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ABSTRACT 

Modern seismic techniques such as waveform classification and multi-attribute analysis can define facies 
and reservoir parameters with detail than traditional time and amplitude mapping. This report tries to 
establish link between lithology and seismic waveform classification by using 3D seismic and well data of 
Vulcan Sub-Basin, North West Shelf, Australia. Moreover, multi-attribute analysis was also performed and 
used in combination with waveform classification to predict different lithofacies in the area. At first step, 
maps were produced through unconstrained or unsupervised classification using different number of classes 
varying from five to ten. These maps are seismic data driven and without any guidance from well data. In 
the second step, constrained or supervised classification uses the known information at well locations. 
Facies maps of three reservoir intervals of Montara, Plover and Nome formations were computed based on 
both supervised and unsupervised classification. Waveform classification successfully mapped facies such 
as limestone, cemented sandstone and sandstone. In order to improve the prediction, multi-attribute 
analysis was applied to predict GR and density for key reservoir intervals. Horizon slices of GR and density 
predicted volumes differentiate limestone and sandstone. Combining waveform classification and multi-
attribute analysis detail depositional environment for three reservoir formations can be predicted. Pre-rift 
Triassic -Nome Formation indicates shallow marine and shelf margin environment. Plover Formation is 
characterized by fluvial sedimentation of sand and shale. This formation is eroded in some parts due to 
tectonic uplift. Uppermost studied reservoir of Montara is interpreted as regressive to transgressive 
shoreface-delta. 

Keywords: Vulcan Sub-Basin, Bonaparte Basin, Unsupervised waveform classification, 
Supervised waveform classification, Multi-attribute analysis 

1. Introduction
Seismic attributes are powerful 

tool for seismic interpreters. They allow 
geoscientists to interpret faults, channels 
and recognize depositional environment 
more accurately and rapidly. This study 
attempts to predict lithofacies distribution 
at different  levels within Vulcan Sub-
basin, Australia by using waveform 
classification and multi-attribute analysis. 

The study area is a part of Vulcan 

Sub-basin, part of  Bonaparte Basin 
(Figure1) which is characterized by 
fluvio-deltaic to shallow marine 
depositional systems and controlled by 
several tectonic events. Based on only 
conventional seismic interpretation ,it is 
difficult to identify the reservoir 
distributions in complex structural and 
depositional setting. Therefore, it is 
required to develop a geophysical 
workflow, which can help to predict  
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geometries of different reservoirs in the 
study area.  

The main objective of this study is 
to apply waveform classification and 
multi-attributes analysis techniques to 
map the three main reservoirs within 
study area. These three reservoirs are 
Nome, Plover and Montara Formation. 
The result of this application will be 
useful to develop sand distribution and 
depositional model of the area and will 
help to predict potential reservoirs for 
future exploration and development 
programs.  

2. Methods

The 3D Post Stack seismic volume 
covering approximately 800 sq. km, 
conventional logs of five wells along with 
core description from two wells were 
available for the study (Figure 1).  

Well data were used to construct 
stratigraphic section across the study area. 
Top formation markers and core data 
were used to describe the stratigraphic 
sequences and depositional environment. 

In order to construct reservoirs 
distribution and map of different  

 
lithofacies , the synthetic seismogram 
were generated to tie seismic to well data 
and three key horizons comprise of 
Callovian unconformity,Plover Formation 
and Intra-Triassic marker were 
interpreted. 

2.1 Waveform Classification 

This method was implemented in 
this study to classify seismic data into 
regions of individual characteristic. This 
method considers on seismic trace shape 
tracking along the target horizons in 
proper time window. By the basis of 
seismic wave, seismic properties such as 
amplitude, frequency and phase are 
resulted in variation of lithology, porosity, 
fluid effect etc.  

This approach performs based on 
Manhattan distance measurement (V.B 
Singh et al., 2004). Hermann Minkowski 
provides the function that is given by 

M=     ∑ ௜ܣ|
ே
௜ୀଵ െ  |௜ܤ

Where M is Manhattan distance 

           A is Reference waveform 

Figure 1. Location map of study area (modified after Peresson et al., 2004) 
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           B is Target waveform tracking 
along horizon 

N is the number of time sample in 
each waveform 

There are two types of 
classification method comprises of 
unsupervised and supervised. 
Unsupervised method is an analysis of 
wave shape over the same interval 
without using any extra information such 
as well logs data. A supervised method is 
an analysis of waveform by identifying its 
facies based on well logs data. 

2.2 Multi-attribute analysis 

This approach is used to predict 
reservoir properties by integrating target 
logs with several internal seismic 
attributes derived from mathematical 
transform such as amplitude, trace 
envelop instantaneous frequency and 
instantaneous phase etc (Hampson et al., 
2001).  

The number and types of attributes 
are determined by using cross plot 
between seismic attributes and reservoir 
properties to be measured. A linear 
relationship of actual and predicted 
parameters was assumed good quality. 
The correlation coefficient indicates fit-
error of prediction data. 

 A linear relationship between 
target log and seismic attributes is defined 
by 

ݕ ൌ ܽ ൅  ݔܾ

The correlation coefficient a and b 
in this equation may be derived by 

minimizing the mean-squared prediction 
error. The equation is defined by 

ଶܧ ൌ 	
1
ܰ
෍ ሺݕ௜ െ ܽ െ ௜ݔܾ

ே

௜ୀଵ
ሻଶ 

Where the sum is overall point in 
cross plot 

The correlation coefficient and 
prediction error were estimated based on 
training data and validation data. 
Validation is process in which a well is 
removed from established relationship 
during training of the data and log values 
are predicted by using established 
empirical relationship. The optimum 
attribute providing the lowest validation 
errors will be selected to generate pseudo 
gamma ray and density cubes.  

In this study, gamma ray and 
density logs from five wells are selected 
to be target log in order to discriminate 
different lithofacies and generate 
distribution maps. 

3. Results

3.1 Waveform Classification 
In this method, the study intervals 

were defined by using the interpreted 
horizons Montara, Plover and Nome. 
Figure 2 shows example of the analysis 
windows and typical waveforms over 
interpreted horizons at the well locations. 
The window length is variable for each 
horizon in order to cover reservoirs zones.  

The waveform classification of 
Montara and Plover reservoirs were 
covered by 30 ms (10 ms above and 20 
ms below interpreted horizon) while 
Nome reservoir was covered by 20 ms 
windows centered at interpreted horizon. 

Kaewtapan, 2014. Vol. 7, 84-93



   Bulletin of Earth Sciences of Thailand 

3
0

 m
s 

30
 m

s 
2

0
 m

s 

Well A Well B Well C Well D Well E

a)

b)

c)

Unsupervised class

1 52 3 4 6 7 8 9 10

4800 m

N

4800 m4800 m4800 m

Well E
Well D

Well C
Well B

Well A

b) Unsupervised waveform 
classification

Well D

Well E

Well C

Well A

Well B

N

4800 m4800 m4800 m

a) RMS amplitude extraction

4800 m

High

Low

 
 
 

The unsupervised waveform 
classification with 10 and 5 classes were 
based on wells drilled in different fault 
compartments are comparing to RMS 
amplitude. The result points out these 
classes are matching to high and low 
amplitude. Moreover, some of high 
amplitude matches to different waveform 
class that may causes of it contains 
different in phase or frequency of seismic 
(Figure 3).    

 

After applying unsupervised 
classification, supervised approach was 
studied based on the relationship between 
seismic wave characteristics and lithology 
from well data (Figure 4).Overall, based 
on observation, the seismic waveform can 
detect lateral variation in lithology.   

For example in Nome Formation, 
the different waveform can distinguish 
limestone from calcareous cemented 
sandstone which is difficult to 
discriminate by using only RMS 
amplitude (Figure 5).  

In Plover reservoir, the relatively 
similar waveforms corresponded to 
massive sand and sand-shale interbedded 
facies. This suggests that thin bed cannot 
be detected. The unsupervised waveform 
classification shows these waveforms are 
relatively matched to the most of 
waveform for this interval.  

As we have more wells available 
for Montara reservoir, the detail of 
sandstone and calcareous cemented 
sandstone distribution can be observed 
from four different waveform 
characteristics. The waveform map shows 
abundant of sandstone and distribution of 
calcareous cemented sandstone, dolomitic 
shales and limestone beds (Figure 6).  

 

 

 

Figure 2. Typical traces of the three analyzed 
window intervals at well location of a) Montara, 
b) Plover, and c)Nome reservoir

Figure 3. Comparison of a) RMS amplitude ,b) Unsupervised waveform example from 10 classes. 
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Figure 4. The relationship between waveform characteristic and lithology for Montara , Plover and 
Nome reservoir 

a) Montara
reservoir

b) Plover reservoir

c) Nome reservoir

Figure 5. Supervised waveform classification 
for Nome reservoir 

Figure 6. Supervised waveform classification 
for Montara  reservoir 
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3.2 Multi-attribute analysis 
Twenty seismic attributes 

transform were initially selected to 
estimate relationship with gamma ray 
(GR) and density (RhoB) for each 
reservoir interval separately. Figure 7 
shows analysis window for GR and 
density prediction. 

 

The most optimum number of 
seismic attributes which provide 
minimum validation error for GR 
prediction of Montara, Plover and Nome 
reservoirs are attributes 5, 6 and 3 
respectively. The average error of GR 
prediction for all intervals is ranging 
between 20-33API (Figure 8).The most 
optimum number of seismic attributes for  
density prediction of Montara, Plover and 
Nome are attributes 4, 5, and 5 
respectively. The average error of density 

prediction for all intervals is ranging 
between 0.05-0.08 g/cc (Figure 8). 

 Reasonable match between 
predicted values of GR and RhoB was 
observed within the zone of interest for 
Montara Formation (Figure 8). 
Correlation coefficient for validation in 
the case of GR and RhoB is 78.46% and 
64.72%  respectively. While correlation 
coefficient for validation in the case of 
Plover is 66.45% to 42.79% for GR and 
density. Lowest validation correlation 
coefficient is observed in the case of 
Nome Formation with 49.55% and 
26.78%. This may cause of different in 
analysis windows. 

Based  on observation from 
predicted GR and RhoB at Montara 
reservoirs, predicted density can 
differentiate high density of calcareous 

b
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Figure 8.The average error plot versus attribute 
number for GR and density prediction 

Figure 7. Analysis window with actual and 
model log plot for a) GR prediction , b) density 
prediction  

Kaewtapan, 2014. Vol. 7, 84-93



   Bulletin of Earth Sciences of Thailand 

cemented sandstone at well B from 
sandstones reservoirs from others well 
Similarly to horizon slice of Nome 
reservoirs, the predicted density provided 
higher density at limestone at Well C 
while provided lower density at 
calcareous cement at well B (Figure 9). 

However, the horizon slice of 
Plover reservoirs shows the unrealistic 
due to availability of few wells for 
training. Overall, based on the multi-
attributes analysis, the predicted GR can 
differentiate sand reservoirs from shale. 
Density information can be useful to 
discriminate sandstone and calcareous 
cemented sandstone. 

4. Integrated Results
 The supervised waveform 
classification illustrates the variation in 
waveform characteristics corresponded to 
different lithofacies. The same results 
were obtained from multi-attributes 
analysis by predicting GR and density 
volumes (Figure 10). Consequently, the 
waveform classification and multi-
attributes volumes were used in 
combination for the prediction of 
lithofacies. 

1) In first step lithofacies were
marked based on supervised
classification. 

2) Interpretation of lithofacies by
combining GR and density volumes. 
Sands are represented by low GR and low 
density. Whereas calcareous sands/ 
limestone have low GR and high density. 

To map variation of different 
facies based on combination of two 
methods, the result were integrated with 
logs and core data. Two cores were 
available for Montara interval. 

In Nome reservoirs, these two 
methods give similar results. This level is 
comprised of cemented sandstones, 
limestones, and sandstone ( Figure 11). 
The map of lithofacies shows gaps 
oriented SW-NE, as prediction of 
lithology could not be done along fault. 
The lithofacies distribution in this level 
can be correlated to associate with 
shallow marine to shelf margins. In Late 
Triassic, the N-S compression can cause 
uplift and erosion of carbonate platform. 

In Plover reservoir, the lithofacies 
map do not exhibit reliable results due to  
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Figure9. Results of supervised waveform 
classification compared to multi-attribute 
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only 2 wells; well C and D used as 
reference waveforms and they contain 
similar lithofacies. The lithofacies map 
shows abundant of sandstone or sandstone 
interbedded shale facies. However, the 
grey area cannot be interpreted due to 
lack of well data. The interpreted 
lithofacies distribution may represent 
fluvial-deltaic depositional environment. 
Complex tectonics in Late Triassic caused 
non deposition or erosion in some part 
(Figure 12). 

The lithofacies map of Montara reservoir 
shows abundant of  sand facies in the 
west and east flank of the area (Figure 
13). While the scatter facies of calcareous 
sandstones and dolomite can also be 
observed. Based on log response, it 
represents symmetrical GR log shape 
represent regressive to transgressive 
environment during syn-rift. The 
interpreted depositional environment from 
core of well B is marine shelf .While core 
data from well D indicates deltaic and 
shoreface environment.  

Figure 10. Comparison results of seismic waveform from conventional seismic cube , GR and density 
prediction volume. It indicates seismic waveform response to different lithofacies and rock properties 

Figure 11. Lithofacies map of Nome reservoir
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The derived lithofacies from 
integrated seismic approaches can be 
mapped across fault as elongated sand 
body oriented N-S at well C and D. It 
may represent  shore deposits. In this 
case, shoreline can be estimated parallel 
to sand body. The limestone and 
calcareous cemented sand facies at well A  

and B  can be mapped based on 
integration of waveform classification and 
density prediction. It indicates shallow 
marine environment. While at well E,  GR 
log signatures show cylindrical shape. 
This indicates massive sands associated 
with channel fills. According to core data, 
paleodepositional environment for 

Figure 12. Lithofacies map of Plover reservoir

Figure 13. Lithofacies map of Montara reservoir
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Montara Formation  is varying from 
deltaic to shallow marine. 

5. Conclusions
The main findings are summarized as;

 Unsupervised waveform
classification reveals that these classes are 
matching with high and low RMS 
amplitude. This means that waveforms 
are function of rock properties such as 
acoustic impedance. 

 It is inferred that each
lithology is represented by different 
waveform characteristics. Waveform 
characteristic at well locations were 
determined for limestone, calcareous 
cemented  sandstone, and  sandstone. 

 Supervised Waveform 
Classification  highlights similar 
waveforms for different lithofacies 
associated at well log data. 

 Multi-attribute analysis for
GR and density prediction show 
reasonable correlation coefficient for the 
prediction of these two rock properties. 
GR is used to differentiate sand and 
shale, whereas, density volumes can 
differentiate calcareous cemented sands 
and clean sands. However, this prediction 
is poor at locations away from  wells.    

 Lithofacies maps were
prepared by combining results of 
waveform classification, multi-attributes 
and RMS attribute. These maps show 
distribution of limestone, calcareous 
sandstones and sandstone within different 
reservoir intervals.   

 Mapping of lithofacies can
represent reservoir distribution of 
landward or seaward during geological 

age. These can be related to sedimentary 
deposition, tectonics condition and  sea 
level changes. 
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