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Abstract 

 
Well logging is a widely used geophysical method to gather information from subsurface rocks and establish lithological 
classification. However, the criteria of lithological classification are loosely defined and human error can significantly 

contribute to the uncertainty of the interpretation. This study uses machine learning approaches to classify rock types 

from well logs of the Snake River Plain (SRP) in Idaho. To achieve the comprehensive results, three machine learning 

algorithms, K-nearest neighbour (K-nn), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGB) are 

employed on fifteen types of well logs from four geothermal wells in the SRP under three experimental conditions. In 

the first experiment, the classifiers are trained and tested with data from the same well in the train:test ratio of 7:3. The 

second scenario assigns data from three wells as a training subset and the remaining well as test subset. The third 

experiment uses the largest amount of data as a training subset, which combines data from three wells and 70% of the 

data from the remaining well. Hyperparameters in all classifiers are optimized to enhance model performance. Results 

suggest that SVM and K-nn exhibit comparable performance in all experiments, resulting in 89.68% (s = 10.40) and 

88.84% (s = 9.92) of average accuracy, respectively. XGB shows the highest prediction accuracy in this study with 

average prediction accuracy at 90.67% (s = 8.21). This is largely because XGB partitions data into subgroups based on 
available features iteratively until every class is clearly separated from each other. In addition, XGB can recognize 

missing values in well logs and does not use these values for classification. XGB further indicates that gamma ray, 

neutron, and temperature are the top three important features that are used to improve the prediction accuracy.   
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1. Introduction 

Well logging is a widely used 

geophysical method to gather information from 

subsurface rocks. The main advantages of well 

logging include high vertical resolution, good 

continuity, and convenient data acquisition (Xie 

et al., 2018). Compared to other geophysical 

methods such as resistivity, gravity, and 

magnetic surveys, well logs has a significantly 

higher resolution, and is collected every 30 - 50 

cm (Soltani et al., 2016). Data are continuously 

collected along exploration wells, and well 

logging can gather information both while 

drilling and after drilling. After a massive 

amount of subsurface information is gathered, it 

is interpreted to gain insights into the lithology 

and physical properties of the rock formation. 

However, the criteria of lithological 

classification are loosely defined, and human 

error can significantly contribute to the 

uncertainty of the interpretation. Previously 

there have been many mathematical methods 

such as deconvolution, noise filter, and signal 

stacking applied to well logging data to reduce 

the error of interpretation (Dubois et al., 2007). 

Recently, machine learning algorithms have 

been introduced to solve problems in pervasive 

fields such as regression, feature extraction, and 

classification (Tsangaratos and Ilia, 2016). 

Machine learning algorithms use statistical 

techniques to train models. Without being 

explicitly programmed, they can compute 

quickly and accurately for many tasks, including 

when the data is very noisy, and the task is non-

linear, or requires no explicit knowledge (Devak 

et al., 2015). 

Many machine learning algorithms have 

been developed for various data types such as 

text, picture, and video (Wu and Zhao, 2018). 

Each algorithm uses different theories being 

appropriate for the disparate dataset. This study 

aims to compare the ability of three machine 

learning approaches in rock classification in 

order to ascertain the applicable algorithm for 
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well logging data. This task uses 15 features of 

well logging data collected from four 

geothermal wells in the Snake River Plain (SRP) 

located in Idaho (Figure 1). The SRP is 

characterized by high heat flow and temperature 

gradients and is considered one of the largest 

active geothermal systems in the US (Tester et 

al., 2006). Three machine learning algorithms: 

K-nearest neighbour (K-nn), Support vector 

machine (SVM), and Extreme Gradient 

Boosting (XGB) are selected because they 

implement three theories for classification. 

Moreover, the chosen algorithms are suitable for 

well logging data because they do not require 

any conditions or assumptions on the dataset. 

Some algorithms such as Naive Bayes classifier 

requires specific condition which assumes 

independent features.  

 

 

To achieve comprehensive results, the 

algorithms are employed under three 

experimental conditions. In the first scenario, 

well logging data from each well are 

independent of each other. The algorithms are 

trained and tested with the data from the same 

well. However, in a real use case, machine 

learning algorithms should be trained by data 

from other wells, and then applied to classify 

data from new wells. In the second and third 

scenarios, the data from each of wells are 

combined as a training subset and the rest of data 

are used as test subset. The second scenario 

assigns data from three wells as a training subset 

and the remaining well as test subset. The third 

scenario uses the largest amount of data as a 

training subset, combining data from three wells 

and 70% of the data from the remaining well. By 

adding the second and third scenarios, our study 

is much more close to the application in the real 

world. Our study is a comparison of three 

approaches to general lithological classification. 

There is no class which is more important than 

other classes. Hence, precision, recall, and f1 

score are not tested for this dataset. In this task, 

the classifiers are evaluated using classification 

accuracy scores and confusion matrices. 

 

2. Study Area 

Well logs and well reports from four 

geothermal wells (WO2, Mountain Home, 

Kimma, and Kimberly) in the Snake River Plain 

(SRP), published by Idaho National Laboratory, 

are used in this study. The location of the four 

Figure 1 Location of four study wells (Mountain Home (MH), Kimma, Kimberly, and WO2) in Snake River 

Plain located in Idaho, USA. (Shervais et al., 2013) 
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wells is shown in Figure 1. The depth in each 

well varies from 2000 m to 4000 m. Each well 

has over 8,000 data points. There is a total of 

fifteen types (features) of well logs and 9 rock 

types (classes). Although these wells are located 

near each other, collected features and 

lithological classification are different, as shown 

in Table 1 and 2. 

 

Table 1 Available well-logs (features) in WO2, 

Mountain Home (MH), Kimma, Kimberly in the 

SRP. 
 

Well logs 
(Feature) 

Well name 

WO2 MH Kimma Kimberly 

Gamma 

ray 

Tempera-

ture 

Pressure 

Rmud 

Rd 

Rs 

Thorium 

Uranium 

Potas-

sium 

Vp 

Vs 

Vw 

Density 

Porosity 

Neutron 

✓ 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

✓ 

✓ 

✓ 

✓ 

 

✓ 
 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 
 

✓ 

✓ 

✓ 

✓ 
 

✓ 
 

✓ 

 
✓ 

✓ 

 
 

 

 
 

✓ 

✓ 

✓ 

 

✓ 
 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

 

✓ 

✓ 

Note: Rmud refers to Resistivity in mud 

measurement, Rd refers to Resistivity in deep 

measurement, Rs refers to Resistivity in shallow 

measurement, Vp refers to p-wave, Vs refers to 

s-wave, and Vw refers to water wave speed. 

 

 

 

 

Table 2 Rock types (classes) in WO2, Mountain 

Home (MH), Kimma, Kimberly in the SRP. 
 

Rock 

type 

(Classes) 

Well name 

WO2 MH Kimma Kimberly 

BS 

CS 

CG 

SS 

ST 

TF 

VP 

SR 

RH 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

 ✓ 

 

 
 

 

 

 
 

 ✓ 

  ✓ 

 

 
 

 

 

 
 

  ✓ 

✓ 

 

 
 

 

 

 
 

✓ 

✓ 

Note: BS refers to Basalt, CS refers to 

Claystone, CG refers to Conglomerate, SS refers 

to sandstone, ST refers to siltstone, TF refers to 

Tuff, VP refers to Vitrophyre, SR refers to 

Sedimentaty rock, RH refers to rhyolite 

 

Snake River Plain (SRP) was formed 

due to extension tectonic and magmatic 

processes (Bedrosian and Feucht, 2014; 

Humphreys, 1995). In the early Mesozoic Era, 

the Farallon plate subducted below the North 

American plate. This provided a major tectonic 

feature in West American. After the subducted 

Farallon plate failed, fragments of the Farallon 

plate beneath the North American plate melted 

in the mantle. This caused widespread 

volcanism along the west side of the North 

American plate. The fragments of the Farallon 

plate were renamed Juan de Fuca plate and 

Cocos plate (Lonsdale, 2005). During the Early 

Cretaceous period, worldwide plate motion 

changed. The Pacific plate began moving to the 

north, away from the North American plate. As 

a result, the Juan de Fuca subduction rollbacked 

in this period. This subduction rollback caused 

the North American plate to move westward 

over the Yellowstone hotspot and extend along 

the west of the North American plate (Aly et al., 

2009; DeNosaquo et al., 2009). 

 

3. Machine learning algorithms 

3.1 K-nearest neighbor 

K-nearest neighbour (K-nn) is a 

straightforward machine learning algorithm 
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used widely for both classification and 

regression tasks (Glowacz and Glowacz, 2016). 

It is a non-parametric and lazy classifier, 

meaning that it does not generalize or add any 

assumption to data. This classifier employs a 

feature similarity assumption in which data from 

the same class should have the same pattern of 

features. The K nearest data points of a dataset 

around test data are sought, and test data points 

are classified by the most popular class of K 

nearest data (Rastegarzadeh and Nemati, 2018). 

K-nn has to keep every data point in the database 

to calculate K nearest neighbour for every time 

of classification. The efficiency of K-nn is 

mostly dependent on the database because it 

does not apply any assumption to the dataset 

(Steinbach and Tan, 2009). K-nn cannot 

emphasize some features like the other 

classifiers since feature selection is crucial for 

K-nn. K is a tuning parameter which determines 

the number of nearest data points taken into 

consideration. 

 

3.2 Support Vector Machine 

Support Vector Machine (SVM) 

generates a function that represents the 

relationship between features and classes from 

training data and uses it to classify test data. 

SVM defines the decision boundaries separating 

each class from other classes based on training 

data, and applies it to predict data from test 

subset (De Boissieu et al., 2018). There are 

multiple ways to draw the decision boundaries 

but SVM generates optimal boundaries by 

maximizing margins (Bishop, 2006; Xie et al., 

2018). SVM considers only some data near the 

class boundaries (support vectors) to maximize 

the margin. As a result, SVM can avoid outliers 

and overfitting (Smirnoff et al., 2008). SVM 

creates decision surfaces with a linear function 

thus cannot solve the non-linearity problem. 

Consequently, kernel functions or kernel tricks 

are applied to map input data to a higher 

dimension and linearly separate the data. For 

this study, Radial Basis Function (RBF) kernel 

which maps data into an infinite dimension is 

assigned to this dataset. The concept of SVM 

with RBF is to put a Gaussian decision surface 

onto every data point with Kernel coefficient for 

‘RBF’ (γ) defining a surface spread. Some error, 

called soft margin, is acceptable to generalize 

the model (De Boissieu et al., 2018; Fan et al., 

2018). The number of misclassified data points 

are controlled by the Penalty parameter (C). For 

this study, C and γ are tuned to optimize model 

performance. 

  

3.3 Extreme Gradient Boosting 

 Extreme Gradient Boosting (XGB) is a 

highly efficient and generalized decision tree 

based algorithm. This classifier generates many 

decision trees and then combines the results 

from every tree by vote (Carmona et al., 2018). 

Decision trees define if-clause conditions to 

partitions data into subdivisions based on their 

features iteratively until every class of training 

dataset is clearly separated from each other 

(Friedl and Brodley, 1997). By doing this, 

decision trees have the capacity to select the 

helpful features and to determine the unused 

value (missing value). Each decision tree is built 

up sequentially through the knowledge of 

previous trees by XGB and becomes more 

effective than the previous one. The size of the 

tree is restricted for conserving computational 

costs, allowing XGB more simplified and 

generalized than other tree classifiers (Fan et al., 

2018). There are various parameters that affect 

the performance of XGB, but only three 

parameters are adjusted for this study: learning 

rate (how much the model changes in each 

iteration), min child weight (the minimum 

number of samples at each leaf node), and max 

depth (the maximum depth of an individual tree) 

(Chen and Guestrin, 2016). 

 

4. Methodology 

4.1 Pre-processing 
 Well logging data are correlated with 

lithology from well reports. After every data 
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point is labeled, the process of cleaning data 

begins. Data points which have less than three 

features and also negative data points are 

removed. A problem with this dataset is missing 

data. There are various techniques to tackle this 

problem, including, replacing missing value 

with the mode or creating a new algorithm to 

predict the missing value. However, we do not 

have much data to do that so we replace the 

missing data points with -999.25 instead. We 

aim that our model will recognize -999.25 is a 

missing value. After pre-processing is finished, 

the data are prepared for each experiment in the 

next process. 

 

4.2 Data training, model building, and 

model evaluation 

The data are divided into training, 

validation, and test subsets depending on each 

experiment while preserving class distribution 

using stratified sampling (Figure 2). The 

training dataset is used to train the classifiers. 

The validation dataset is applied to determine 

the optimal tuning parameters. The test dataset 

is employed in order to grain the classification 

accuracy and confusion matrix. However, when 

machine learning algorithms are optimized on 

one dataset, the model can overfit to the specific 

dataset. To ameliorate generalization and hinder 

overfitting with one dataset, each classifier is 

trained and tested 5 times with different 

sampling data. 

 

 

 
 

Figure 2 A diagram shows stratified sampling where 

the data are split while class distribution remains 

constant. 

4.3 Test experiments 
Machine learning algorithms are 

employed under three conditions to a simulate 

real-world application for this study. In the first 

scenario (Experiment I), well logging data from 

each well are randomly split into training (70%), 

validation (10%), and test (20%) subsets, and 

then used to train and test with all three 

classifiers. For this experiment, well logging 

data and classes of each well are kept 

independent from those of other wells.  

The second scenario (Experiment II) 

assigns data from three wells as training data 

and the remaining one well as test data. As there 

are four wells in this dataset, the test data is also 

permuted between wells four times until every 

well has been the test data. The validation subset 

is randomly selected from 10% of each training 

well. Data from three wells are combined 

together since it should be transformed into the 

same format. Lithology is reclassified into three 

classes for this condition: basalt, sedimentary 

rock, and other because some classes such as 

rhyolite, vitrophyre, and tuff do not appear in 

every well. If a class is not presented in the 

training data, the classifiers cannot classify it in 

the test phase. Consequently, rhyolite, 

vitrophyre, and tuff were grouped into other, 

and claystone, conglomerate, sandstone, and 

siltstone were merged with sedimentary rock. 

For this experiment, only gamma ray was a 

helpful predictive feature. We tried to add the 

other features but they gave worse results than 

only gamma ray.  

The third experiment (Experiment III) 

uses the largest amount of data as a training 

subset, combining data from three wells and 

70% of the data from the remaining well. Then 

the remaining data are separated into validation 

(10%) and test (20%) subsets. This scenario was 

created to solve the problem in the second 

scenario where some classes were not included 

in the training data. Lithology is grouped into 

five classes: basalt, sedimentary rock, tuff, 

vitrophyre, and rhyolite. Features are prepared 

into 15 features while missing values are filled 

with -999.25. As some features were not 

collected in every well, their values are -999.25 

in some wells. For example, the values of 
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temperature logs are -999.25 in every data point 

in WO2 well. 

 

4.4 Hyperparameter tuning  

  Hyperparameter or tuning parameter is 

essential to improving the performance of 

machine learning algorithms. A robust 

parameter selection process (tuning) is a process 

which ranks the accuracy of each classifier with 

different parameters to obtain the optimal 

parameters for each algorithm. Tuning 

parameter ranges for this study are exhibited in 

Table 3. The optimal parameter ranges are 

determined with the help of the validation 

dataset. 

 

Table 3 

The optimal range of tuning parameters for 

SVM, K-nn, and XGB algorithms. 

 

Model Tuning 
parameters 

Search 
range 

Optimal 
range 

 

SVM 
 
 

K-nn 

 

 
XGB 

C 

γ 
 

K 

Learning 

rate 

Min child 
weight 

Max depth 

0.1 – 1000 

0.00001 - 
0.01 

1-10 

0.01 - 0.3 

 
0.1 - 100 

 

3 - 10 

0.1 - 100 

0.00001 - 
0.0001 

6 - 10 

0.01 - 0.1 

 
60 - 100 

 

3 - 6 

 

 

5. Results  

5.1 Model Performance  

In this study, we make an attempt to 

design experiments to emulate the real-world, so 

experiments are divided into three conditions. 

Moreover, each experiment is iterated 5 times to 

reduce the effect of the random seeds. The 

average accuracies with standard deviation are 

shown in Table 4. Results suggest that XGB and 

SVM give comparable results, although XGB 

gives the highest overall prediction accuracy at 

90.67% (s = 8.21). SVM accuracy at 89.60% (s 

= 10.40) whereas K-nn provides the lowest 

accuracy at 88.84% (s = 9.92).  

 

Table 4 

Classification accuracies of each algorithm. 

(s stands for standard deviation) 

 

Model Accuracy 
EX I               EX II              EX III 

SVM 

 
KNN 

 
XGB 

90.55% 

(s = 7.73) 
87.85% 

(s = 11.05) 

91.38% 
(s = 9.04) 

93.92% 

(s = 2.62) 
92.99% 

(s = 3.44) 

93.56% 
(s = 2.20) 

84.32% 

(s = 20.86) 
85.69% 

(s = 15.28) 

87.07% 
(s = 13.39) 

 

5.2 Confusion matrix 
The results of confusion matrices from 

three scenarios show that the classifiers predict 

basalt, tuff, and rhyolite accurately. Other 

classes such as vitrophyre and sedimentary 

rocks tend to be misclassified to three classes 

above. For example, in WO2 well in Experiment 

I, every classifier predicts basalt class 

accurately, with over 95% of accuracy but more 

than 35% of conglomerate class is predicted to 

basalt (Figure 3). This is because sedimentary 

rocks are classified by grain size, which is 

difficult to determine with well logging data. 

The second reason is the effect of imbalanced 

classes. Since these wells were in a volcanic 

area, the vast majority of the data is volcanic 

rocks such as basalt and rhyolite. As a result, the 

classifiers have more instances to learn the 

characteristics of volcanic rocks than the other 

classes. Furthermore, the effect of imbalanced 

classes encourages the models to dramatically 

recall the major classes more so than the minor 

classes. One of the particular examples is SVM 

in which predicts classes in three classes for 

WO2 well in Experiment I: basalt, claystone, 

and tuff as shown in Figure 3. As a result, the 

classification accuracy of these three classes is 

over 95% and the overall classification accuracy 

of WO2 well in Experiment I is about 90%. As 

every classifier predicts the major classes 

accurately in every experiment, the best 

classifier is decided by the prediction of the 

minor classes. Consequently, XGB achieves the 
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highest accuracy in lithological classification 

because of its capacity to predict the minor 

classes precise than the other classifiers. 

 

 

 

 
 
Figure 3 Normalized confusion matrix of three 

classifiers of seven rock types in the prediction of 

WO2 well (a) SVM, (b) K-nn, and (c) XGB. 

 

6.Discussion 

Previous studies (e.g. Dubois et al. 

(2007); Konaté et al. (2015); Xie et al. (2018)) 

uses various classical parametric methods such 

as linear, quadratic and Mahalanobis, fuzzy 

logic and machine learning algorithms such as 

Artificial Neural Network (ANN), SVM, K-nn, 

and Gradient tree boosting to evaluate 

lithological classification in Experiment I. 

Gradient tree boosting gives the highest f1 score 

at 82% in Xie et al. (2018) while ANN has the 

highest f1 score at 68% in Dubois et al. (2007). 

ANN achieves the best performance in Konaté 

et al. (2015). In this study, XGB exhibits 

approximately 91% of classification accuracy in 

Experiment I. Results of  Xie et al. (2018) is 

comparable to our study because XGB and 

gradient tree boosting are a subset of random 

forests. A study by Dubois et al. (2007) and 

Konaté et al. (2015) shows that ANN is better 

than K-nn and SVM. However, random forests 

was not applied in their study. The results from 

each study are different because all classes in 

Xie et al. (2018) and Dubois et al. (2007) are 

sedimentary rocks, which feature values are 

varied by both composition and grain size. The 

classes of Konaté et al. (2015) are metamorphic 

and igneous rocks: orthogneiss, paragneiss, 

eclogite, amphibolite, and ultramafic rocks. For 

this study, the major classes are igneous rocks. 

Not only are the rock types different, but also the 

collected features are varied. Moreover, Lopes 

and Jorge (2017) uses ANN, Random Forests, 

and three algorithms of linear regression to fill 

the missing values in well logging data 

(regression task). Although ANN performs 

better than the other algorithms, the statistical 

difference is not significant. This informs that 

each machine learning algorithms are applicable 

to various tasks depending on types of problem 

and data. Even if task and data are almost the 

same, for example well logging data, the 

efficiency of algorithms is still depended on the 

study area. 

The experimental design in second and 

third scenarios are more realistic in geophysical 

application. To change experimental design, the 

results from the classifiers are dissimilar to 

Experiment I. A study by Bestagini et al. (2017) 

uses the same data from Dubois et al. (2007) but 

the classifiers are tested under Experiment II. 

Results suggest that gradient tree boosting 

provides the highest f1 score at 61% while the 

winner of Experiment I gives 68% of f1 score. 
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Nevertheless, our results show that the 

classifiers evaluated on Experiment II give 

higher accuracy than Experiment I. This is 

because rock types or classes are grouped into 

three classes in the second condition. By doing 

this, the difficulty of the task has decreased 

because of reducing variety and specification of 

classes or rock types. Furthermore, SVM gives 

the highest accuracy score in Experiment II but 

there is no significant difference (less than 1%). 

In contrast, the accuracy of the classifiers 

evaluated in Experiment III is lower than 

Experiment I because of different sets of 

features or types of well logs. The number of 

features in Experiment III (15 features) is more 

than Experiment I (4 - 14 features) because 

features in each well are combined. To prepare 

the data in the same format, the uncollected 

features in each well are valued at -999.25. 

Although this leads data to be noisier, it makes 

the data to be trainable. 

The models are expected to be used on 

data come from different wells, similar to 

Experiments II and III. By merging data from 

different wells, two issues have emerged from 

the data: different sets of classes and features. 

Regarding the study area, lithological 

classification and the collected feature in each 

well are varied by the objectives of the study 

(Table 1 and 2). The models cannot predict the 

classes which are not included in training data 

and they cannot be trained with the dataset 

which has different sets of features. Therefore, 

the data should be turned into the same format 

in term of classes and features. The former is 

solved by class grouping, reduces the variety 

and specification of rock types. For instance, 

seven classes (BS, CS, CG, SS, ST, TF, and VP) 

in WO2 well are grouped into three classes 

(basalt, sedimentary rock, and the other) in 

Experiment II. By doing this, gamma ray is the 

only feature that helps with classification in 

Experiment II because it refers to the volume of 

the radiometric elements in the rock formations. 

The latter is tackled by replacing missing value 

with -999.25. This has an adverse effect on the 

efficiency of most algorithms excepted XGB. 

For example, SVM generates decision 

boundaries from training data since replacing 

missing value with -999.25 shifts the decision 

boundaries from the optimal. Likewise, it 

increases the distance between the test data 

points and the optimal training data points in K-

nn. However, replacing missing value with            

-999.25 do not affect XGB because it can select 

the used features on its own. Figure 4 presents 

the importance of each feature which is used by 

XGB. The information shows that some features 

which is 0% of feature scores are not used for 

the classification. There are other techniques to 

fill the missing values. For example, Lopes and 

Jorge (2017) applies machine learning 

algorithms to predict the missing values from 

Figure 4 The used features by XGB in Experiment I. Feature score represents the importance of 

each feature in classification 

  



   Bulletin of Earth Sciences of Thailand  

 
 

Thongsame at al., 2018. Vol. 10, No.1, 31-43 

the remaining well logging data but they used 

600,000 data points for regression.  

Class imbalance is another problem for 

this dataset. The effect of imbalance classes 

causes the classifiers to recall the major classes 

more so than the minor classes. As result, the 

minor classes are misclassified into the major 

classes. This effect influences the classifiers 

using the decision surfaces for classification 

such as SVM than the other. This is because 

decision surfaces which are generated from 

small data points are not fully comprehensive 

the distribution of classes. This problem can be 

solved by up-sampling or down-sampling. Up-

sampling is to randomly generate pseudo minor 

classes from the minor classes and down-

sampling is to randomly eliminate major 

classes. However, we cannot do that on this 

dataset because the minor classes are too small. 

Moreover, standardization and variance scaling 

are not helpful for this dataset. We try to scale 

data and standardize the data but it gives the 

worse results than original data. This is because 

the original well logging data represent the 

characteristics of the rock types and the 

importance of each feature for this dataset. 

Furthermore, classifying sedimentary rock is the 

challenge for well logging interpretation. As 

sedimentary rocks are determined by grain size 

and there are no logging tools detecting grain 

size directly, this is hard to classify sedimentary 

rock by machine learning algorithms accurately. 

Hence, the other methods should be applied to 

improve the performance of the classifiers in 

classifying sedimentary rock. For example, 

Bestagini et al. (2017) adopts feature 

argumentation. As a result, the accuracy of the 

classifier improves 55% to 61%. 

Consequently, feature engineering 

should be done in further study to ameliorate the 

performance of the classifiers. Moreover, the 

tuning parameter is another issue because it 

affects model performances to much as shown 

in Figure 5. This study uses the validation subset 

to determine the tuning parameters. However, 

the results from the validation subset do not 

always be compatible with the test subset. 

 

XGB in Experiment I 

Learning rate 

 
Max depth 

  
Min child weigh 

  
Figure 5 The effect of tuning parameter to the 
accuracy of XGB in Experiment I. Red lines 

represent test subset and green lines represent 

validation subset. 
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Each of classifiers has different benefits 

and drawbacks and they are suitable with 

various dataset. SVM is a generalized algorithm 

because it considers merely support vectors 

(Smirnoff et al., 2008). By doing this, SVM can 

avoid noise and ambiguous data. However, its 

generalization leads SVM to misclassify the 

minor classes and SVM spends the longest time 

in the training phase. K-nn is suitable for the 

data which are no explicit knowledge and there 

is no time spent in the training phase for K-nn. 

K-nn is over-reliant on training data because it 

does not assign any assumption into the data 

(Glowacz and Glowacz, 2016). There is no 

feature weigh function and noise filter for K-nn. 

Hence, feature selection and cleaning data 

greatly influence the performance of K-nn than 

other algorithms. Results from Xie et al. (2018), 

Bestagini et al. (2017), and this study present 

that XGB or Gradient tree boosting exhibits the 

highest the classification accuracy for 

lithological classification using well logging 

data. This is because XGB can select the used 

features in its own without human influence. 

Figure 6 shows the importance of each feature 

for this dataset in Experiment III. Gamma ray, 

temperature, and neutron logs are important 

features to classify the rocks in SRP in which is 

dominated by volcanic rocks. As humans do not 

have the capacity to know which features are 

appropriate for each algorithm, it is better if 

algorithms choose the used features by itself. As 

a result, XGB can recognize that -999.25 is 

missing value for this dataset and it does not use 

this value in classification. Moreover, XGB 

classifies the data by decision trees which 

generate if-clause rules from characteristics of 

training data to classify test data. This is close to 

how human classify the data since XGB is 

appropriate with well logging data which is 

invented for the human to classify rock types. 

For further study, hybrid models for well 

logging classification should be used. The 

hybrid model is the new machine learning 

algorithm which combines the advantages of 

more than one models since its performance 

might be better than the ordinary model. For 

example, Zhu et al. (2016) and Zhu et al. (2018) 

apply the hybrid model between ANN and 

random forest to predict permeability and total 

organic carbon using well logging data, 

respectively. Results show that the hybrid model 

gives a lower error than both ANN and random 

forest.      

7. Conclusions 

 Three machine learning algorithms are 

employed under three conditions in this study in 

order to evaluate the performance of each 

Figure 6 Average feature importance scores of types of well logs in XGB algorithm from Experiment 

III. 
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classifier and identify the most suitable 

algorithm for the well logging data of SRP 

located in Idaho, USA. Results suggest that 

XBG shows the highest accuracy in lithological 

classification. K-nn and SVM give acceptable 

results in well logging interpretation even if K-

nn exhibits the lowest accuracy. This study 

covers both individual and combined well tests. 

For further study, the task which some classes 

are more important than the other classes should 

be done. Well logging data from petroleum is a 

case in point. The oil bed is more important than 

other rocks so this class should be predicted 

accurately than other classes. Feature 

engineering should be applied in a further study 

to incorporate information about grain and pore 

size and to improve model performance. Last 

but not least, the hybrid models should be 

developed to improve the efficiency of well 

logging classification.  
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