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Abstract

Well logging is a widely used geophysical method to gather information from subsurface rocks and establish lithological
classification. However, the criteria of lithological classification are loosely defined and human error can significantly
contribute to the uncertainty of the interpretation. This study uses machine learning approaches to classify rock types
from well logs of the Snake River Plain (SRP) in Idaho. To achieve the comprehensive results, three machine learning
algorithms, K-nearest neighbour (K-nn), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGB) are
employed on fifteen types of well logs from four geothermal wells in the SRP under three experimental conditions. In
the first experiment, the classifiers are trained and tested with data from the same well in the train:test ratio of 7:3. The
second scenario assigns data from three wells as a training subset and the remaining well as test subset. The third
experiment uses the largest amount of data as a training subset, which combines data from three wells and 70% of the
data from the remaining well. Hyperparameters in all classifiers are optimized to enhance model performance. Results
suggest that SVM and K-nn exhibit comparable performance in all experiments, resulting in 89.68% (s = 10.40) and
88.84% (s = 9.92) of average accuracy, respectively. XGB shows the highest prediction accuracy in this study with
average prediction accuracy at 90.67% (s = 8.21). This is largely because XGB partitions data into subgroups based on
available features iteratively until every class is clearly separated from each other. In addition, XGB can recognize
missing values in well logs and does not use these values for classification. XGB further indicates that gamma ray,
neutron, and temperature are the top three important features that are used to improve the prediction accuracy.
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1. Introduction
Well logging is a widely used

such as deconvolution, noise filter, and signal
stacking applied to well logging data to reduce

geophysical method to gather information from
subsurface rocks. The main advantages of well
logging include high vertical resolution, good
continuity, and convenient data acquisition (Xie
et al., 2018). Compared to other geophysical
methods such as resistivity, gravity, and
magnetic surveys, well logs has a significantly
higher resolution, and is collected every 30 - 50
cm (Soltani et al., 2016). Data are continuously
collected along exploration wells, and well
logging can gather information both while
drilling and after drilling. After a massive
amount of subsurface information is gathered, it
is interpreted to gain insights into the lithology
and physical properties of the rock formation.
However, the criteria of lithological
classification are loosely defined, and human
error can significantly contribute to the
uncertainty of the interpretation. Previously
there have been many mathematical methods

the error of interpretation (Dubois et al., 2007).
Recently, machine learning algorithms have
been introduced to solve problems in pervasive
fields such as regression, feature extraction, and
classification (Tsangaratos and llia, 2016).
Machine learning algorithms use statistical
techniques to train models. Without being
explicitly programmed, they can compute
quickly and accurately for many tasks, including
when the data is very noisy, and the task is non-
linear, or requires no explicit knowledge (Devak
et al., 2015).

Many machine learning algorithms have
been developed for various data types such as
text, picture, and video (Wu and Zhao, 2018).
Each algorithm uses different theories being
appropriate for the disparate dataset. This study
aims to compare the ability of three machine
learning approaches in rock classification in
order to ascertain the applicable algorithm for
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well logging data. This task uses 15 features of
well logging data collected from four
geothermal wells in the Snake River Plain (SRP)
located in Idaho (Figure 1). The SRP is
characterized by high heat flow and temperature
gradients and is considered one of the largest
active geothermal systems in the US (Tester et
al., 2006). Three machine learning algorithms:
K-nearest neighbour (K-nn), Support vector
machine (SVM), and Extreme Gradient
Boosting (XGB) are selected because they
implement three theories for classification.
Moreover, the chosen algorithms are suitable for
well logging data because they do not require
any conditions or assumptions on the dataset.
Some algorithms such as Naive Bayes classifier
requires specific condition which assumes
independent features.
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learning algorithms should be trained by data
from other wells, and then applied to classify
data from new wells. In the second and third
scenarios, the data from each of wells are
combined as a training subset and the rest of data
are used as test subset. The second scenario
assigns data from three wells as a training subset
and the remaining well as test subset. The third
scenario uses the largest amount of data as a
training subset, combining data from three wells
and 70% of the data from the remaining well. By
adding the second and third scenarios, our study
is much more close to the application in the real
world. Our study is a comparison of three
approaches to general lithological classification.
There is no class which is more important than
other classes. Hence, precision, recall, and f1
score are not tested for this dataset. In this task,
the classifiers are evaluated using classification
accuracy scores and confusion matrices.
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Figure 1 Location of four study wells (Mountain Home (MH), Kimma, Kimberly, and WO2) in Snake River

Plain located in Idaho, USA. (Shervais et al., 2013)

To achieve comprehensive results, the
algorithms are employed under three
experimental conditions. In the first scenario,
well logging data from each well are
independent of each other. The algorithms are
trained and tested with the data from the same
well. However, in a real use case, machine

2. Study Area

Well logs and well reports from four
geothermal wells (WO2, Mountain Home,
Kimma, and Kimberly) in the Snake River Plain
(SRP), published by Idaho National Laboratory,
are used in this study. The location of the four
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wells is shown in Figure 1. The depth in each
well varies from 2000 m to 4000 m. Each well
has over 8,000 data points. There is a total of
fifteen types (features) of well logs and 9 rock
types (classes). Although these wells are located
near each other, collected features and
lithological classification are different, as shown
in Table 1 and 2.

Table 1 Available well-logs (features) in WO2,
Mountain Home (MH), Kimma, Kimberly in the
SRP.

Well logs Well name
(Feature)

W02 MH Kimma Kimberly
Gamma V4 V4 V4
ray
Tempera- v Y v
ture
Pressure v Y v
Rmud v v
Rd v Y 4
Rs v v
Thorium v v
Uranium v v
Potas- v v
sium
Vp v v v
Vs v v v
Vw v
Density v
Porosity v
Neutron N4

Note: Rmud refers to Resistivity in mud
measurement, Rd refers to Resistivity in deep
measurement, Rs refers to Resistivity in shallow
measurement, Vp refers to p-wave, Vs refers to
s-wave, and Vw refers to water wave speed.

Table 2 Rock types (classes) in WO2, Mountain
Home (MH), Kimma, Kimberly in the SRP.
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Rock

type
(Classes)

Well name

W02 MH Kimma Kimberly

BS
CS
CG
SS
ST
TF
VP
SR v v v
RH v

v v v

SNENENENENENEN

Note: BS refers to Basalt, CS refers to
Claystone, CG refers to Conglomerate, SS refers
to sandstone, ST refers to siltstone, TF refers to
Tuff, VP refers to Vitrophyre, SR refers to
Sedimentaty rock, RH refers to rhyolite

Snake River Plain (SRP) was formed
due to extension tectonic and magmatic
processes (Bedrosian and Feucht, 2014;
Humphreys, 1995). In the early Mesozoic Era,
the Farallon plate subducted below the North
American plate. This provided a major tectonic
feature in West American. After the subducted
Farallon plate failed, fragments of the Farallon
plate beneath the North American plate melted
in the mantle. This caused widespread
volcanism along the west side of the North
American plate. The fragments of the Farallon
plate were renamed Juan de Fuca plate and
Cocos plate (Lonsdale, 2005). During the Early
Cretaceous period, worldwide plate motion
changed. The Pacific plate began moving to the
north, away from the North American plate. As
a result, the Juan de Fuca subduction rollbacked
in this period. This subduction rollback caused
the North American plate to move westward
over the Yellowstone hotspot and extend along
the west of the North American plate (Aly et al.,
2009; DeNosaquo et al., 2009).

3. Machine learning algorithms
3.1 K-nearest neighbor

K-nearest neighbour (K-nn) is a
straightforward machine learning algorithm



G
used widely for both classification and
regression tasks (Glowacz and Glowacz, 2016).
It is a non-parametric and lazy classifier,
meaning that it does not generalize or add any
assumption to data. This classifier employs a
feature similarity assumption in which data from
the same class should have the same pattern of
features. The K nearest data points of a dataset
around test data are sought, and test data points
are classified by the most popular class of K
nearest data (Rastegarzadeh and Nemati, 2018).
K-nn has to keep every data point in the database
to calculate K nearest neighbour for every time
of classification. The efficiency of K-nn is
mostly dependent on the database because it
does not apply any assumption to the dataset
(Steinbach and Tan, 2009). K-nn cannot
emphasize some features like the other
classifiers since feature selection is crucial for
K-nn. K is a tuning parameter which determines
the number of nearest data points taken into
consideration.

3.2 Support Vector Machine

Support  Vector Machine (SVM)
generates a function that represents the
relationship between features and classes from
training data and uses it to classify test data.
SV M defines the decision boundaries separating
each class from other classes based on training
data, and applies it to predict data from test
subset (De Boissieu et al., 2018). There are
multiple ways to draw the decision boundaries
but SVM generates optimal boundaries by
maximizing margins (Bishop, 2006; Xie et al.,
2018). SVM considers only some data near the
class boundaries (support vectors) to maximize
the margin. As a result, SVM can avoid outliers
and overfitting (Smirnoff et al., 2008). SVM
creates decision surfaces with a linear function
thus cannot solve the non-linearity problem.
Consequently, kernel functions or kernel tricks
are applied to map input data to a higher
dimension and linearly separate the data. For
this study, Radial Basis Function (RBF) kernel
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which maps data into an infinite dimension is
assigned to this dataset. The concept of SVM
with RBF is to put a Gaussian decision surface
onto every data point with Kernel coefficient for
‘RBF’ (y) defining a surface spread. Some error,
called soft margin, is acceptable to generalize
the model (De Boissieu et al., 2018; Fan et al.,
2018). The number of misclassified data points
are controlled by the Penalty parameter (C). For
this study, C and vy are tuned to optimize model
performance.

3.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGB) is a
highly efficient and generalized decision tree
based algorithm. This classifier generates many
decision trees and then combines the results
from every tree by vote (Carmona et al., 2018).
Decision trees define if-clause conditions to
partitions data into subdivisions based on their
features iteratively until every class of training
dataset is clearly separated from each other
(Friedl and Brodley, 1997). By doing this,
decision trees have the capacity to select the
helpful features and to determine the unused
value (missing value). Each decision tree is built
up sequentially through the knowledge of
previous trees by XGB and becomes more
effective than the previous one. The size of the
tree is restricted for conserving computational
costs, allowing XGB more simplified and
generalized than other tree classifiers (Fan etal.,
2018). There are various parameters that affect
the performance of XGB, but only three
parameters are adjusted for this study: learning
rate (how much the model changes in each
iteration), min child weight (the minimum
number of samples at each leaf node), and max
depth (the maximum depth of an individual tree)
(Chen and Guestrin, 2016).

4. Methodology
4.1 Pre-processing

Well logging data are correlated with
lithology from well reports. After every data
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point is labeled, the process of cleaning data
begins. Data points which have less than three
features and also negative data points are
removed. A problem with this dataset is missing
data. There are various techniques to tackle this
problem, including, replacing missing value
with the mode or creating a new algorithm to
predict the missing value. However, we do not
have much data to do that so we replace the
missing data points with -999.25 instead. We
aim that our model will recognize -999.25 is a
missing value. After pre-processing is finished,
the data are prepared for each experiment in the
next process.

4.2 Data training, model building, and
model evaluation

The data are divided into training,
validation, and test subsets depending on each
experiment while preserving class distribution
using stratified sampling (Figure 2). The
training dataset is used to train the classifiers.
The validation dataset is applied to determine
the optimal tuning parameters. The test dataset
is employed in order to grain the classification
accuracy and confusion matrix. However, when
machine learning algorithms are optimized on
one dataset, the model can overfit to the specific
dataset. To ameliorate generalization and hinder
overfitting with one dataset, each classifier is
trained and tested 5 times with different
sampling data.

Original data

Training data

Test data
Validation data

=

C1
ca
cz I

[ I-l

lass distribution

Figure 2 A diagram shows stratified sampling where
the data are split while class distribution remains
constant.
4.3 Test experiments

Machine learning algorithms are
employed under three conditions to a simulate
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real-world application for this study. In the first
scenario (Experiment I), well logging data from
each well are randomly split into training (70%),
validation (10%), and test (20%) subsets, and
then used to train and test with all three
classifiers. For this experiment, well logging
data and classes of each well are kept
independent from those of other wells.

The second scenario (Experiment I1)
assigns data from three wells as training data
and the remaining one well as test data. As there
are four wells in this dataset, the test data is also
permuted between wells four times until every
well has been the test data. The validation subset
is randomly selected from 10% of each training
well. Data from three wells are combined
together since it should be transformed into the
same format. Lithology is reclassified into three
classes for this condition: basalt, sedimentary
rock, and other because some classes such as
rhyolite, vitrophyre, and tuff do not appear in
every well. If a class is not presented in the
training data, the classifiers cannot classify it in
the test phase. Consequently, rhyolite,
vitrophyre, and tuff were grouped into other,
and claystone, conglomerate, sandstone, and
siltstone were merged with sedimentary rock.
For this experiment, only gamma ray was a
helpful predictive feature. We tried to add the
other features but they gave worse results than
only gamma ray.

The third experiment (Experiment 1)
uses the largest amount of data as a training
subset, combining data from three wells and
70% of the data from the remaining well. Then
the remaining data are separated into validation
(10%) and test (20%) subsets. This scenario was
created to solve the problem in the second
scenario where some classes were not included
in the training data. Lithology is grouped into
five classes: basalt, sedimentary rock, tuff,
vitrophyre, and rhyolite. Features are prepared
into 15 features while missing values are filled
with -999.25. As some features were not
collected in every well, their values are -999.25
in some wells. For example, the values of
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temperature logs are -999.25 in every data point
in WO2 well.

4.4 Hyperparameter tuning

Hyperparameter or tuning parameter is
essential to improving the performance of
machine learning algorithms. A robust
parameter selection process (tuning) is a process
which ranks the accuracy of each classifier with
different parameters to obtain the optimal
parameters for each algorithm. Tuning
parameter ranges for this study are exhibited in
Table 3. The optimal parameter ranges are
determined with the help of the validation
dataset.

Table 3
The optimal range of tuning parameters for
SVM, K-nn, and XGB algorithms.

Model  Tuning Search Optimal
parameters range range
C 0.1 -1000 0.1-100

SWM -, 0.00001-  0.00001 -

0.01 0.0001

K-nn K 1-10 6-10
Learning 0.01-03 0.01-01
rate

XGB  Minchild  01-100 60-100
weight
Max depth 3-10 3-6

5. Results

5.1 Model Performance

In this study, we make an attempt to
design experiments to emulate the real-world, so
experiments are divided into three conditions.
Moreover, each experiment is iterated 5 times to
reduce the effect of the random seeds. The
average accuracies with standard deviation are
shown in Table 4. Results suggest that XGB and
SVM give comparable results, although XGB
gives the highest overall prediction accuracy at
90.67% (s = 8.21). SVM accuracy at 89.60% (s
= 10.40) whereas K-nn provides the lowest
accuracy at 88.84% (s = 9.92).
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Table 4
Classification accuracies of each algorithm.
(s stands for standard deviation)

Model Accuracy
EXI EX1I EX 1
SVM 90.55% 93.92% 84.32%
(s=7.73) (s=2.62) (s=20.86)
KNN 87.85% 92.99% 85.69%
(s=11.05) (s=3.44) (s=15.28)
XGB 91.38% 93.56% 87.07%
(s=9.04) (s=220) (s=13.39)

5.2 Confusion matrix

The results of confusion matrices from
three scenarios show that the classifiers predict
basalt, tuff, and rhyolite accurately. Other
classes such as vitrophyre and sedimentary
rocks tend to be misclassified to three classes
above. For example, in WO2 well in Experiment
I, every classifier predicts basalt class
accurately, with over 95% of accuracy but more
than 35% of conglomerate class is predicted to
basalt (Figure 3). This is because sedimentary
rocks are classified by grain size, which is
difficult to determine with well logging data.
The second reason is the effect of imbalanced
classes. Since these wells were in a volcanic
area, the vast majority of the data is volcanic
rocks such as basalt and rhyolite. As a result, the
classifiers have more instances to learn the
characteristics of volcanic rocks than the other
classes. Furthermore, the effect of imbalanced
classes encourages the models to dramatically
recall the major classes more so than the minor
classes. One of the particular examples is SVM
in which predicts classes in three classes for
WO2 well in Experiment I: basalt, claystone,
and tuff as shown in Figure 3. As a result, the
classification accuracy of these three classes is
over 95% and the overall classification accuracy
of WO2 well in Experiment | is about 90%. As
every classifier predicts the major classes
accurately in every experiment, the best
classifier is decided by the prediction of the
minor classes. Consequently, XGB achieves the
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highest accuracy in lithological classification
because of its capacity to predict the minor
classes precise than the other classifiers.
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Figure 3 Normalized confusion matrix of three
classifiers of seven rock types in the prediction of
WO2 well (a) SVM, (b) K-nn, and (c) XGB.

6.Discussion

Previous studies (e.g. Dubois et al.
(2007); Konaté et al. (2015); Xie et al. (2018))
uses various classical parametric methods such
as linear, quadratic and Mahalanobis, fuzzy
logic and machine learning algorithms such as
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Artificial Neural Network (ANN), SVM, K-nn,
and Gradient tree boosting to evaluate
lithological classification in Experiment |I.
Gradient tree boosting gives the highest f1 score
at 82% in Xie et al. (2018) while ANN has the
highest f1 score at 68% in Dubois et al. (2007).
ANN achieves the best performance in Konaté
et al. (2015). In this study, XGB exhibits
approximately 91% of classification accuracy in
Experiment I. Results of Xie et al. (2018) is
comparable to our study because XGB and
gradient tree boosting are a subset of random
forests. A study by Dubois et al. (2007) and
Konaté et al. (2015) shows that ANN is better
than K-nn and SVM. However, random forests
was not applied in their study. The results from
each study are different because all classes in
Xie et al. (2018) and Dubois et al. (2007) are
sedimentary rocks, which feature values are
varied by both composition and grain size. The
classes of Konaté et al. (2015) are metamorphic
and igneous rocks: orthogneiss, paragneiss,
eclogite, amphibolite, and ultramafic rocks. For
this study, the major classes are igneous rocks.
Not only are the rock types different, but also the
collected features are varied. Moreover, Lopes
and Jorge (2017) uses ANN, Random Forests,
and three algorithms of linear regression to fill
the missing values in well logging data
(regression task). Although ANN performs
better than the other algorithms, the statistical
difference is not significant. This informs that
each machine learning algorithms are applicable
to various tasks depending on types of problem
and data. Even if task and data are almost the
same, for example well logging data, the
efficiency of algorithms is still depended on the
study area.

The experimental design in second and
third scenarios are more realistic in geophysical
application. To change experimental design, the
results from the classifiers are dissimilar to
Experiment I. A study by Bestagini et al. (2017)
uses the same data from Dubois et al. (2007) but
the classifiers are tested under Experiment II.
Results suggest that gradient tree boosting
provides the highest f1 score at 61% while the
winner of Experiment | gives 68% of f1 score.
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Nevertheless, our results show that the which has different sets of features. Therefore,
classifiers evaluated on Experiment Il give the data should be turned into the same format
higher accuracy than Experiment I. This is in term of classes and features. The former is
because rock types or classes are grouped into  solved by class grouping, reduces the variety
three classes in the second condition. By doing  and specification of rock types. For instance,
this, the difficulty of the task has decreased seven classes (BS, CS, CG, SS, ST, TF, and VVP)
because of reducing variety and specification of in WO2 well are grouped into three classes
classes or rock types. Furthermore, SVM gives  (basalt, sedimentary rock, and the other) in
the highest accuracy score in Experiment Il but  Experiment Il. By doing this, gamma ray is the
there is no significant difference (less than 1%).  only feature that helps with classification in
In contrast, the accuracy of the classifiers Experiment Il because it refers to the volume of

evaluated in Experiment Il is lower than the radiometric elements in the rock formations.
Experiment | because of different sets of  The latter is tackled by replacing missing value
wo?2 Mountain Home
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Figure 4 The used features by XGB in Experiment |. Feature score represents the importance of
each feature in classification

features or types of well logs. The number of  with -999.25. This has an adverse effect on the
features in Experiment 111 (15 features) is more  efficiency of most algorithms excepted XGB.
than Experiment | (4 - 14 features) because For example, SVM generates decision
features in each well are combined. To prepare  boundaries from training data since replacing
the data in the same format, the uncollected missing value with -999.25 shifts the decision
features in each well are valued at -999.25. boundaries from the optimal. Likewise, it
Although this leads data to be noisier, it makes increases the distance between the test data
the data to be trainable. points and the optimal training data points in K-

The models are expected to be used on  nn. However, replacing missing value with
data come from different wells, similar to  -999.25 do not affect XGB because it can select
Experiments Il and I1l. By merging data from  the used features on its own. Figure 4 presents
different wells, two issues have emerged from  the importance of each feature which is used by
the data: different sets of classes and features. = XGB. The information shows that some features
Regarding the study area, lithological which is 0% of feature scores are not used for
classification and the collected feature in each  the classification. There are other techniques to
well are varied by the objectives of the study fill the missing values. For example, Lopes and
(Table 1 and 2). The models cannot predict the  Jorge  (2017) applies  machine  learning
classes which are not included in training data  algorithms to predict the missing values from
and they cannot be trained with the dataset
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the remaining well logging data but they used
600,000 data points for regression.

Class imbalance is another problem for
this dataset. The effect of imbalance classes
causes the classifiers to recall the major classes
more so than the minor classes. As result, the
minor classes are misclassified into the major
classes. This effect influences the classifiers
using the decision surfaces for classification
such as SVM than the other. This is because
decision surfaces which are generated from
small data points are not fully comprehensive
the distribution of classes. This problem can be
solved by up-sampling or down-sampling. Up-
sampling is to randomly generate pseudo minor
classes from the minor classes and down-
sampling is to randomly eliminate major
classes. However, we cannot do that on this
dataset because the minor classes are too small.
Moreover, standardization and variance scaling
are not helpful for this dataset. We try to scale
data and standardize the data but it gives the
worse results than original data. This is because
the original well logging data represent the
characteristics of the rock types and the
importance of each feature for this dataset.
Furthermore, classifying sedimentary rock is the
challenge for well logging interpretation. As
sedimentary rocks are determined by grain size
and there are no logging tools detecting grain
size directly, this is hard to classify sedimentary
rock by machine learning algorithms accurately.
Hence, the other methods should be applied to
improve the performance of the classifiers in
classifying sedimentary rock. For example,
Bestagini et al. (2017) adopts feature
argumentation. As a result, the accuracy of the
classifier improves 55% to 61%.

Consequently,  feature  engineering
should be done in further study to ameliorate the
performance of the classifiers. Moreover, the
tuning parameter is another issue because it
affects model performances to much as shown
in Figure 5. This study uses the validation subset
to determine the tuning parameters. However,
the results from the validation subset do not
always be compatible with the test subset.
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XGB in Experiment |
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Figure 5 The effect of tuning parameter to the
accuracy of XGB in Experiment I. Red lines
represent test subset and green lines represent
validation subset.
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Each of classifiers has different benefits
and drawbacks and they are suitable with
various dataset. SVM is a generalized algorithm
because it considers merely support vectors
(Smirnoff et al., 2008). By doing this, SVM can
avoid noise and ambiguous data. However, its
generalization leads SVM to misclassify the
minor classes and SVM spends the longest time
in the training phase. K-nn is suitable for the
data which are no explicit knowledge and there
IS no time spent in the training phase for K-nn.
K-nn is over-reliant on training data because it
does not assign any assumption into the data
(Glowacz and Glowacz, 2016). There is no
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have the capacity to know which features are
appropriate for each algorithm, it is better if
algorithms choose the used features by itself. As
a result, XGB can recognize that -999.25 is
missing value for this dataset and it does not use
this value in classification. Moreover, XGB
classifies the data by decision trees which
generate if-clause rules from characteristics of
training data to classify test data. This is close to
how human classify the data since XGB is
appropriate with well logging data which is
invented for the human to classify rock types.
For further study, hybrid models for well
logging classification should be used. The
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Figure 6 Average feature importance scores of types of well logs in XGB algorithm from Experiment

feature weigh function and noise filter for K-nn.
Hence, feature selection and cleaning data
greatly influence the performance of K-nn than
other algorithms. Results from Xie et al. (2018),
Bestagini et al. (2017), and this study present
that XGB or Gradient tree boosting exhibits the
highest the classification accuracy for
lithological classification using well logging
data. This is because XGB can select the used
features in its own without human influence.
Figure 6 shows the importance of each feature
for this dataset in Experiment 1. Gamma ray,
temperature, and neutron logs are important
features to classify the rocks in SRP in which is
dominated by volcanic rocks. As humans do not

hybrid model is the new machine learning
algorithm which combines the advantages of
more than one models since its performance
might be better than the ordinary model. For
example, Zhu et al. (2016) and Zhu et al. (2018)
apply the hybrid model between ANN and
random forest to predict permeability and total
organic carbon using well logging data,
respectively. Results show that the hybrid model
gives a lower error than both ANN and random
forest.
7. Conclusions

Three machine learning algorithms are
employed under three conditions in this study in
order to evaluate the performance of each
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classifier and identify the most suitable
algorithm for the well logging data of SRP
located in Idaho, USA. Results suggest that
XBG shows the highest accuracy in lithological
classification. K-nn and SVM give acceptable
results in well logging interpretation even if K-
nn exhibits the lowest accuracy. This study
covers both individual and combined well tests.
For further study, the task which some classes
are more important than the other classes should
be done. Well logging data from petroleum is a
case in point. The oil bed is more important than
other rocks so this class should be predicted
accurately than other classes. Feature
engineering should be applied in a further study
to incorporate information about grain and pore
size and to improve model performance. Last
but not least, the hybrid models should be
developed to improve the efficiency of well
logging classification.
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