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Abstract

The petrophysical interpretation is critical for assessing the economic justification. However,
the existing workflow of petrophysical assessment is time-consuming. This study aims to investigate
the petrophysical interpretation utilizing the machine learning algorithms in the determination of
lithology classification and reservoir identification from well log data of Sirikit field. This
experiment is based on data from 50 deviated wells located throughout the Sirikit main area, which
is the main production area of the Sirikit field, containing oil and gas reservoirs from the Yom, Pratu
Tao, and Lan Krabue formations. The programming will concentrate on four well log data types:
gamma ray, resistivity, density, and neutron log, as well as two interpretation logs: lithology
interpretation and fluid interpretation log. The approach is separated into two basic phases, the first
of which is to develop an artificial architecture of neuron networks capable of categorizing lithology,
namely sandstone and shale. The lithology will then lead to the secondary goal of reservoir
categorization, which includes gas-, oil- and water-saturated-sandstones and shale. This research
will focus on the extreme gradient boosting (XGBoost) technique developed as a result of automated
machine learning (AutoML). The mean squared error (MSE) and customized error measurement
(CEM) accuracy on prediction is the main accuracy metrics used to assess the model score. The best
lithology prediction receives an average MSE of 2.76 percent and average CEM of 4.27 percent.
Furthermore, the best reservoir classification prediction receives an average MSE of 0.17 percent
and average CEM of 1.90 percent. Consequently, the algorithm developed in this work help shorten
the time required for petrophysical interpretation.

Keywords: Petrophysical interpretation, Automatic machine learning, Extreme gradient boosting,
Sirikit field, Phitsanulok basin
1. Introduction The wireline log and formation pressure
PTTEP (PTT Exploration and Production  testing procedures are used to assess the wells'
Public Company Limited)’s Sirikit field is the  potential. The petrophysical interpretation is
largest onshore oilfield in the Phitsanulok Basin,  critical for assessing the economic justification.
central part of Thailand (Chantraprasert and  However, the current petrophysical evaluation
Utitsan, 2021). More than 2,000 wells have been  methodology is time-consuming (Halotel,
drilled and produced over 300 million barrelsof ~ Demyanov  and  Gardiner, 2020). If
oil with approximately 30,000 barrels of oil a  petrophysical interpretation takes less time,
day. A large number of development wells have  leading to cost savings.
been drilled in order to sustain the production The automated machine learning
rate. (AutoML) technique is used to design an
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algorithm that can aid in analyzing petrophysics,
with the goal of creating Al-based programming

that can automate forecasting reservoir
characteristics.

This study focuses on one technique called
extreme gradient boosting (XGBoost) that was
developed as a preliminary output of AutoML.
This improved approach is a success of random
forest, which was applied with well data from
using the Sirikit field.

The major goal is to develop an artificial
architecture of neuron networks capable of
categorizing geological facies, including
sandstone and shale. The accomplishment of
this lithology classification leads to the
secondary goal of reservoir identification, which
includes gas-, oil- and water-saturated-
sandstones and shale. This result aims to lower
the timing of interpretation in the petrophysical
interpretation processes.

2. Study area and geological background

The study area is located in Sirikit field,
which is the largest onshore oil field in the
Phitsanulok Basin. The Phitsanulok Basin, a
continental rift basin, located in central
Thailand. It is part of the N-S trending belt of
Cenozoic basins. The N-S trending belt extends
from northern Thailand to the Gulf of Thailand
(Chantraprasert and Utitsan, 2021).

The northern half of the basin is a deep
half-graben (the Sukhothai Depression). The
basin is bounded on the west by an east-dipping
normal fault (the Western Boundary Fault). The
southern half composes of a smaller sub-basin
series separated by basement highs.

Based on the structural evolution studies
of Chantraprasert and Utitsan, 2021, the result
suggest that the Phitsanulok Basin has been
experienced three main evolution periods.

e A rifting period during 30-18 Ma: The
Phitsanulok Basin was initially opened by NE-
SW extension at the junction between two
existing Mae Ping and Uttaradit faults (30-18
Ma).

e A transtention and inversion period
during 18-10 Ma: The stress regime changed
from vertical to horizontal direction causing the
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lateral movement of strike-slip faults, which are
a sinistral movement of the Uttaradit fault and a
dextral movement of the Mae Ping fault.

e A post-rift period from 10 Ma to the
present day: The tectonic setting reverted to an
extension regime with a minor episodic varying
between E-W & WNW-ESE during 10-0 Ma.
There were fewer activities on strike-slip faults
with a minor episodic inversion.

The depositional environment principally
focuses on the three main stratigraphic intervals.
The succession is described from the older age
to the younger age in the following account:

e Sarabop — NongBue — Khom Formations

During the early syn-rift period, the
Phitsanulok Basin was primarily filled by clastic
sediments of Sarabop — Nong Bue — Khom
Formation overlying above the Pre-Tertiary
Basement.

e Nam Nan — Lan Krabue (LKU) — Chum
Saeng (CS) Formations

This formation contains the lateral facies
variation due to the changing in depositional
environments from a fluvial dominated Nam
Nam Formation to the fluvial-deltaic LKU
Formation The LKU Formation, can be divided
into four reservoir units (D, K, L and M)
(Lawwongngam and Philp, 1991) and the open
lacustrine Chum Saeng Formation.

e Pratu Tao (PTO) — Yom Formations

These formations are mainly developed by
fluvial channels and floodplain deposits in an
alluvial plain setting.

3. Dataset

This study focuses on the well log data.
The available data include 50 wells that located
though out the Sirikit main area which is the
main production area of Sirikit field. The
experiment used four well log data including
Gamma ray (GR), Deep Resistivity (RT), Bulk
Density (RHOB) and Neutron (NPHI) and two
interpretation  log  including lithology
interpretation (SAND) and fluid interpretation
log (FCOL). The well log data distributions are
illustrated in Figure 1 and 2.
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Figure 1. Pairwise scatterplots and grouped histograms of well logs by lithology interpretation
log (show in different colors)
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Figure 2. Pairwise scatterplots and grouped histograms of well logs by reservoir
classification loa (show in different colors)
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Figure 3. The experiment workflow

4. Methodology and experiment setup

The goal of this study is to create artificial
intelligence based (Al-based) programming that
can aid in the evaluation of petrophysics through
the machine learning methods, also known as
automatic machine learning (AutoML).

The methodology is divided into two main
processes, which include creating an artificial
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Figure 4. Flow of methodology work chart

architecture of neuron networks that can
categorize geological facies, including sand and
shale. Then the achievement of this clustered
sandstone leads to the secondary objective that
Is reservoir classification, i.e., gas-, oil- and
water-saturated-sandstones and shale (Fig. 3).

4.1 Methodology

The first step consists of preparing the
data. This involves loading and cleaning the data
for use in the modeling process. The second step
involves selecting features to be used in creating
the model. The third stage involve dividing the
available data are divided into train, test and
validation data. (Fig. 4).

4.1.1 Data Preparation

It is regarded as an important step in the
use of machine learning. The data preparation
processes aim to improve data quality (Simeone
et al., 2019). Data cleaning removes obsolete
records.

4.1.2 Data Splitting

The study, learn and development of
algorithms from data are typical jobs in machine
learning. The algorithms make data-driven
predictions or judgments by constructing a
mathematical model from input data.

The data are separated into training,
validation, and test to prevent overfitting, model
over-learning from training data, and to
adequately evaluate your model.

In our experiment keeps ten wells to be a
test dataset, and the rest of the data are split as a
fraction of 0.75 for training and 0.25 for
validation (Fig. 5).

e Training Dataset

The training dataset is a sample of data
utilized throughout the learning process. For
classification tasks, a supervised learning
algorithm examines the training dataset to
discover the optimal variables that will provide
a successful prediction model.

e Validation Dataset

The validation dataset is a subset of data
used to offer an unbiased evaluation of a model
fit on the training dataset while fine-tuning the
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model parameters. The validation set is also
known as the development set since it is used
throughout the model's development stage
(Torlay et al., 2017).

e Test Dataset

A test dataset is distinct from the training
dataset but has the same probability distribution
as the training dataset. A test dataset is utilized
to provide an unbiased assessment of the final
model fit on the training dataset. The test dataset
in this study are chosen based on criteria from
the complete classes on lithology and fluid.

40 Wells

10 Wells

- Training dataset = (40 wells — Validation set)
- Validation dataset = 25% of training set

|:| Test dataset = 10 wells

Figure 5. Visualization of the splits

4.1.3 Modeling Processes

Following completion of the data
preparation processes, the model is run through
the algorithms with the appropriate parameters.

The model is built based on a decision tree
algorithm. The decision tree technique is a
supervised machine learning algorithm that is
widely utilized. It is a typical machine learning
algorithm that makes predictions using a "tree
structure." (Chang et al., 2019). The decision
tree solves the challenge of mapping non-linear
relationship by employing the whole training set
as the root, tree corresponds to a class label and
the leaf node are expressed on the interior
characteristic. Tree-based algorithms provide
great accuracy, stability, and interpretability to
prediction models (Dhaliwal, Nahid and Abbas,
2018).

To deal with enormous amounts of data,
such as more than 2,100,000 data points from 7
well logs, a huge number of branches must be
created. Extreme gradient boosting (XgBoost)
(Chen and Guestrin, 2016) which is one of the
implementations of gradient boosting machines
(Friedman, 2001). XgBoost, which is known as
one of the best performing algorithms for

supervised learning (Giglou et al., 2017), is used
for model prediction.

Automated machine learning (AutoML) is
used in this project to construct algorisms and
forecast prediction. AutoML is a developing
area that attempts to automatically choose,
build, and parameterize machine learning
models to achieve optimal performance on a
given dataset, in order to make machine learning
techniques more accessible and decrease the
need for human expertise.(Waring, Lindvall and

Umeton, 2020) (Fig. 6).

AutoML Optimization

Hype‘pl ArAMELCT gy \1odel Building

Algorithm

Model
Validation

Figure 6. AutoML Optimization pipeline

This study will work on an open source
H20O's AutoML platform. H2O's AutoML is a
machine learning platform designed to scale to
very big datasets. It is one of the highest
qualities among AutoML benchmarks. It is
widely used in business and academics, and has
many advocates in the open-source machine
learning community (Ledell and Poirier, 2020).

4.1.4 Model parameters

Two of the most difficult jobs in machine
learning are parameter tuning and algorithm
selection. This procedure involves the selection
of input variables for the models. The selection
of appropriate input variables for machine
learning models is essential to the model's
performance.
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The input variables are chosen to
guarantee that the model captures the
relationship between the inputs and the target
variable during the training phase in order to
identify the optimal set of algorithm parameters
that provides the best model.

Five parameters were chosen for this
study, including

e Max runtime

This parameter is used when constructing
a model to set the maximum number of seconds
spent to training each individual model in the
AutoML run. This parameter determines the
maximum runtime in seconds for the whole grid
while doing a grid search.

e Max models

This parameter specifies the maximum
number of models that will be built during the
AutoML run.

e nfolds

When nfolds is specified, the method will
generate models with nfolds +1. If you give
nfolds = 5, for example, 6 models are created.
The first five models (cross-validation models)
are created using 80% of the training data, with
a different 20% kept out for each of the five
models. The primary model is then created using
all of the training data. For the whole training
dataset, the 5 holdout/validation data predictions
are merged into a single prediction. This
"validation prediction" is then compared to the
real labels, and the total cross-validation metrics
are calculated.

e Seed

The random sample order can be
controlled using the seed function. The basic
goal of seeding is to make reproducible the
result of random.

e Balance classes

If it is determined during model training
that the majority of data fit into a single
category. To balance the class distribution, use
the balance classes option. When activated,
H20 will either undersample the majority or
oversample the minority.

4.1.5 Model Performance Metrics

Bulletin of Earth Sciences of Thailand

Validation the algorithm and obtain the
best predicted model is to determine which
algorithm is most suited to solving the problem.

The model's performance will be
evaluated using both the standard accuracy
measurement and the customized error
measurement designed for this study.

This study's accuracy measurements
include

e Mean Squared Error (MSE)

The MSE metric calculates the average of
the square root of the errors. MSE squares the
distances between the points and the regression
line (the "errors™) to remove any negative signs.

MSE equation:

1 \
MSE = ¥l i — ¥)°

Where:

N is the total number of rows (observations)
of your corresponding data frame.

y is the actual target value.

v is the predicted target value.

1)

e Root Mean Squared Error (RMSE)

The RMSE metric assesses how well a
model can forecast a value.

RMSE equation:

RMSE = [ISE. (-7
@

Where:

N is the total number of rows (observations)
of your corresponding data frame

y is the actual target value

y is the predicted target value

e Mean Per Class Error

Mean Per Class Error is the average of the
errors of training, validation, and testing class in
the dataset. This metric shows toward
misclassification of the data across these classes.
The lower of this metric represent the better
prediction.
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e Customized Error Measurement (CEM)

CEM assesses the error in the depth
domain. The evaluation metric derived from the
comparison of predicted and real data results. If
the forecast is right, the measurement will be
considered accurate. However, if the forecast is
not equal to true, the measurement will be
considered erroneous. The right and wrong
answers are then summarized as an accuracy
percentage (Fig. 7).

CEM equation:

CEM = 100 (=) 3)

Where:

CEM = Customized error measurement

¢ = number of correct predictions counted

n = number of incorrect predictions counted

GR RT NPHI RHOB Tre  Predict

CEM
1800/ :
2000/ -
2200
2400/ -
2600, i) |

Figure 7. Customized error measurement

5. Results
5.1 Lithology Classification

To determine the optimal method for
predicting the model. Three sets of parameter
tuning are carried out. The parameter settings
used are displayed in the table below (Table 1).

Table 1. The parameter for lithology classification

Parameters Model 1 | Model 2 | Model 3
Max runtime (sec) 45 55 120
Max models 25 25 25
nfolds 2 2 3
seed 1 3 3
Balance classes TRUE TRUE TRUE

Each model produces a distinct forecast
and accuracy result. After obtaining the results
for each model, a model comparison will be
performed to choose the best prediction for use
in the subsequent stages.

According to the results of the experiment,
when using the XGBoost technique, each
models get the best outcomes, though varied
number of decision trees (Table 2).

Table 2. The number of decision trees and average
number of decision trees

Parameters Model 1 | Model 2 Model 3
Number of 3-12 | 8-25 2341
decision trees
Average_ number 9 15 31
of decision trees

According to the various in the parameter,
model provides a distinct forecast with a varied
accuracy (Fig. 8).

Model's accuracy comparison

100.00 m Model 1
m Model 2
10.00 Model 3
£ 100
S
;3
0.10
0.01
MSE RMSE Mean per CEM

class error
Figure 8. The lithology classification model's
accuracy comparison results

In the processes of parameter tuning and
performance evaluation approaches, the training
goal is to find a sweet spot between overfitting
and underfitting to ensure optimal training.
Figures 9 - 11 represent the fit ability of each
model. The orange color denotes sand forecast,
whereas the green color indicates shale
prediction. Model 1 (Fig. 9) shows an
underfitting situation. It means a model can
neither learn the training data nor generalize to
new data because it is not powerful enough. Fig.
9 shows that the model 1 is unable to capture the
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relationship between sand and shale data points.
It has plenty of both sandstone data points
predicted as shale and shale data points
predicted as sandstone. Model 2 (Fig. 10) shows
an appropriate fitting situation. Figure 10 shows
model is able to capture the relationship
between sand and shale data points. Model 3
(Fig. 11) is an overfitting model. It shows model
works well on the training data but not on the
evaluation data (Fig. 8). This is due to the model
remembering the data it has seen and being
unable to generalize to unseen examples.

Combining the highest accuracy with
appropriate fitting reveals that model 2 is the
best lithology prediction algorithm.

Tree = 9)

Lithology Classification (Decision
G a'g‘\:r-—.‘;’i. AT ALY

IS
w

Density (p)

Gamma (y)
Figure 9. Model 1's lithology classification
(Decision Trees = 9) underfit situation

gy Classification Appropriate fit (Decision Tree
T T O ) QIAG A e .

° % 2 Y,
o0 Swadt £ 5 o o s

Density (p)

Gamma (y)

Figure 10. Model’2 lithology classification
(Decision Trees = 15) appropriate fit case

Density (p)

Gamma (y)

Figure 11. Model’3 lithology classification
(Decision Trees = 31) overfit circumstance

5.2 Reservoir Classification

After completing the lithology prediction,
the reservoir classification will be proceeded as
the following procedure.

The reservoir classification prediction
algorithm will be modelled using the same
approach as the lithology prediction in the
previous stage.

Unlike lithology prediction, reservoir
classification will be predicted into four classes:
gas-, oil- and water-saturated-sandstones and
shale.

To determine the optimal method for
predicting the model, three sets of parameters
are carried out. The parameter settings used are
shown in the table below (Table 3).

Table 3. Parameter using on each model

Parameters Model 1 | Model 2 | Model 3
Max runtime (sec) 60 140 180
Max models 25 25 25
nfolds 2 2 2
seed 1 1 1
Balance classes TRUE TRUE TRUE

According to the results of the experiment,
when using the XGBoost technique, each
models get the best outcomes, though varied
number of decision trees. Table 4 summarizes
the number of decision trees and average
number of decision trees for each model.
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Table 4. The number of decision trees and average
number of decision trees

Parameters Model 1 | Model 2 | Model 3
Numberof | 5 47 | 9.25 | 23-61
decision trees
Average
number of 3 15 44
decision trees

Each model produces a distinct forecast
and accuracy result. After obtaining the results
for each model, a model comparison was
performed to determine the best forecast. The
model accuracy is critical in determining the
optimum method (Fig. 12).

Model's accuracy comparison

® Model 1
®m Model 2
® Model 3

100.00

10.00 I |

RMSE

Percentage

Mean per CEM
class error

Figure 12. The reservoir identification model's
accuracy comparison results

Similar to lithology prediction, the
training aim to identify a sweet spot between
overfitting and underfitting to ensure optimal
training. Figures 13-15 demonstrate how well
each model fits the data. The white color
represents shale forecasts, the yellow color
represents gas-, the pink color represents oil-,
and the grey color represents water-saturated-
sandstones forecasts. Model 1 (Fig. 13) shows
an underfitting situation. It shows the model is
unable to capture the relationship between gas-,
oil- and water-saturated-sandstones and shale
data points. It has plenty of misclassification of
data points. Model 2 (Fig. 14) shows an
appropriate fitting situation. It shows that model
10 is enable to capture the relationship between
gas, oil, water-saturated-sandstone and shale

data points. Model 3 (Fig. 15) is an overfitting
model. It shows model works well on the
training data but not on the evaluation data (Fig.
12). This is because the model remembers the
data it has seen and is unable to generalize to
unseen examples.
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Figure 13. Model 1's reservoir identification
(Decision Trees = 3) underfit situation
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Figure 14. Model’2 reservoir identification
(Decision Trees = 15) appropriate fit case
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Model 2 is the best reservoir identification
prediction algorithm when the highest accuracy
and proper fitting are combined.

6. Discussion

Figure 16 represents the graph of model 2's
testing well lithology classification accuracy
result. The graph shows three trends in accuracy
based on CEM and MSE metrics. The first trend
includes the wells from A to C. The second trend
includes D and E wells. This trend has the
highest error of the three groups. The third trend
includes the wells F to J. This trend has the
minimum CEM error.

MSE and CEM of Model 2 Lithology Classification

8.00% MSE

7.00% e '|' . gif:titrend
= 6.00% - Second trend
= 5.00% o +=== Third trend
;5’4.0{1'3:.] L T
2 3.00% [ ( LT
£ 2.00%

1.00%
0.00%
A B C D E F G H 1 ]
Wells

Figure 16. Evaluation metric using MSE and CEM.
The measurement indicates the separations of
lithological trends as three zones.

The graph of model 2's testing well on
reservoir identification accuracy result is shown
in Figure 17. The graph depicts three trends in
accuracy based on CEM and MSE metrics. The
first trend includes all of the wells from A to C.
The second trend includes D and E wells. This
trend has the highest error of the three trends.
The third trend includes well F through J. This
trend has the lowest error.

To determine the cause of the trend in
accuracy, a well correlation was performed to
examine the variation in well log characters to
see whether it may disclose the underlying
causes. The correlation illustrates that the log
characters vary in PTO, LKU-D, and LKU-M
formations.

MSE and CEM of Model 2 Reservoir Identification

MSE
— CEM
---- Firsttrend
-- Second trend
2aee Third trend

100.00%

10.00%

"

1.00%

Percentage (%)

0.10%

0.01%
A B C D E F G H | J
Wells

Figure 17. Evaluation metric using MSE and CEM.
The measurement indicates the separations of
reservoir identification trends as three zones.
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Figure 18. The well correlation of model 2 testing
wells.

The gamma ray log in the first trend of the
PTO formation shows a greater sandstone layer
content. The second trend shows a moderate
amount of sandstone layer content. The third
trend indicates increased shale content.
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In addition, Gamma ray log in the first
trend of the LKU-D and LKU-M formations
reveal high sandstone layer composition. In the
second trend, the characters combination of
sandstone and shale. The third trend indicates
increased shale content. (Fig. 18).

After combining the accuracy with the
depositional environment map, it was
discovered that in the PTO, LKU-D, and LKU-
M formations, the second trend including D and
E wells, is situated in the depositional
environment's transition zone (Fig. 19 and 20)

M0 smmant 00 291050

G0 A0 seasdeOte SHSOn WSO s sewnt$Xtmen *Weon om

Alluvial Plain
(Meandering Rivers) |
Transition zone
D Alluvial Plain (Non-  [F 25
Meandering Rivers)

Figure 19. CEM accuracy of prediction posting on a
depositional environment map of the PTO
formation.

296250 ¢¥¥orcn

. Lacustrine Delta
I:l Transition zone
|:| Open Lake

Figure 20. CEM accuracy posting on depositional
environment map of LKU-D and LKU-M formation.

7. Conclusions

The main objective of this research is to
develop Al-based programming that can help in
the evaluation of petrophysics using machine
learning approaches.

The algorithm modeling working on four
well log data, including Gamma ray and
Resistivity. Density and Neutron, as well as two
interpretation  logs, comprising lithology
interpretation and reservoir classification, were
obtained from 50 deviated wells located across
the Sirikit main region, the Sirikit field.

Automated machine learning (AutoML) is
used in this project to construct algorisms and
forecast prediction. The model algorithm is
created based on supervised machine learning
algorithm of Extreme gradient boosting
(XGBoost).

The methodology is divided into two main
processes, which include create an artificial
architecture of neuron networks that can
categorize geological facies including sandstone
and shale then the achievement of this clustered
will lead to the secondary objective that is
reservoir classification including gas-, oil- and
water-saturated-sandstones and shale

The findings of the experiment
demonstrate that the average forecast time for
lithology identification per well is 62 seconds.
The average time for reservoir categorization
estimation per well is 364 seconds. When all
prediction procedures are combined, the average
prediction time per well is 426 seconds, or 7
minutes and 6 seconds.

Comparing with traditional petrophysical
evaluation, which required more than 30
minutes per well, this study demonstrates that
machine learning algorithms can reduce timing
on petrophysical interpretation.
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