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ABSTRACT

Modern seismic techniques such as waveform classification and multi-attribute analysis can define facies
and reservoir parameters with detail than traditional time and amplitude mapping. This report tries to
establish link between lithology and seismic waveform classification by using 3D seismic and well data of
Vulcan Sub-Basin, North West Shelf, Australia. Moreover, multi-attribute analysis was also performed and
used in combination with waveform classification to predict different lithofacies in the area. At first step,
maps were produced through unconstrained or unsupervised classification using different number of classes
varying from five to ten. These maps are seismic data driven and without any guidance from well data. In
the second step, constrained or supervised classification uses the known information at well locations.
Facies maps of three reservoir intervals of Montara, Plover and Nome formations were computed based on
both supervised and unsupervised classification. Waveform classification successfully mapped facies such
as limestone, cemented sandstone and sandstone. In order to improve the prediction, multi-attribute
analysis was applied to predict GR and density for key reservoir intervals. Horizon slices of GR and density
predicted volumes differentiate limestone and sandstone. Combining waveform classification and multi-
attribute analysis detail depositional environment for three reservoir formations can be predicted. Pre-rift
Triassic -Nome Formation indicates shallow marine and shelf margin environment. Plover Formation is
characterized by fluvial sedimentation of sand and shale. This formation is eroded in some parts due to
tectonic uplift. Uppermost studied reservoir of Montara is interpreted as regressive to transgressive
shoreface-delta.

Keywords: Vulcan Sub-Basin, Bonaparte Basin, Unsupervised waveform classification,
Supervised waveform classification, Multi-attribute analysis

1. Introduction
Seismic attributes are powerful
tool for seismic interpreters. They allow

Sub-basin, part of Bonaparte Basin
(Figurel) which 1is characterized by
fluvio-deltaic  to  shallow  marine

geoscientists to interpret faults, channels
and recognize depositional environment
more accurately and rapidly. This study
attempts to predict lithofacies distribution
at different levels within Vulcan Sub-
basin, Australia by using waveform
classification and multi-attribute analysis.

The study area is a part of Vulcan

depositional systems and controlled by
several tectonic events. Based on only
conventional seismic interpretation ,it is
difficult to 1identify the reservoir
distributions in complex structural and
depositional setting. Therefore, it is
required to develop a geophysical
workflow, which can help to predict
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Figure 1. Location map of study area (modified after Peresson et al., 2004)

geometries of different reservoirs in the
study area.

The main objective of this study is
to apply waveform classification and
multi-attributes analysis techniques to
map the three main reservoirs within
study area. These three reservoirs are
Nome, Plover and Montara Formation.
The result of this application will be
useful to develop sand distribution and
depositional model of the area and will
help to predict potential reservoirs for
future exploration and development
programs.

2. Methods

The 3D Post Stack seismic volume
covering approximately 800 sq. km,
conventional logs of five wells along with
core description from two wells were
available for the study (Figure 1).

Well data were used to construct
stratigraphic section across the study area.
Top formation markers and core data
were used to describe the stratigraphic
sequences and depositional environment.

In order to construct reservoirs
distribution and map of different

lithofacies , the synthetic seismogram
were generated to tie seismic to well data
and three key horizons comprise of
Callovian unconformity,Plover Formation
and  Intra-Triassic =~ marker  were
interpreted.

2.1 Waveform Classification

This method was implemented in
this study to classify seismic data into
regions of individual characteristic. This
method considers on seismic trace shape
tracking along the target horizons in
proper time window. By the basis of
seismic wave, seismic properties such as
amplitude, frequency and phase are
resulted in variation of lithology, porosity,
fluid effect etc.

This approach performs based on
Manhattan distance measurement (V.B
Singh et al., 2004). Hermann Minkowski
provides the function that is given by

M= X114 - Byl
Where M is Manhattan distance

A is Reference waveform
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B is Target waveform tracking
along horizon

N is the number of time sample in
each waveform

There are two types of
classification method comprises of
unsupervised and supervised.

Unsupervised method is an analysis of
wave shape over the same interval
without using any extra information such
as well logs data. A supervised method is
an analysis of waveform by identifying its
facies based on well logs data.

2.2 Multi-attribute analysis

This approach is used to predict
reservoir properties by integrating target
logs with several internal seismic
attributes derived from mathematical
transform such as amplitude, trace
envelop instantaneous frequency and
instantaneous phase etc (Hampson et al.,
2001).

The number and types of attributes
are determined by using cross plot
between seismic attributes and reservoir
properties to be measured. A linear
relationship of actual and predicted
parameters was assumed good quality.
The correlation coefficient indicates fit-
error of prediction data.

A linear relationship between
target log and seismic attributes is defined

by
y=a+ bx

The correlation coefficient a and b
in this equation may be derived by
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minimizing the mean-squared prediction
error. The equation is defined by

2 1 N 2
= 1) Gima=bx)

Where the sum is overall point in
cross plot

The correlation coefficient and
prediction error were estimated based on
training data and validation data.
Validation is process in which a well is
removed from established relationship
during training of the data and log values
are predicted by using established
empirical relationship. The optimum
attribute providing the lowest validation
errors will be selected to generate pseudo
gamma ray and density cubes.

In this study, gamma ray and
density logs from five wells are selected
to be target log in order to discriminate
different  lithofacies and  generate
distribution maps.

3. Results

3.1 Waveform Classification

In this method, the study intervals
were defined by using the interpreted
horizons Montara, Plover and Nome.
Figure 2 shows example of the analysis
windows and typical waveforms over
interpreted horizons at the well locations.
The window length is variable for each
horizon in order to cover reservoirs zones.

The waveform classification of
Montara and Plover reservoirs were
covered by 30 ms (10 ms above and 20
ms below interpreted horizon) while
Nome reservoir was covered by 20 ms
windows centered at interpreted horizon.
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Figure 2. Typical traces of the three analyzed
window intervals at well location of a) Montara,
b) Plover, and c)Nome reservoir

The  unsupervised  waveform
classification with 10 and 5 classes were
based on wells drilled in different fault
compartments are comparing to RMS
amplitude. The result points out these
classes are matching to high and low
amplitude. Moreover, some of high
amplitude matches to different waveform
class that may causes of it contains
different in phase or frequency of seismic
(Figure 3).
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After  applying  unsupervised
classification, supervised approach was
studied based on the relationship between
seismic wave characteristics and lithology
from well data (Figure 4).Overall, based
on observation, the seismic waveform can
detect lateral variation in lithology.

For example in Nome Formation,
the different waveform can distinguish
limestone from calcareous cemented
sandstone ~ which is  difficult to
discriminate by wusing only RMS
amplitude (Figure 5).

In Plover reservoir, the relatively
similar waveforms corresponded to
massive sand and sand-shale interbedded
facies. This suggests that thin bed cannot
be detected. The unsupervised waveform
classification shows these waveforms are
relatively matched to the most of
waveform for this interval.

As we have more wells available
for Montara reservoir, the detail of
sandstone and calcareous cemented
sandstone distribution can be observed
from four different waveform
characteristics. The waveform map shows
abundant of sandstone and distribution of
calcareous cemented sandstone, dolomitic
shales and limestone beds (Figure 6).

L4800 m 4

a) RMS amplitude extraction Low

L 4800m

Unsuiervised class

12345678910

b) Unsupervised waveform
classification

Figure 3. Comparison of a) RMS amplitude ,b) Unsupervised waveform example from 10 classes.
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Figure 4. The relationship between waveform characteristic and lithology for Montara , Plover and
Nome reservoir
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Figure 5. Supervised waveform classification Figure 6. Supervised waveform classification
for Nome reservoir for Montara reservoir
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3.2 Multi-attribute analysis

Twenty seismic attributes
transform were initially selected to
estimate relationship with gamma ray
(GR) and density (RhoB) for each
reservoir interval separately. Figure 7
shows analysis window for GR and
density prediction.
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Figure 7. Analysis window with actual and
model log plot for a) GR prediction , b) density
prediction

The most optimum number of
seismic  attributes ~ which  provide
minimum validation error for GR
prediction of Montara, Plover and Nome
reservoirs are attributes 5, 6 and 3
respectively. The average error of GR
prediction for all intervals is ranging
between 20-33API (Figure 8).The most
optimum number of seismic attributes for
density prediction of Montara, Plover and
Nome are attributes 4, 5, and 5
respectively. The average error of density
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prediction for all intervals is ranging
between 0.05-0.08 g/cc (Figure 8).
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Figure 8.The average error plot versus attribute
number for GR and density prediction

Reasonable match between
predicted values of GR and RhoB was
observed within the zone of interest for
Montara  Formation  (Figure 8).
Correlation coefficient for validation in
the case of GR and RhoB is 78.46% and
64.72% respectively. While correlation
coefficient for validation in the case of
Plover is 66.45% to 42.79% for GR and
density. Lowest validation correlation
coefficient is observed in the case of
Nome Formation with 49.55% and
26.78%. This may cause of different in
analysis windows.

Based on observation from
predicted GR and RhoB at Montara
reservoirs,  predicted  density  can
differentiate high density of calcareous
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cemented sandstone at well B from
sandstones reservoirs from others well
Similarly to horizon slice of Nome
reservoirs, the predicted density provided
higher density at limestone at Well C
while provided lower density at
calcareous cement at well B (Figure 9).

However, the horizon slice of
Plover reservoirs shows the unrealistic
due to availability of few wells for
training. Overall, based on the multi-
attributes analysis, the predicted GR can
differentiate sand reservoirs from shale.
Density information can be useful to
discriminate sandstone and calcareous
cemented sandstone.

- Supervised
class
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Multi-attribute Regression
Figure9. Results of supervised waveform
classification compared to multi-attribute
regression , example from Nome reservoir
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4. Integrated Results

The supervised waveform
classification illustrates the variation in
waveform characteristics corresponded to
different lithofacies. The same results
were obtained from multi-attributes
analysis by predicting GR and density
volumes (Figure 10). Consequently, the

waveform classification and multi-
attributes  volumes were used in
combination for the prediction of
lithofacies.

1) In first step lithofacies were
marked based on supervised
classification.

2) Interpretation of lithofacies by
combining GR and density volumes.
Sands are represented by low GR and low
density. Whereas calcareous sands/
limestone have low GR and high density.

To map variation of different
facies based on combination of two
methods, the result were integrated with
logs and core data. Two cores were
available for Montara interval.

In Nome reservoirs, these two
methods give similar results. This level is
comprised of cemented sandstones,
limestones, and sandstone ( Figure 11).
The map of lithofacies shows gaps
oriented SW-NE, as prediction of
lithology could not be done along fault.
The lithofacies distribution in this level
can be correlated to associate with
shallow marine to shelf margins. In Late
Triassic, the N-S compression can cause
uplift and erosion of carbonate platform.

In Plover reservoir, the lithofacies
map do not exhibit reliable results due to
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Figure 10. Comparison results of seismic waveform from conventional seismic cube , GR and density
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Limestone RhoB = 2.72 g/cc

prediction volume. It indicates seismic waveform response to different lithofacies and rock properties

only 2 wells; well C and D used as
reference waveforms and they contain
similar lithofacies. The lithofacies map
shows abundant of sandstone or sandstone
interbedded shale facies. However, the
grey area cannot be interpreted due to
lack of well data. The interpreted
lithofacies distribution may represent
fluvial-deltaic depositional environment.
Complex tectonics in Late Triassic caused
non deposition or erosion in some part
(Figure 12).

Well C Well B

The lithofacies map of Montara reservoir
shows abundant of sand facies in the
west and east flank of the area (Figure
13). While the scatter facies of calcareous
sandstones and dolomite can also be
observed. Based on log response, it
represents symmetrical GR log shape
represent regressive to transgressive
environment  during  syn-rift. ~ The
interpreted depositional environment from
core of well B is marine shelf .While core
data from well D indicates deltaic and
shoreface environment.

Figure 11. Lithofacies map of Nome reservoir

: Sandstone
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°  sandstone
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Figure 12. Lithofacies map of Plover reservoir

Well A Well B

WellC&D Well E

B Anvial

g . Sandstone

- Shale

4-4_4._ Calcareous cement
. ~ sandstone

- Limestone ,Dolomite

Figure 13. Lithofacies map of Montara reservoir

The derived lithofacies from and B can be mapped based on

integrated seismic approaches can be
mapped across fault as elongated sand
body oriented N-S at well C and D. It
may represent shore deposits. In this
case, shoreline can be estimated parallel
to sand body. The Ilimestone and
calcareous cemented sand facies at well A

integration of waveform classification and
density prediction. It indicates shallow
marine environment. While at well E, GR
log signatures show cylindrical shape.
This indicates massive sands associated
with channel fills. According to core data,
paleodepositional environment for

Kaewtapan, 2014. Vol. 7, 84-93
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Montara Formation is varying from
deltaic to shallow marine.

5. Conclusions
The main findings are summarized as;

o Unsupervised  waveform
classification reveals that these classes are
matching with high and low RMS
amplitude. This means that waveforms
are function of rock properties such as
acoustic impedance.

° It is inferred that each
lithology is represented by different
waveform  characteristics. Waveform

characteristic at well locations were
determined for limestone, calcareous
cemented sandstone, and sandstone.

o Supervised Waveform
Classification highlights  similar
waveforms for different lithofacies

associated at well log data.

o Multi-attribute analysis for
GR and density prediction show
reasonable correlation coefficient for the
prediction of these two rock properties.
GR is used to differentiate sand and
shale, whereas, density volumes can
differentiate calcareous cemented sands
and clean sands. However, this prediction
is poor at locations away from wells.

o Lithofacies maps were
prepared by combining results of
waveform classification, multi-attributes
and RMS attribute. These maps show
distribution of limestone, calcareous
sandstones and sandstone within different
reservoir intervals.

o Mapping of lithofacies can
represent  reservoir  distribution  of
landward or seaward during geological
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age. These can be related to sedimentary
deposition, tectonics condition and sea
level changes.

6. Acknowledgements

I would like to express my sincere
gratitude to PTTEP for giving me the
opportunity to purse this M.S. Petroleum
Geosciences degree for one year duration.
I would like to give big thanks to PTTEP
Australasia Team for support with all data
and recommendation for the study. I
would like to thanks my thesis advisor
Professor Mirza Naseer Ahmad for

invaluable supervision and guidance.
Special thanks to Professor Phillip
Rowell, Professor Dr. Joseph .

Lambiase, Professor John K. Warren,
invaluable technical knowledge and
techniques.

7. References

Hampson, D. P., J. S. Schuelke, and J. A.
Quirein, 2001, Use of
multiattribute transforms to
predict log properties from
seismic data: Geophysics, v. 66, p.
220-236.

Peresson, H., E. Woods, and P. Fink,
2003, Fault architecture along the
southeastern margin of the Cartier
Trough, Vulcan Sub-basin, North
West Shelf, Australia;
implications for hydrocarbon
exploration: Timor Sea Petroleum
Geoscience, Proceedings of the
Timor Sea Symposium, Darwin,
Northern Territory, p. 156-167.





