol. 13, No. 2, 89-98 

Bulletin of Earth Sciences of Thailand  

maximize execution and minimize the number 

of incorrect classifications to the desired level of 

accuracy and precision. Subsequently, the 

model can be applied to new data to obtain an 

initial rapid assessment of the reservoir 

properties. 

This study aims to evaluate the 

applicability of machine learning algorithms to 

accurately predict the reservoir's pay properties, 

improving efficiency and objectivity during the 

reservoir characterization phase.  

2. Geological Setting

This study was conducted for the oil and 

gas onshore Mckee field, located in the Taranaki 

Basin (Fig. 1). The Taranaki Basin is a 

Cretaceous and Tertiary sedimentary basin 

situated along the western side of the North 

Island, New Zealand. The roughly north-south 

trending Taranaki fault defines the eastern 

margin of the basin.  

The basin extends westwards, underlying 

the onshore Taranaki Peninsula and continuing 

offshore beyond the continental shelf edge 

(Ministry of Business, Innovation, and 

Employment, New Zealand. 2014). The McKee 

Field is developed in a thrust-faulted anticline 

within the Tarata Thrust Zone. As a result of 

regional compression in the Early to Mid-

Miocene, the main structure of the Mckee field 

evolved westward overthrusting on a low-angle 

fault (Dong et al., 2018). 

The generalized stratigraphy of the 

Taranaki Basin (Fig. 2) consists of the Pakawau 

Group, Kapuni Group, Moa Group, Ngatoro 

Group, Wai-iti Group, and Rotokare Group 

from the Late Cretaceous to the Pleistocene 

(King & Thrasher, 1996).  

In this study, only the stratigraphic groups 

comprised by the interval logged in most of the 

wells selected for the evaluation, and 

subsequent identification of pay zones, were 

considered. Therefore, they will be summarized 

in the petrophysical evaluation section. 

Figure 1. Mckee field location. Modified after 

Ministry of Business, Innovation, and 

Employment, New Zealand. 2014. Figure 2. The generalized stratigraphy of the 

Taranaki Basin. Image taken from Dong et al., 2018 
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3. Methodology

Pay properties from petrophysical 

evaluation and associated well log variables 

from the McKee field, Taranaki Basin, New 

Zealand were used as the input data for the 

AutoML classification model. This model was 

then used to predict the pay zones based on the 

training dataset. Performance evaluation was 

conducted in parallel with the testing set metrics 

analysis.   

To determine the pay reservoir properties 

to be used as the predicted variable, the electric 

logs of the 20 selected wells were analyzed by 

conventional log analysis. 

The petrophysical evaluation was 

conducted for the interval between the 

formations Tikorangi and Mangahewa, whose 

general lithology characteristics are: 

• Tikorangi: Sandy to silty, occasionally

glauconitic limestone.

• Otaraoa: Transition from limestone to

clastics- siltstone, claystone, sandstone

and trace limestone.

• Turi: First appearance of non-calcareous

siltstone and sandstone.

• Mckee: Sandstone, siltstone and trace

coal.

• Mangahewa: Siltstone, sandstone coal,

trace claystone and sandstone.

First, the shale volume (VSH) was 

estimated using the arithmetic mean method 

from the linear model, with the gamma ray (GR) 

and the combined use of the density-neutron 

(DEN-NEU) cross plot. Then, total porosity 

(PHIA) was calculated from the DEN-NEU 

curves and corrected for the shale volume 

content to obtain the effective porosity (PHIE). 

Next, the water saturation estimation was 

performed using the Indonesia model. Finally, 

all petrophysical results were calibrated with 

available core data and production information. 

Identification of the pay properties, such 

as, gross rock volume (GRV), net pore volume 

(NPV), and hydrocarbon pore volume (HCPV) 

during the petrophysical evaluation, is a 

fundamental process for reservoir 

characterization, and to estimate in-place 

volumetrics. These properties are calculated 

based on specific cut-off values to each study 

area and operating company. However, for this 

study default cut-offs were used as shown in 

Table 1. 

Table 1. Cut-off values used for the field under 

study. 

VSH <50% 

PHIE >10%

SW <50% 

Pay properties parameters result in a 

significant impact on subsequent decisions in a 

field development project. For this reason, this 

task requires experience, many hours of work, 

and not only well logs but other sources of 

information, for instance, core data, lithological 

description, and production data, among others. 

4. AutoML Implementation

Twenty wells were selected containing a 

basic set of electric logs. In addition, a proxy 

variable was estimated containing the target 

reservoir properties (classes), such as GRV, 

NPV, and HCPV. All analyses were conducted 

in Phyton 3.8.5 version. Model definition and 

implementation were done with the H2O 

function: AutoML. The model training phase 

was made using 80% of the total data matrix, 

and the initial parameters default values. Model 

performance was assessed by the mean per class 

error and other cross-validation metrics. 

Classification results were then visualized and 

interpreted in the form of a confusion matrix and 

log plot. 

The data matrix used for this study 

comprises five log measurements (features): 

gamma-ray (GR), deep resistivity (RESD), bulk 

density (DEN), neutron (NEU), compressional 

slowness (DT), and the target variable 

containing the reservoir properties to classify: 

GRV, NPV, HCPV, and non-reservoir (SHL). 

Model training was performed by 

dropping the well of interest from the dataset to 

avoid the model being exposed to the test data. 

The model parameters were as follow: The 
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model searching time was set to 5 minutes, the 

maximum number of models to be evaluated by 

AutoML was set to 25, and the number of cross-

validation events used to validate the trained 

data set was set to 10. The best model was 

selected following the AutoML evaluation 

metrics, and in all cases, the stacked ensemble 

models were omitted. Three wells were 

randomly selected for the testing phase, dropped 

from the training set, and used as testing datasets 

independently. 

5. Results and Discussion

Working with a data matrix based on well 

logs implies a high possibility of missing values 

due to several operating acquisitions, and data 

processing issues. Handling missing values 

represents an essential task in the data 

preparation process in machine learning because 

many algorithms do not support missing values. 

For this reason, several ways to manage missing 

values have been reported, such as those 

described by Elhassan et al., (2021). However, 

in the present study, the missing values were 

replaced by (-999), an alternative that AutoML 

can identify and process. Figure 3 presents the 

distribution of missing values per feature within 

the study data matrix. 

Figure 3. Missing values per feature contained in the 

complete data set.  

Another critical factor considered in this 

study was the data set imbalance. This condition 

has been extensively studied, searching for an 

optimum technique to handle the class 

imbalance classification problems (Japkowicz, 

2000; Li et al., 2006; Vasini, 2018). In brief, it 

refers to the fact that the classes are not 

represented equally. This condition causes a 

direct impact on the selection of the metric to 

assess classification results. For example, 

Figure 4 shows a reduced number of data for the 

GRV class, in contrast with the amount of data 

collected for the other classes (NPV, HCPV, and 

SHL). 

Results were analyzed considering three 

performance factors: the model, the 

classification, and the prediction. 

According to the data set and the defined 

task (multi-class classification), the best 

AutoML model was selected using the mean per 

class error metric. It represented the error 

average of each class and was interpreted as the 

ability of the algorithm to correctly identify any 

data point as belonging to one class or another. 

Under the described parameters, the extreme 

gradient boosting (XGBoost) was identified as 

the best algorithm model (Fig. 5). 

Figure 4. Data distribution per class in the complete 

data set. 

Figure 5. Average mean per class error from the 

selected wells under the study area. 

The unusual high values observed for the 

accuracy suggested that class imbalance 

classification gave inexact and misleading 

DEN

20%

DT

17%

GR

14%

NEU

40%

RESD

9%

0

2000

4000

6000

8000

GRV NPV HCPV SHL

F
R

E
Q

U
E

N
C

Y

0%

5%

10%

15%

20%

25%

30%

XGB DRF XRT GBM DL

93



De Castro Arce and Thongsang, 2021. Vol. 13, No. 2, 89-98 

Bulletin of Earth Sciences of Thailand  

information about the classifier performance, as 

shown by Aida et al., (2013). Therefore, 

classification performance was analyzed based 

on the confusion matrix outcomes obtained from 

the test set, as in Figures 6 and 7 In this 

approach, classifier performance can be 

assessed based on the element's distribution per 

class within the data matrix. In a confusion 

matrix, the values showed on the diagonal 

represent correct predictions, whereas off-

diagonal represent incorrect predictions. 

Figure 6. Confusion matrix of the test data 

representing true versus predicted pay properties for 

the well Mckee-10. 

Figure 7. Confusion matrix of the test data 

representing true versus predicted pay properties for 

the well Mckee-2A 

The classification performance was 

satisfactory, considering that the error rate was 

under 20% in all test sets (Fig. 8). Furthermore, 

it is relevant that the most important class, the 

HCPV, related directly to the possible presence 

of hydrocarbons was classified with 

considerable high precision in all cases.  

Figure 8. Graphic shown the classification error per 

well.

Prediction results are illustrated in Figures 

9 and 10 The log plot in depth shows the true vs. 

predicted pay properties allowing the 

identification of incorrect predictions intervals 

and the possible causes for the misclassified 

observations. 

The Mckee-10, for example, presents an 

outstanding relationship between the true pay 

properties compared with the predicted one, 

with an error of 5%. In contrast, the well Mckee 

2A exhibits a prediction error of 20%. To 

understand the possible causes for the 

significant difference between the wells, it was 

noticed that for the same depth interval (1800 to 

1900 m.), the behavior of the neutron log does 

not follow the typical pattern. In other words, it 

presents values slightly higher than what was 

learned by the algorithm.  

This behavior underlines the importance 

of understanding, consider, and manage the 

automatic machine learning limitations in 

predicted pay zones. It will mitigate potential 

errors when using a limited source of 

information, allowing a better interpretation of 

what the model can predict (Malik, 2020). 

Cuddy (2021) stated that machine learning 

cannot generate information by itself.  They 

only do what it is told to do. 
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Figure 9. Top, Mckee-10 log plot in depth 

showing true vs. prediction pay properties. 

Bottom, Mckee-10 prediction error between true 

vs. prediction. 

Figure 10. Top, Mckee-2A log plot in depth 

showing true vs. prediction pay properties. 

Bottom, Mckee-2A prediction error between true 

vs. prediction. 
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Making decisions from machine learning 

models implies a complete understanding of 

how the training data contributes to the final 

model. In AutoML, the model characteristics 

and description provide a table with the 

percentage of importance for the features (or 

explanatory variables), allowing the 

identification of the feature with the higher 

impact in the training of the model. 

According to the nature of the classified 

properties, the distribution of the features’ 

importance in Figure 11 was as expected, 

considering the physical principle of the logging 

tools and the primary uses of the properties they 

measure. 

Otchere et al. (2021) reported that the 

density and the resistivity features were the most 

important in their study. This observation is in 

accordance with our results, where both features 

represent around the 50% of the classification 

power. This result could be interpreted in terms 

of the possible presence of pore volume, and its 

corresponding saturating fluid. 

Figure 11. Input variables average percentage of 

importance for the classification of the pay 

properties. 

The model showed a reduction in its 

classification power when one or more 

explanatory variables were dropped. However, 

acceptable error values were obtained. This 

observation suggests that for small datasets, the 

number of features to consider is more flexible 

than for the larger datasets. However, it is 

important to note the impact in the performance 

results according to the variable importance 

distribution for the reservoir properties 

classification. For instance, the density and 

neutron features were dropped from the well 

Tuhua-6, as shown in Figure 12. The high error 

obtained could be due to the fact that these two 

features are two of the three more important in 

the ranking distribution. 

Figure 12. Top, Tuhua-6 log plot in depth showing 

true vs. prediction pay properties. Bottom, Tuhua-6 

prediction error between true vs. prediction. 
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6. Conclusions

This study suggests that automatic 

machine learning is a promising tool in reservoir 

characterization since it does not require prior 

knowledge of reservoir properties, needs 

minimum intervention from the specialist, and 

works faster than conventional interpretation 

methods.  

Automatic machine learning methods 

provide many benefits to reservoir 

characterization projects by automating tasks 

that are both time consuming and prone to 

subjectivity, helping to reduce operating costs 

by optimizing the decision-making time during 

the well evaluation phase and the initial 

petrophysical evaluation to understand reservoir 

characteristics. 

For the pay properties prediction of the 

Mckee field, the performance of the automatic 

machine learning method could be limited in 

those cases in which logs (features) present 

changes in the curves' behavior used to train the 

model, such as unexpected fractures, 

mineralogy changes, formation damage during 

drilling operations, drilling fluids additives and 

logging operation/processing issues, among 

others., resulting in high prediction errors. 

This study demonstrates that the XGBoost 

algorithm works well to predict reservoir pay 

properties in the Mckee field. However, it was 

not established that the algorithm could work in 

other reservoirs. 
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