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Abstract 

The petrophysical interpretation is critical for assessing the economic justification. However, 

the existing workflow of petrophysical assessment is time-consuming. This study aims to investigate 

the petrophysical interpretation utilizing the machine learning algorithms in the determination of 

lithology classification and reservoir identification from well log data of Sirikit field. This 

experiment is based on data from 50 deviated wells located throughout the Sirikit main area, which 

is the main production area of the Sirikit field, containing oil and gas reservoirs from the Yom, Pratu 

Tao, and Lan Krabue formations. The programming will concentrate on four well log data types: 

gamma ray, resistivity, density, and neutron log, as well as two interpretation logs: lithology 

interpretation and fluid interpretation log. The approach is separated into two basic phases, the first 

of which is to develop an artificial architecture of neuron networks capable of categorizing lithology, 

namely sandstone and shale. The lithology will then lead to the secondary goal of reservoir 

categorization, which includes gas-, oil- and water-saturated-sandstones and shale. This research 

will focus on the extreme gradient boosting (XGBoost) technique developed as a result of automated 

machine learning (AutoML). The mean squared error (MSE) and customized error measurement 

(CEM) accuracy on prediction is the main accuracy metrics used to assess the model score. The best 

lithology prediction receives an average MSE of 2.76 percent and average CEM of 4.27 percent. 

Furthermore, the best reservoir classification prediction receives an average MSE of 0.17 percent 

and average CEM of 1.90 percent. Consequently, the algorithm developed in this work help shorten 

the time required for petrophysical interpretation. 

Keywords: Petrophysical interpretation, Automatic machine learning, Extreme gradient boosting, 

Sirikit field, Phitsanulok basin 

1. Introduction

PTTEP (PTT Exploration and Production 

Public Company Limited)’s Sirikit field is the 

largest onshore oilfield in the Phitsanulok Basin,  

central part of Thailand (Chantraprasert and 

Utitsan, 2021). More than 2,000 wells have been 

drilled and produced over 300 million barrels of 

oil with approximately 30,000 barrels of oil a 

day. A large number of development wells have 

been drilled in order to sustain the production 

rate. 

The wireline log and formation pressure 

testing procedures are used to assess the wells' 

potential. The petrophysical interpretation is 

critical for assessing the economic justification. 

However, the current petrophysical evaluation 

methodology is time-consuming (Halotel, 

Demyanov and Gardiner, 2020). If 

petrophysical interpretation takes less time, 

leading to cost savings. 

The automated machine learning 

(AutoML) technique is used to design an 
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algorithm that can aid in analyzing petrophysics, 

with the goal of creating AI-based programming 

that can automate forecasting reservoir 

characteristics. 

This study focuses on one technique called 

extreme gradient boosting (XGBoost) that was 

developed as a preliminary output of AutoML. 

This improved approach is a success of random 

forest, which was applied with well data from 

using the Sirikit field. 

The major goal is to develop an artificial 

architecture of neuron networks capable of 

categorizing geological facies, including 

sandstone and shale. The accomplishment of 

this lithology classification leads to the 

secondary goal of reservoir identification, which 

includes gas-, oil- and water-saturated-

sandstones and shale. This result aims to lower 

the timing of interpretation in the petrophysical 

interpretation processes. 

2. Study area and geological background

The study area is located in Sirikit field,

which is the largest onshore oil field in the 

Phitsanulok Basin. The Phitsanulok Basin, a 

continental rift basin, located in central 

Thailand. It is part of the N-S trending belt of 

Cenozoic basins. The N-S trending belt extends 

from northern Thailand to the Gulf of Thailand 

(Chantraprasert and Utitsan, 2021).  

The northern half of the basin is a deep 

half-graben (the Sukhothai Depression). The 

basin is bounded on the west by an east-dipping 

normal fault (the Western Boundary Fault). The 

southern half composes of a smaller sub-basin 

series separated by basement highs.  

Based on the structural evolution studies 

of Chantraprasert and Utitsan, 2021, the result 

suggest that the Phitsanulok Basin has been 

experienced three main evolution periods. 

● A rifting period during 30-18 Ma: The

Phitsanulok Basin was initially opened by NE-

SW extension at the junction between two 

existing Mae Ping and Uttaradit faults (30-18 

Ma). 

● A transtention and inversion period

during 18-10 Ma: The stress regime changed 

from vertical to horizontal direction causing the 

lateral movement of strike-slip faults, which are 

a sinistral movement of the Uttaradit fault and a 

dextral movement of the Mae Ping fault.  

● A post-rift period from 10 Ma to the

present day: The tectonic setting reverted to an 

extension regime with a minor episodic varying 

between E-W & WNW-ESE during 10-0 Ma. 

There were fewer activities on strike-slip faults 

with a minor episodic inversion. 

The depositional environment principally 

focuses on the three main stratigraphic intervals. 

The succession is described from the older age 

to the younger age in the following account: 

● Sarabop – NongBue – Khom Formations

During the early syn-rift period, the

Phitsanulok Basin was primarily filled by clastic 

sediments of Sarabop – Nong Bue – Khom 

Formation overlying above the Pre-Tertiary 

Basement. 

● Nam Nan – Lan Krabue (LKU) – Chum

Saeng (CS) Formations 

This formation contains the lateral facies 

variation due to the changing in depositional 

environments from a fluvial dominated Nam 

Nam Formation to the fluvial-deltaic LKU 

Formation The LKU Formation, can be divided 

into four reservoir units (D, K, L and M) 

(Lawwongngam and Philp, 1991) and the open 

lacustrine Chum Saeng Formation. 

● Pratu Tao (PTO) – Yom Formations

These formations are mainly developed by

fluvial channels and floodplain deposits in an 

alluvial plain setting. 

3. Dataset

This study focuses on the well log data. 

The available data include 50 wells that located 

though out the Sirikit main area which is the 

main production area of Sirikit field. The 

experiment used four well log data including 

Gamma ray (GR), Deep Resistivity (RT), Bulk 

Density (RHOB) and Neutron (NPHI) and two 

interpretation log including lithology 

interpretation (SAND) and fluid interpretation 

log (FCOL). The well log data distributions are 

illustrated in Figure 1 and 2. 
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Figure 1. Pairwise scatterplots and grouped histograms of well logs by lithology interpretation 

log (show in different colors) 

Figure 2. Pairwise scatterplots and grouped histograms of well logs by reservoir 

classification log (show in different colors)

SAND LABELS 

FCOL_LABEL
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Figure 3. The experiment workflow 

4. Methodology and experiment setup

The goal of this study is to create artificial 

intelligence based (AI-based) programming that 

can aid in the evaluation of petrophysics through 

the machine learning methods, also known as 

automatic machine learning (AutoML). 

The methodology is divided into two main 

processes, which include creating an artificial 

architecture of neuron networks that can 

categorize geological facies, including sand and 

shale. Then the achievement of this clustered 

sandstone leads to the secondary objective that 

is reservoir classification, i.e., gas-, oil- and 

water-saturated-sandstones and shale (Fig. 3). 

4.1 Methodology 

The first step consists of preparing the 

data. This involves loading and cleaning the data 

for use in the modeling process. The second step 

involves selecting features to be used in creating 

the model. The third stage involve dividing the 

available data are divided into train, test and 

validation data. (Fig. 4). 

4.1.1 Data Preparation 

It is regarded as an important step in the 

use of machine learning. The data preparation 

processes aim to improve data quality (Simeone 

et al., 2019). Data cleaning removes obsolete 

records. 

 
Figure 4. Flow of methodology work chart 

4.1.2 Data Splitting 

The study, learn and development of 

algorithms from data are typical jobs in machine 

learning. The algorithms make data-driven 

predictions or judgments by constructing a 

mathematical model from input data. 

The data are separated into training, 

validation, and test to prevent overfitting, model 

over-learning from training data, and to 

adequately evaluate your model.  

In our experiment keeps ten wells to be a 

test dataset, and the rest of the data are split as a 

fraction of 0.75 for training and 0.25 for 

validation (Fig. 5). 

● Training Dataset

The training dataset is a sample of data

utilized throughout the learning process. For 

classification tasks, a supervised learning 

algorithm examines the training dataset to 

discover the optimal variables that will provide 

a successful prediction model. 

● Validation Dataset

The validation dataset is a subset of data

used to offer an unbiased evaluation of a model 

fit on the training dataset while fine-tuning the 
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model parameters. The validation set is also 

known as the development set since it is used 

throughout the model's development stage 

(Torlay et al., 2017). 

● Test Dataset

A test dataset is distinct from the training

dataset but has the same probability distribution 

as the training dataset. A test dataset is utilized 

to provide an unbiased assessment of the final 

model fit on the training dataset. The test dataset 

in this study are chosen based on criteria from 

the complete classes on lithology and fluid. 

Figure 5. Visualization of the splits 

4.1.3 Modeling Processes 

Following completion of the data 

preparation processes, the model is run through 

the algorithms with the appropriate parameters. 

The model is built based on a decision tree 

algorithm. The decision tree technique is a 

supervised machine learning algorithm that is 

widely utilized. It is a typical machine learning 

algorithm that makes predictions using a "tree 

structure." (Chang et al., 2019). The decision 

tree solves the challenge of mapping non-linear 

relationship by employing the whole training set 

as the root, tree corresponds to a class label and 

the leaf node are expressed on the interior 

characteristic. Tree-based algorithms provide 

great accuracy, stability, and interpretability to 

prediction models (Dhaliwal, Nahid and Abbas, 

2018). 

To deal with enormous amounts of data, 

such as more than 2,100,000 data points from 7 

well logs, a huge number of branches must be 

created. Extreme gradient boosting (XgBoost) 

(Chen and Guestrin, 2016) which is one of the 

implementations of gradient boosting machines 

(Friedman, 2001). XgBoost, which is known as 

one of the best performing algorithms for 

supervised learning (Giglou et al., 2017), is used 

for model prediction.  

Automated machine learning (AutoML) is 

used in this project to construct algorisms and 

forecast prediction. AutoML is a developing 

area that attempts to automatically choose, 

build, and parameterize machine learning 

models to achieve optimal performance on a 

given dataset, in order to make machine learning 

techniques more accessible and decrease the 

need for human expertise.(Waring, Lindvall and 

Umeton, 2020) (Fig. 6). 

Figure 6. AutoML Optimization pipeline 

This study will work on an open source 

H2O's AutoML platform. H2O's AutoML is a 

machine learning platform designed to scale to 

very big datasets. It is one of the highest 

qualities among AutoML benchmarks. It is 

widely used in business and academics, and has 

many advocates in the open-source machine 

learning community (Ledell and Poirier, 2020). 

4.1.4 Model parameters 

Two of the most difficult jobs in machine 

learning are parameter tuning and algorithm 

selection. This procedure involves the selection 

of input variables for the models. The selection 

of appropriate input variables for machine 

learning models is essential to the model's 

performance. 
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The input variables are chosen to 

guarantee that the model captures the 

relationship between the inputs and the target 

variable during the training phase in order to 

identify the optimal set of algorithm parameters 

that provides the best model. 

Five parameters were chosen for this 

study, including 

● Max runtime

This parameter is used when constructing

a model to set the maximum number of seconds 

spent to training each individual model in the 

AutoML run. This parameter determines the 

maximum runtime in seconds for the whole grid 

while doing a grid search. 

● Max models

This parameter specifies the maximum

number of models that will be built during the 

AutoML run. 

● nfolds

When nfolds is specified, the method will 

generate models with nfolds +1. If you give 

nfolds = 5, for example, 6 models are created. 

The first five models (cross-validation models) 

are created using 80% of the training data, with 

a different 20% kept out for each of the five 

models. The primary model is then created using 

all of the training data. For the whole training 

dataset, the 5 holdout/validation data predictions 

are merged into a single prediction. This 

"validation prediction" is then compared to the 

real labels, and the total cross-validation metrics 

are calculated.

● Seed

The random sample order can be

controlled using the seed function. The basic 

goal of seeding is to make reproducible the 

result of random. 

● Balance classes

If it is determined during model training

that the majority of data fit into a single 

category. To balance the class distribution, use 

the balance classes option. When activated, 

H2O will either undersample the majority or 

oversample the minority. 

4.1.5 Model Performance Metrics 

Validation the algorithm and obtain the 

best predicted model is to determine which 

algorithm is most suited to solving the problem. 

The model's performance will be 

evaluated using both the standard accuracy 

measurement and the customized error 

measurement designed for this study. 

This study's accuracy measurements 

include 

● Mean Squared Error (MSE)

The MSE metric calculates the average of 

the square root of the errors. MSE squares the 

distances between the points and the regression 

line (the "errors") to remove any negative signs. 

MSE equation: 

𝑀𝑆𝐸 =  
1

𝑁
∑𝑁
𝑖=1 (𝑦𝑖  −  𝑦 𝑖)

2 (1) 

Where: 

N is the total number of rows (observations) 

of your corresponding data frame. 

y is the actual target value. 

𝑦̂ is the predicted target value. 

● Root Mean Squared Error (RMSE)

The RMSE metric assesses how well a 

model can forecast a value. 

RMSE equation: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦 

𝑖
)2

(2) 

Where: 

N is the total number of rows (observations) 

of your corresponding data frame 

y is the actual target value 

𝑦  is the predicted target value 

● Mean Per Class Error

Mean Per Class Error is the average of the 

errors of training, validation, and testing class in 

the dataset. This metric shows toward 

misclassification of the data across these classes. 

The lower of this metric represent the better 

prediction. 
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● Customized Error Measurement (CEM)

CEM assesses the error in the depth

domain. The evaluation metric derived from the 

comparison of predicted and real data results. If 

the forecast is right, the measurement will be 

considered accurate. However, if the forecast is 

not equal to true, the measurement will be 

considered erroneous. The right and wrong 

answers are then summarized as an accuracy 

percentage (Fig. 7). 

CEM equation: 

𝐶𝐸𝑀 =  100 (
𝑛

𝑐 + 𝑛
)           (3) 

Where: 

CEM = Customized error measurement 

c = number of correct predictions counted 

n = number of incorrect predictions counted 

Figure 7. Customized error measurement 

5. Results

5.1 Lithology Classification

To determine the optimal method for 

predicting the model. Three sets of parameter 

tuning are carried out. The parameter settings 

used are displayed in the table below (Table 1).  

Table 1. The parameter for lithology classification 

Parameters Model 1 Model 2 Model 3 

Max runtime (sec) 45 55 120 

Max models 25 25 25 

nfolds 2 2 3 

seed 1 3 3 

Balance classes TRUE TRUE TRUE 

Each model produces a distinct forecast 

and accuracy result. After obtaining the results 

for each model, a model comparison will be 

performed to choose the best prediction for use 

in the subsequent stages. 

According to the results of the experiment, 

when using the XGBoost technique, each 

models get the best outcomes, though varied 

number of decision trees (Table 2). 

Table 2. The number of decision trees and average 

number of decision trees 

Parameters Model 1 Model 2 Model 3 

Number of 

decision trees 
3 - 12 8 - 25 23 - 41 

Average number 

of decision trees 
9 15 31 

According to the various in the parameter, 

model provides a distinct forecast with a varied 

accuracy (Fig. 8).  

Figure 8. The lithology classification model's 

accuracy comparison results 

In the processes of parameter tuning and 

performance evaluation approaches, the training 

goal is to find a sweet spot between overfitting 

and underfitting to ensure optimal training. 

Figures 9 - 11 represent the fit ability of each 

model. The orange color denotes sand forecast, 

whereas the green color indicates shale 

prediction. Model 1 (Fig. 9) shows an 

underfitting situation. It means a model can 

neither learn the training data nor generalize to 

new data because it is not powerful enough. Fig. 

9 shows that the model 1 is unable to capture the 
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relationship between sand and shale data points. 

It has plenty of both sandstone data points 

predicted as shale and shale data points 

predicted as sandstone. Model 2 (Fig. 10) shows 

an appropriate fitting situation. Figure 10 shows 

model is able to capture the relationship 

between sand and shale data points. Model 3 

(Fig. 11) is an overfitting model. It shows model 

works well on the training data but not on the 

evaluation data (Fig. 8). This is due to the model 

remembering the data it has seen and being 

unable to generalize to unseen examples.  

 Combining the highest accuracy with 

appropriate fitting reveals that model 2 is the 

best lithology prediction algorithm. 

Figure 9. Model 1's lithology classification 

(Decision Trees = 9) underfit situation 

Figure 10. Model’2 lithology classification 

(Decision Trees = 15) appropriate fit case 

Figure 11. Model’3 lithology classification 

(Decision Trees = 31) overfit circumstance 

5.2 Reservoir Classification 

After completing the lithology prediction, 

the reservoir classification will be proceeded as 

the following procedure. 

The reservoir classification prediction 

algorithm will be modelled using the same 

approach as the lithology prediction in the 

previous stage. 

Unlike lithology prediction, reservoir 

classification will be predicted into four classes: 

gas-, oil- and water-saturated-sandstones and 

shale. 

To determine the optimal method for 

predicting the model, three sets of parameters 

are carried out. The parameter settings used are 

shown in the table below (Table 3). 

Table 3. Parameter using on each model 

Parameters Model 1 Model 2 Model 3 

Max runtime (sec) 60 140 180 

Max models 25 25 25 

nfolds 2 2 2 

seed 1 1 1 

Balance classes TRUE TRUE TRUE 

According to the results of the experiment, 

when using the XGBoost technique, each 

models get the best outcomes, though varied 

number of decision trees. Table 4 summarizes 

the number of decision trees and average 

number of decision trees for each model. 
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Table 4. The number of decision trees and average 

number of decision trees 

Parameters Model 1 Model 2 Model 3 

Number of 

decision trees 
3 - 11 9 - 25 23 - 61 

Average 

number of 

decision trees 

3 15 44 

Each model produces a distinct forecast 

and accuracy result. After obtaining the results 

for each model, a model comparison was 

performed to determine the best forecast. The 

model accuracy is critical in determining the 

optimum method (Fig. 12).  

Figure 12. The reservoir identification model's 

accuracy comparison results 

Similar to lithology prediction, the 

training aim to identify a sweet spot between 

overfitting and underfitting to ensure optimal 

training. Figures 13–15 demonstrate how well 

each model fits the data. The white color 

represents shale forecasts, the yellow color 

represents gas-, the pink color represents oil-, 

and the grey color represents water-saturated-

sandstones forecasts. Model 1 (Fig. 13) shows 

an underfitting situation. It shows the model is 

unable to capture the relationship between gas-, 

oil- and water-saturated-sandstones and shale 

data points. It has plenty of misclassification of 

data points. Model 2 (Fig. 14) shows an 

appropriate fitting situation. It shows that model 

10 is enable to capture the relationship between 

gas, oil, water-saturated-sandstone and shale 

data points. Model 3 (Fig. 15) is an overfitting 

model. It shows model works well on the 

training data but not on the evaluation data (Fig. 

12). This is because the model remembers the 

data it has seen and is unable to generalize to 

unseen examples.  

Figure 13. Model 1's reservoir identification 

(Decision Trees = 3) underfit situation 

Figure 14. Model’2 reservoir identification 

(Decision Trees = 15) appropriate fit case 

Figure 15. Model’3 reservoir identification 

(Decision Trees = 44) overfit circumstance 
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Model 2 is the best reservoir identification 

prediction algorithm when the highest accuracy 

and proper fitting are combined. 

6. Discussion

Figure 16 represents the graph of model 2's 

testing well lithology classification accuracy 

result. The graph shows three trends in accuracy 

based on CEM and MSE metrics. The first trend 

includes the wells from A to C. The second trend 

includes D and E wells. This trend has the 

highest error of the three groups. The third trend 

includes the wells F to J. This trend has the 

minimum CEM error.  

Figure 16. Evaluation metric using MSE and CEM. 

The measurement indicates the separations of 

lithological trends as three zones. 

The graph of model 2's testing well on 

reservoir identification accuracy result is shown 

in Figure 17. The graph depicts three trends in 

accuracy based on CEM and MSE metrics. The 

first trend includes all of the wells from A to C. 

The second trend includes D and E wells. This 

trend has the highest error of the three trends. 

The third trend includes well F through J. This 

trend has the lowest error.  

To determine the cause of the trend in 

accuracy, a well correlation was performed to 

examine the variation in well log characters to 

see whether it may disclose the underlying 

causes. The correlation illustrates that the log 

characters vary in PTO, LKU-D, and LKU-M 

formations.  

Figure 17. Evaluation metric using MSE and CEM. 

The measurement indicates the separations of 

reservoir identification trends as three zones. 

Figure 18. The well correlation of model 2 testing 

wells.

The gamma ray log in the first trend of the 

PTO formation shows a greater sandstone layer 

content. The second trend shows a moderate 

amount of sandstone layer content. The third 

trend indicates increased shale content.  
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In addition, Gamma ray log in the first 

trend of the LKU-D and LKU-M formations 

reveal high sandstone layer composition. In the 

second trend, the characters combination of 

sandstone and shale. The third trend indicates 

increased shale content. (Fig. 18). 

After combining the accuracy with the 

depositional environment map, it was 

discovered that in the PTO, LKU-D, and LKU-

M formations, the second trend including D and 

E wells, is situated in the depositional 

environment's transition zone (Fig. 19 and 20). 

Figure 19. CEM accuracy of prediction posting on a 

depositional environment map of the PTO 

formation. 

Figure 20. CEM accuracy posting on depositional 

environment map of LKU-D and LKU-M formation. 

7. Conclusions

The main objective of this research is to 

develop AI-based programming that can help in 

the evaluation of petrophysics using machine 

learning approaches. 

The algorithm modeling working on four 

well log data, including Gamma ray and 

Resistivity. Density and Neutron, as well as two 

interpretation logs, comprising lithology 

interpretation and reservoir classification, were 

obtained from 50 deviated wells located across 

the Sirikit main region, the Sirikit field. 

Automated machine learning (AutoML) is 

used in this project to construct algorisms and 

forecast prediction. The model algorithm is 

created based on supervised machine learning 

algorithm of Extreme gradient boosting 

(XGBoost). 

The methodology is divided into two main 

processes, which include create an artificial 

architecture of neuron networks that can 

categorize geological facies including sandstone 

and shale then the achievement of this clustered 

will lead to the secondary objective that is 

reservoir classification including gas-, oil- and 

water-saturated-sandstones and shale 

The findings of the experiment 

demonstrate that the average forecast time for 

lithology identification per well is 62 seconds. 

The average time for reservoir categorization 

estimation per well is 364 seconds. When all 

prediction procedures are combined, the average 

prediction time per well is 426 seconds, or 7 

minutes and 6 seconds.  

Comparing with traditional petrophysical 

evaluation, which required more than 30 

minutes per well, this study demonstrates that 

machine learning algorithms can reduce timing 

on petrophysical interpretation. 
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