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Abstract

Landslide susceptibility is a significant concern in Elgon County, Uganda,
particularly during the rainy season. This vulnerability is attributable to several
factors, including steep slopes, fertile soils, and dense settlements on volcanic
ridges. Landslide susceptibility maps are important in mitigating the risk particularly
at the local level. The objectives of this study were 1) to model landslide suscep-
tibility via an interpretable machine-learning model, 2) to identify the most
influential factors for landslide susceptibility in the study area, and 3) to assess
the exposure of settlements to landslide risk. This study employed the XGBoost
model trained on nine conditioning factors via GIS data. Exposure analysis was
performed through the zonal statistics and spatial overlay of the landslide
susceptibility map with the settlement footprint data and classified into four risk
exposure classes. The results show that the XGBoost model attained an AUC
of 95.2%, indicating its precision. The results further revealed that approximately
50% of the slopes are susceptible to landslides and that 76% of the settlements
in the study area are highly exposed to landslide risk. Bulugunya, Sisiyi, Lusha,
and Buginyanya subcounties located on the middle slopes are the most
susceptible areas in Elgon County and have relatively high settlement exposure
because of the overlap of dense settlements with unstable terrain. The SHAP
analysis identified slope, elevation, and the NDVI as the key influencing factors
of susceptibility. This study highlights the importance of conducting detailed,
local-scale landslide susceptibility and risk exposure mapping as necessary for
risk and vulnerability assessment. The generation of such maps has the potential
to inform land-use planning and risk-reduction strategies, thus offering significant
advantages over regional models. Furthermore, by interpreting the XGBoost
model, this study provides valuable insights into the decision-making processes
of machine learning models, promoting their practical application in designing
appropriate disaster mitigation plans.
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Introduction

Landslides are among the most significant natural
hazards affecting mountainous regions worldwide [1-
2]. Landslides involve the mass flow/movement of
rocks, debris, and earth downslope [3]. The estimated
financial impact of these events on property damage is

approximately US$4 billion per annum [4]. The continents
of Asia, South America, and Africa have been particularly
badly affected, with significant impacts on livelihoods
as a result of their economic, social, political, and
cultural vulnerabilities [5]. Landslides pose a serious
hazard to densely populated mountainous areas in
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Africa, including the Democratic Republic of the Congo,
Uganda, and Cameroon [6].

The Sendai Framework is centered on promoting an
enhanced understanding of disaster risk and governance
[7] and emphasizes enhancing communities' disaster
resilience. Detailed landslide inventories and landslide
susceptibility (LSS) maps are considered indispensable
tools for mitigating landslide risk. However, the absence
of such data in many African countries has been
identified as a significant impediment to the implemen-
tation of effective risk-reduction strategies [8]. Despite
the absence of quantitative exposure evaluations in the
creation of focused mitigation strategies and the allocation
of resources, landslide susceptibility maps offer valuable
insights into hazard potential [9].

The United Nations (UN) Sustainable Development
Goals (SDGSs) prioritize community welfare, sustainable
land use, and disaster resilience [10]. Landslide disasters
result in enormous destruction of homes, farmland, and
livelihoods, which impedes progress in attaining SDGs,
especially SDGs 1 (no poverty) and 2 (zero hunger).
Additionally, due to exposure due to settlement on
unstable slopes, landslides also undermine SDG 11
(sustainable cities and communities) and impact SDG
3, which concerns good health and well-being due to
deaths, injuries, and relocation. This research, therefore,
contributes to the SDG agenda by offering creative
geospatial modeling and emphasizing the need for
local-scale risk assessment for development in the
Bulambuli district.

The Mt. Elgon region of eastern Uganda is a
relatively understudied region, with limited research on
landslide susceptibility and exposure. The majority of
landslide studies are case-specific in nature, with a
focus on factors such as farmers' perceptions of
landslides [11], soil and sediment yield [12], land use
changes in landslides [13], and the topographic influence
on landslides [14]. Several studies have addressed the
issue of susceptibility, albeit at different geographical
scales, LSS, and mobilization rates for the entire Mount
Elgon region [1], susceptibility to road networks [15],
and susceptibility of people with disabilities [16]. In
relation to vulnerability and exposure, there is a paucity
of research in this region. [17] studied the vulnerability
of elements at risk in the Manafwa River catchment,
and [8] studied the exposure of schools to landslides in
the Bududa district. In other studies, the focus has been
on the exposure of buildings in urban areas [18-19].
Urban areas, particularly in developed countries, are
characterized by increased resilience levels. Consequently,
the generalisability of such studies to developing countries,
which are often associated with remote settlements on
mountain slopes, is limited.

The Bulambuli District is located within the Mount
Elgon region in eastern Uganda. This region is suscep-
tible to landslides triggered by rainfall, which occurs

almost annually during the rainy season [15,20]. The
area's topography is characterized by rugged terrain,
heavy rainfall, rapid erosion, and high population density
[17]. These factors contribute to frequent landslides,
often resulting in fatalities and significant livelihood
disruption (e.g., damaged homes, farmland, and infra-
structure). For example, on 29 November 2024, a
landslide resulted in more than 28 fatalities and left
several others missing (Figure 1). The region is subject
to various mass wasting events, including rockfalls,
mudslides, and landslides, which have been shown to
result in severe consequences [1, 17]. Following the
catastrophic Nametsi landslide, which resulted in the
demise of more than 365 individuals in 2010 [13], the
government of Uganda initiated a series of population
relocation programs. This strategic intervention was
intended to address overcrowding in upper Bududa
slopes by relocating affected residents to specific areas
within the Bulambuli district. This initiative has been met
with several challenges [17], with people being unwilling
to move to likely changes in social, cultural, political, and
economic livelihoods. The region is considered one of
Uganda's most densely populated areas, favored by its
conducive climate and fertile soils. The distribution of
settlements, which are predominantly composed of
temporary structures dispersed across entire mountain
slopes, has been identified as a contributing factor to
high-risk exposure. Proposals for restructuring settlements
into mini towns have been developed to increase their
resilience to landslide hazards [17]. To complement the
studies above, comparable research focusing on the
effects of land use change and planning on landslides
in mountainous areas highlights how integrated land
use can reduce exposure to hazards, whereas defores-
tation, agricultural expansion, and unregulated settlements
may exacerbate slope instability [21-23]. This indicates
the urgency of applying geospatially informed planning
techniques in Bulambuli, where land use and settlement
expansion are unregulated, increasing the risk of
landslides.

The geographical bias inherent in these LSS studies
is evident, with a preponderance of research focusing
on the Bududa District, whereas the other districts
within the region receive comparatively less attention.
Furthermore, none of these studies have focused on
mapping LSSs via an interpretable model at the local
scale, nor have they attempted to provide a compre-
hensive overview by assessing risk in the form of
settlement exposure. It is imperative to recognize the
pivotal role of local-level maps in comprehending risk
and formulating suitable mitigation strategies, such as
establishing early warning systems and planning
resettlement reforms. This phenomenon is especially
evident in Bulambuli, a resettlement area designated
by the government of Uganda. Landslide exposure
mapping is a rarely implemented tool that is nevertheless
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important for informing land use planning, establishing
risk management policies, and implementing risk miti-
gation strategies [24]. The evaluation of risk necessitates
the identification of potential hazards, the identification
of elements that are susceptible to risk (or exposure),
and the determination of their vulnerability.

LSS maps can be produced swiftly via machine
learning models, given the automation associated with
machine learning. However, their utility can be hampered
by failure to comprehend how the model decisions are
made (black-box models). Therefore, LSS model inter-
pretability has become a key aspect of LSS studies to
increase the practical utility of model outputs, especially
given that maps may not conform to existing field
conditions, resulting from inventory data bias. Recently,
many model explanation techniques have emerged,
including Shapley additive explanations (SHAPS), partial
dependence plots, and permutation feature importance
plots. These techniques, also known as post-hoc expla-
nations, have been successfully used in various fields,
including medical diagnosis, legal decision-making,
and LSS mapping [25—26]. Post hoc explanation methods
can help us understand how machine learning models
predict landslides. This makes these complex models
easier to understand. However, there is a dearth of
research on the effective application and interpretation
of these methods, specifically for landslide suscep-
tibility analysis. Most studies have employed pretraining
variable importance analysis [27-28], the Gini index
[29], and partial dependency plots [30]. However, such
analysis is not diagnostic and therefore provides no
insights into the decision mechanisms of the machine
learning model [31]. Pradhan et al. [25] applied SHAP
summary and dependence plots to analyze the local
and global contributions of individual features in their
study. Nevertheless, the challenge is interpreting such
plots by the end users, given their lack of familiarity with
model interpretation techniques. Furthermore, given
that standard SHAP outputs are purely local, applying
them in thematic analysis may be challenging. To
address this limitation, this study adopts a multi-
resolution SHAP analysis that considers individual
contributions and thematic global effects on the basis
of aggregated feature groups. It is expected that this
will enhance usability by making model outputs more
accessible and actionable for both technical experts
and practitioners.

To address the knowledge gaps identified, the
objectives of this research are as follows: (1) to create
the first higher-resolution LSS map for Elgon County,
(2) to identify the most influential landslide conditioning
factors through multiresolution SHAP analysis, and (3)
to assess the settlement exposure to landslide risk,

which is the first of its kind for the study area. These
findings help to further refine our understanding of
landslide hazards in the area and their most significant
conditioning factors. Furthermore, these findings will be
instrumental in evaluating landslide risk reduction
strategies and informing policy decisions about land
use planning, infrastructure development, settlement
patterns, and agricultural practices. This work will also
further the utility of SHAP-based interpretation in
landslide modeling via machine learning.

Materials and methods
1) Study area

The present study was conducted in Elgon County,
which is part of the Bulambuli District in the Elgon
subregion of Eastern Uganda. The Bulambuli District is
situated on the eastern slopes of the Mt. Elgon land-
scape, an extinct shield volcano believed to have formed
during the late Miocene era. Elgon County is bordered
by Sironko District to the south, Bulambuli County to
the west, Kapchorwa District to the north, and Kween
District to the east (Figure 2). The highest peak of the
mountain is located at an altitude of 4,321 m above sea
level [15, 32]. The district is composed of two counties,
which are divided into two distinct physiographic zones:
the upper mountain zone, also known as Elgon County,
and the lower Bulambuli County, which is characterized
by extensive plains that extend up to Lake Bisinia and
is situated at an elevation of 1000 m above sea level.
[20]. The district’s population is approximately 230,000
people, predominantly residing on fertile slopes in Elgon
County. Geomorphologically, Bulambuli is distinguished
by a contrasting relief characterized by cliffs, ridges,
steep and gentler slopes, and river valleys occupied by
major rivers draining the area. The upper part of the county,
extending toward the mountain peak at altitudes above
2,300 m, is characterized by a dense cover of natural
vegetation, forming the protected expanse of Mount
Elgon National Park. In contrast, the lower plains in
Bulambuli County are characterized by a prepon-
derance of cropland and settlements.

The study area is characterized by a tropical
climate, marked by high annual precipitation levels that
exceed 1,500 millimeters [33]. The region is further
divided into two distinct wet seasons, with the wettest
months being from March to December and the drier
season running between December and March. The
rainfall patterns are influenced by the prevailing winds,
location, and altitude. The area experiences a high
mean annual temperature of 23°C and average daily
maximum and minimum temperatures of 28°C and
15°C, respectively [34].
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Figure 1 Examples of landslides and their impacts ir{ Bula‘mbuli District. (a) Mudslide that killed more than 28
people in Masugu village (1.217441° N, 34.368746° E). (b) Damaged mud and wattle houses due to a recent
landslide in Elgon County (1.217441° N, 34.373852° E).

The geology of the Mount Elgon region is charac-
terized by the presence of ancient gneiss and granitic
rocks. [35], which are dated to the Precambrian era.
Additionally, younger carbonatite rocks of intrusive
volcanic origin have been identified, estimated to be
Oligocene to early Miocene in age, and they are believed
to cover southern slopes. The rocks are weakened due
to rock porphyrites and geological alteration [35]. These
rocks are very susceptible to weathering processes,
erosion, and landslides [32]. Scoon [35] reported that
lava flows comprising nephelinite and basalt rocks,
along with pyroclastic materials such as agglomerates
and tuff, are predominant in the area. It is estimated
that the last volcanic activity in the Mt. Elgon region
occurred approximately 12 million years ago. In addition
to the presence of volcanic rocks, the area is charac-
terized by the prevalence of sedimentary rocks, particularly
within the valleys of the numerous rivers originating
from the mountain peak.

The area is characterized by deep, fertile, and well-
drained soils of volcanic origin, which exhibit a dark and
red complex. The prevalent soil texture in the region is
clay, with clay loams and sandy clay loams also present.
During the rainy season, the soil becomes exceedingly
adhesive [36], a property that contributes to their elevated
water retention and nutrient-holding capacity. This results
in significantly denser soils, leading to increased
susceptibility to landslides during the wet season,
particularly on middle slopes, which experience a
greater frequency of landslides than upper slopes do.
The area is drained by two primary rivers, Simu and
Sisi, and their tributary streams, which originate from
the mountain summit and descend into the Sironko
River before discharging into Lake Bisinia.

The major land use categories in the Bulambuli
District include croplands, planted forests, natural forests,
barren terrain, and built-up areas. Crop cultivation is
the predominant agricultural practice in this region and
is undertaken by smallholder farmers. This activity is
primarily concentrated on slopes less than 2,000 m
above sea level. Owing to rapid population growth,

agricultural activities have encroached upon extant
natural conservation areas. Indeed, a notable expanse
of formerly forested land has been converted into areas
suitable for crop and pasture cultivation over the past
two decades [13]. It is hypothesized that this pheno-
menon is partly responsible for the degradation and
erosion of land, which in turn leads to the instability of
slopes.

2) Data

The present study utilized nine landslide conditioning
factors/variables to model landslide susceptibility. These
variables included seven topographic variables, namely,
slope, elevation, topographic wetness index, relative
slope position, aspect, profile, and plan curvature. In
addition, a hydrological/distance variable (distance to
stream) was utilized, with the understanding that only
first-order and second-order streams were considered.
Topographic and hydrological parameters were considered
in this study on the basis of the literature and data
access. These variables are crucial determinants of
slope stability in the Elgon region [1,15]. Slope determines
the gravitational force with which slope material is
transported downslope. The steeper the slope is, the
greater the chance of landslides. Elgon is dominated by
slopes between 50 and 500 [33]. The slope influences
the soil moisture retention capacity and microclimate
through rainfall and solar energy. The angle of the
slope determines the amount of solar radiation received
on the slope, which affects the soil moisture retained in
the soil. Soils with high moisture retention are suscep-
tible to landslides because of the added weight from the
soil water. Elevation is another frequently used variable
in LSS studies since the coefficient of elevation
variation in an area affects the probability of landslide
occurrence. Regions characterized by hills and mountains,
such as Elgon County, are more prone to landslides
than relatively flat terrains. Relatedly, the relative slope
position also influences the susceptibility of a slope to
landslides. It is used to determine where the slope lies,
i.e., near the ridge, in the middle slope, or valley bottom,
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and influences water accumulation, sediment movement,
and stress distribution across the slope. Upper slopes
are more prone to runoff flow, which may initiate shallow
slides; the middle slope experiences erosion and
deposition, making it prone to translational slides. The
valley bottom/lower slope experiences more infiltration
and deposition, which makes it less stable during the
rainy season. Landslide density is highest on the lower
and middle slopes because of higher moisture levels,
sediment accumulation, and heightened instability [37].

Other variables include the normalized difference
vegetation index (NDVI), which is used to measure the
extent and condition of vegetation. Vegetated slopes are
less prone to landslides than are bare slopes. The NDVI
was derived via the Sentinel-2 bands (B4 -Red) and
(B8 — Near infrared). The distance to a river or stream
was also incorporated into the model as an indicator of
slope instability. Rivers influence slope stability through
erosion and incision; therefore, slopes nearer to streams
are more unstable than those farther away. The topo-
graphic wetness index (TWI) measures the spatial
distribution of water within a specific slope. This indicates
the risk of landslides, as wet and heavy slopes are more
susceptible than drier slopes are [38]. Curvature (profile
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and plan) is another conditioning factor used in this
study. Plan curvature is defined as the measure of changes
in the slope direction in the horizontal plane. Positive
values indicate convex surfaces (e.g., ridges), whereas
negative values indicate concave surfaces (e.g., hollows)
[39]. Profile curvature is defined as the measurement
of changes in the slope direction that are parallel to the
steepest slope. Positive values indicate convex profiles,
whereas negative values indicate concave profiles [40].

The aforementioned variables (Figure 3) were derived
from the digital elevation model (DEM) via SAGA GIS
at a resolution of 12.5 m. Stream distance was derived
via Euclidean distance in ArcMap. The NDVI was derived
from the Sentinel-2 image via surface reflectance values
in the Google Earth Engine. The NDVI was selected to
represent land cover, as it is a critical factor in slope
stability and because part of the study area is a protected
conservation forest. Soils and geology were not considered
because of the coarse spatial resolution of the available
data; the study area is classified as having uniform
lithology and soil. All the variable maps were resampled
to a uniform resolution of 12.5 m. A list of the variables
and their respective data sources can be found in Table
1.
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Table 1 Description of the datasets used in the study and the variables

Dataset Source

Derived variables Resolution

ALOS Palsar DEM

Sentinel-2A
The settlement footprints

Google Earth Engine
The world settlement footprint

The DEM was obtained from the Alaska satellite
facility (https://asf.alaska.edu/)

e Elevation 125 m
¢ Slope
o TWI (Topographic
wetness index
¢ Relative slope
position
e Aspect
o Profile curvature
¢ Plan curvature
e Distance to the river
e NDVI 10 m
¢ Lithology 10 m

(https://geoservice.dIr.de/web/maps/eoc:wsf2019) e Distance to Faults

Landslide database Broeckx et al. [1]

¢ Landslide and 30m
nonlandslide points

The present study utilized a landslide database that
was meticulously compiled by [1] and made available
as supplementary material. This database was then
updated via Google Earth images. A total of 181 landslide
and rockfall locations were obtained for the designated
study area. A scale of 1:1 was then used to generate
181 nonlandslide points randomly in ArcMap. For model
training, an 80:20 split was employed to create training
and testing datasets.

The World Settlement Footprint data [41] were used
to extract the settlement footprint for Elgon County.
These 2019 data use information from the Copernicus
Sentinel-1 and Sentinel-2 spacecrafts to provide
unparalleled detail and precision regarding human
settlements worldwide. These data were used to assess
landslide exposure impacting the settlements. The relia-
bility of the data was verified by display on the Google
Earth platform for review. The results of the exposure
assessment were also verified via a recent preliminary
report on landslides and affected households.

3) Methods
3.1) XGBoost landslide susceptibility model

The present study employed the extreme gradient
boosting (XGBoost) machine learning model to derive
landslide predictions for Elgon County in Bulambuli
District. This ML model was chosen because of the
capabilities afforded by its tree boosting learning
strategy, which has made it one of the most popular
models for regression and classification tasks, such as
LSS mapping [42—-43]. Owing to its efficient parallel
processing, optimized memory usage, and effective
handling of sparse data, the XGBoost model is considered
to be more accurate than linear models but more
difficult to interpret [26]. The XGBoost model predicts
LSS through an iterative process involving sequentially
structured decision trees. These decision trees derive
predictions sequentially, with each tree outputting a

prediction and an error score. These error scores even-
tually constitute the final prediction error. Similarly, the
prediction process involves progressively adding the
predictions from individual decision trees to the
previous prediction to improve accuracy.

To obtain a satisfactory result, we trained the model
for a specified number of boosting rounds, where the
10-fold CV strategy was employed. The CV is essential
for model generalization and preventing overfitting [44].
To obtain optimal model parameters and enhance the
robustness of the model, we conducted a thorough
hyperparameter grid search. The hyperparameter values
used in the grid search included the following: learning
rate (0.001, 0.1, 0.3), maximum tree depth (3, 5, 7, 10),
minimum child weight (1, 3, 5), subsample ratio (0.6,
0.8, 1.0), column sampling per tree (0.6, 0.8, 1.0), number
of boosting rounds (100, 200, 500), and gamma regu-
larization (0, 1, 5). Model performance evaluation utilized
the area under the curve of the receiver operating
characteristic (ROC AUC). The ROC curve is derived
from the model's specificity and sensitivity to predictions.
These metrics were selected because they quantify the
model’s ability to distinguish between positive and
negative classes [45]. The higher the AUC score is, the
better the model's performance. The trained model was
used to predict the LSS and produce LSS index values.
These were then classified via the equal interval
method in ArcMap to produce the LSS map. The choice
of the equal interval method to classify the landslide
susceptibility index was based on the ability of the
approach to produce uniform class ranges that facilitate
comparisons of susceptibility across the study area.
Unlike quantile classification, which may incorporate
highly dissimilar susceptibility values within the same
category, or natural breaks, which are dependent on
certain distributions of the dataset, equal intervals offer
clarity and consistency both for technical and nontechnical
stakeholders [45-46]. Such clarity is particularly critical
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in local-scale risk communication, in which consistency
and understandability are important objectives.

3.2) Model interpretation via Shapley additive expla-
nation (SHAP)

To gain insights into decision mechanisms and
overcome the 'black-box' nature and complexity of ML
models, the present study employed SHAP values. The
purpose of model interpretation is to increase the
practical utility of the model outputs. This is achieved
by indicating whether the results are geomorphically
plausible and by rendering the outputs more compre-
hensible to planners and policymakers. The SHAP method
was introduced by Lundberg and Lee [47] after being
inspired by game theory. The use of SHAP facilitates
the elucidation of the influence of a landslide condition-
ing factor on model prediction. The SHAP value, which
is defined as a measure of a feature's contribution, is
derived via Eq.1. During the training or testing of a
model, each sample is subjected to prediction. SHAP
subsequently calculates a "SHAP value" for each
feature within a given sample, thereby indicating the
feature's contribution to the prediction. Models that
demonstrate high performance in training environments
may exhibit suboptimal performance in real-world
scenarios because of an absence of interpretability
[25]. Scholars widely acknowledge that a model's
predictive accuracy alone does not guarantee its
reliability [48-50]. To enhance the generalisability and
credibility of machine learning applications, it is
necessary to improve the interpretability of these "black
box" models. It is imperative to comprehend the
rationale underpinning a model's predictions to ascertain
its reliability and address any potential biases or
aberrant behaviors. The following equations, as proposed
by Chen & Guestrin [51], were used to derive the SHAP
values. Eq.1 calculates the contributions of individual
features, whereas Eq.2 aggregates the values of indi-
vidual features on the basis of feature category to
obtain the global importance of each landslide condi-
tioning factor group/category.

(xD) = o + M, ¢ (Eq.1)

1 .

where f(x®) represents the model's prediction for the
input i, ®0) is the SHAP value, M is the number of input
features, and ck denotes the global contribution to the
model’s predictions.

In this work, the multiresolution SHAP model was
used to interpret the model in terms of feature importance,
which was grouped into 3 categories: topography factors,
hydrology, and vegetation, and factor interactions were

analyzed. The SHAP model was implemented in the
RStudio environment via the "SHAP" library.

3.3) Settlement exposure to landslide risk

Disaster exposure is defined as the location of people,
infrastructure, and other human assets in hazard/disaster-
prone areas [52]. This can be defined on the basis of
the number of people or settlements, vital infrastructure,
or types of assets. Exposure is one of the aspects that
makes up disaster risk (risk = exposure x hazard x
vulnerability). Therefore, it forms a vital part of vulne-
rability and risk assessment. We assessed landslide
risk to settlements by overlaying a landslide suscep-
tibility map with the settlement location data. Zonal
statistics were computed to determine the percentage
of settlements in each susceptibility zone. This helped
us to classify the levels of settlement exposure to
landslides in Elgon County. This was classified into four
classes: low, moderate, high, and very high exposure.
Verification of the results was performed by comparing
our classification results with a preliminary disaster
report of the district disaster management committee,
adopting an approach used by Luu et al. [9].

Results

This section discusses the results of landslide sus-
ceptibility mapping, model accuracy, model explanation,
and assessment of settlement exposure.

1) Landslide susceptibility mapping

The trained XGBoost model was applied to raster
maps to derive the landslide susceptibility index. To
facilitate enhanced visualization, landslide susceptibility
maps were developed within an ArcGIS environment,
wherein susceptibility was categorized into four distinct
landslide susceptibility classes through the implement-
tation of the equal interval method (Figure 4). As indicated
by the cartographic representation, the regions designated
high and very high susceptibility to landslides were
confined to the mid-altitude zone (1,400-1,700 m asl)
within the subcounties of the districts of Buginyanya,
Bulugunya, Simu, Lusha, and Masiira. The higher altitude
slopes are covered by the Mt. Elgon National Park
conservation forest area, which is associated with very
low susceptibility. The prevalence of low susceptibility
has been observed in the lower elevation area encom-
passed by low-lying wetlands. The percentage area
coverage per susceptibility class was computed as
illustrated in Figure 5. The low-susceptibility group
presented the highest percentage of LSS (52%), followed
by the very high-susceptibility group (20%) and the
moderate-susceptibility group (17%). The lowest area
category was designated high susceptibility (11%).
Upon aggregation, it becomes evident that the proportion
of slopes demonstrating susceptibility to landslides is
nearly equivalent to those exhibiting no such suscep-
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tibility. This observation is particularly pronounced when
considering susceptibility levels categorized as high,
moderate, and very high. It is also evident that the
ridges characterized by steep slopes predominate in
the high-susceptibility classes, whereas the largest area
exhibiting low susceptibility is the conservation forest
zone. This observation underscores the importance of
forest cover in maintaining slope stability.

2) Model accuracy

In this study, the ROC curve was used to evaluate
the efficacy of a landslide susceptibility prediction model.
The ROC metric is frequently used for evaluating the
performance of machine learning models. The AUC
value of the ROC curve provides a quantitative repre-
sentation of the model's accuracy in distinguishing
between classes ranging from 0 to 1, with higher values
indicating higher accuracy and reliability. An AUC value
greater than 0.7 is indicative of a credible model [28].
The XGBoost model used in this study yielded an AUC
value of 0.95 (Figure 6), indicating the model’s ability to
discriminate between landslide-prone areas and
nonlandslide-prone areas.

3) Model explanation via SHAP

In the present study, SHAP values were applied to
compute feature importance/contribution to the prediction
result of the model and interaction between a selected
pair of features via the SHAP dependence plot. The
SHAP summary plot in Figure 7 shows the contributions
of individual factors to the model predictions. The plot

shows that slope and elevation strongly influence
landslide occurrence in Elgon County. Higher altitudes
generally have a lower landslide risk, whereas steeper
slopes increase the risk. Slope influences the model
prediction both positively and negatively, depending on
the specific slope angle value, given the widespread of
SHAP values in both the positive and negative directions.
While slope angle is a major conditioning factor, the
SHAP plots reveal that the NDVI and aspect also
significantly contribute to landslide susceptibility in
Elgon County or Bulambuli District. Areas with low
NDVI values, which indicate a scarcity of vegetation, are
associated with increased susceptibility to landslides,
whereas areas with high values (indicating dense vege-
tative cover) are less susceptible to landslides. Further-
more, the plots show that the TWI and profile curvature
are the least important features, with significantly lower
average SHAP values (0.271 and 0.291, respectively).
However, the narrow range of their values may suggest
that these features have a more consistent influence on
the model predictions. The plot further indicates that as
the distance from the stream increases, the suscep-
tibility levels also decrease, which is an indicator of the
marked influence of stream erosion and incision on
landslide occurrence in the Bulambuli District. The
relative slope position is an equally important predictor
in this area, with ridges and middle slopes being more
prone to landslides than the valley bottom. However,
the importance of this feature is clearly dependent on
other features, such as slope steepness, elevation, and
vegetation cover.
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Furthermore, an analysis of the global SHAP contri-
bution based on a grouped category of the landslide
conditioning factor maps (Figure 8) corroborates these
findings, underscoring the significance of the topographic
variables in determining slope stability in this area. The
vegetation factor is the second most influential factor,

whereas hydrology is the least influential set of para-
meters. As illustrated in Figure 8, the global feature
importance is based on absolute SHAP values, with
each bar illustrating the contribution of each feature.
The values indicate the average impact of each
variable on the model's predictions, irrespective of the
direction of influence, as is usually indicated in the
SHAP summary plot. It is generally accepted that
higher SHAP values are indicative of a feature that
significantly contributes to the model's output. The
green bars represent topographic variables, the blue
bars represent vegetation factors, and the red color
denotes hydrological factors. The color grouping is
deemed suitable for thematic interpretation, which
supports easy interpretation and geomorphic plausibility
and may facilitate the prioritization of factors for future
monitoring and field validation. Among the topographic
factors under consideration, slope and elevation clearly
contributed most significantly, followed by elevation.
Conversely, aspect and curvature were found to be the
least contributing factors. The NDVI demonstrates
equivalent levels of contribution, whereas hydrological
factors (i.e., distance to the nearest watercourse and
the total water index) exhibit the least significant levels
of contribution.

4) Assessment and verification of settlement expousre
Figure 9 shows the exposure of settlements to
landslide risk zones. The low-exposure class for settle-
ments in the Bulegeni subcounty comprises the smallest
portion. The settlements in other subcounties are cate-
gorically classified as moderate, high, and very highly
exposed. Figure 10 shows the percentage of settlements
in the different landslide susceptibility classes; 76% of
settlements are located in landslide risk zones, whereas
only 24% of the total settlement area in Elgon County
is classified as low-exposure settlements. Compared
with the settlement density, high-risk exposure was
concentrated in the Sisiyi, Buginyanya, Bulugunya,
Simu, and Lusha subcounties, where dense settlement
clusters coincided with highly susceptible zones.

We verified the accuracy of our results by comparing
them with a preliminary disaster report following the
landslide of 27 November 2024 in the Bulugunya sub-
County, which was classified under high-risk and high-
exposure zones on the basis of our findings. The report
clearly indicates that 35 homesteads and 2 commercial
buildings in Namakyere village and 27 homesteads and
1 school were affected in Musugu village (Table 2). The
comparison results clearly confirm that Bulugunya
subcounty is a highly susceptible area with very high
settlement exposure. These results are in line with those
of this study.
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Table 2 Homesteads and facilities in the landslide-affected villages before and after the disaster in Buluganya

subcounty, Bulambuli District, on November 27, 2024

Village Homesteads Commercial Schools Homesteads Commercial Schools

buildings buildings

Before After
Buwayo 0 0 0 0 0 0
Lusola 20 1 No data 0 0 0
Lula 22 6 No data 0 0 0
Buzemolili 9 1 No data 0 0 0
Mamolo 42 3 No data 7 0 0
Rukungiri 11 3 No data 0 0 0
Nakitali 33 2 No data 0 0 0
Namakyere 52 2 No data 35 2 0
Masugu 38 2 1 26 1 1
Tagalu 22 2 No data 7 0 0
Nayinyinya 37 No data No data 0 0 0
Masola 52 6 0 4 0 0
Total 338 25 1 79 3 1

Source: Bulambuli District Disaster Management Committee

Discussion

This study employed an interpretable XGBoost
algorithm to model landslide susceptibility in Elgon
County, Bulambuli District. A total of 182 landslides,
encompassing both rockfalls and other landslide types,
were mapped. In addition, nine conditioning factors
were identified. The dataset was divided into two parts:
80% was allocated for model training, while the remaining
20% was utilized to assess the model's robustness.
The XGBoost model achieved an AUC of 95.2%, which
is comparable to the performance reported by the
logistic regression model used by [1] for modeling LSS
in the broader Mt. Elgon region. This finding suggests
that the XGBoost model can be effectively applied to
map LSS. Many studies have previously been conducted
on LSS in the Elgon region, employing various method-
logies such as machine learning (ML), geographic
information systems (GIS), and statistical models. Notably,
the current model used also outperforms the fuzzy logic
model used by [15] in terms of prediction accuracy for
LSS studies. This study enhances the study of LSS in
the area by incorporating exposure analysis, which also
improves the practical utility of the model results.

The LSS mapping results indicate that Elgon County
in the Bulambuli district is highly prone to landslides.
This susceptibility is attributable to the slope steepness,
aspect, elevation, and vegetation cover in the area, which
represent key landslide conditioning factors. The LSS
is highest in the middle slope zones (20-35 degrees)
located at middle to high elevations (1,500-2,000 m).
These findings align with previous research by [14, 53—
54], who reported a predominance of shallow landslides
on slopes ranging between 25° and 35°. In a similar
study, Hadmoko et al. [55] noted that slope angle and

elevation were the leading factors influencing the spatial
distribution of landslides on Java Island. The distribution
of susceptible slopes in Elgon County also coincides
with that of densely settled slopes, underscoring the
impact of human activities on landslide occurrence, as
reported by [13]. In contrast, the upper reaches of the
county up to the mountain summit and forming part of
Mt. Elgon National Park are classified as low-susceptibility
areas since they are under dense vegetation cover.
This highlights the importance of tree cover in ensuring
slope stability.

21%

24%

_

B Low ™ Moderate ®High © Very High

Figure 10 Percentage of settlements and
their level of exposure to landslide risk.

As illustrated by the SHAP plot (Figure 7), topo-
graphic factors and the NDVI had the most significant
impacts on the model. This finding aligns with the
prevailing landslide theory, which posits that steep
slopes and elevated terrain are correlated with increased
slope instability [53]. It is evident that topography exerts
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a predominant influence on the susceptibility of slopes
in the Mount Elgon region, and the SHAP results add
value by quantifying their relative contributions at a
local scale. This assertion is further substantiated by
the pivotal role played by all other factors, which
collectively contribute to the complexity of terrain-
related dynamics. Notably, NDVI has been identified as
a primary indicator of slope instability in the region,
demonstrating the strong role of vegetation dynamics
and land use. Extensive vegetation clearance arising
from increasing population pressure on available land
resources has significantly depleted vegetative cover in
Bulambuli, especially in the mid-slope areas where
LSS is highest. Seasonal planting is a common practice
that exposes soils on steep slopes to erosion agents,
such as rainfall and runoff. On the other hand, low-
susceptibility classes are associated with areas with
dense vegetation cover, which make up the largest
proportion of the low-susceptibility class, e.g., Mt. Elgon
National Park. This demonstrates the dual role of the
NDVI as both an indicator of biophysical slope protection
and a proxy for anthropogenic land-use changes. This
finding contradicts the conclusions of [1], who excluded
landcover as a predictor because of its perceived
limited influence.

The hydrological factors, such as the TWI and the
distance from the stream, presented the lowest level of
contribution. This phenomenon may be attributed to the
overbearing influence of slopes in this particular study
area and the inherent limitations of hydrological proxies
derived from digital elevation models (DEMs) to
capture the complex water-related processes that
trigger landslides, such as rainfall and groundwater
saturation. This finding is corroborated by the research
of [56,57], who reported that drainage, infiltration, and
pore pressure tend to accumulate over varying time
scales, such that statistical proxies from DEM data may
not capture such dynamics. Furthermore, the low
impact of aspect, curvature, and the TWI could be
attributed to the limited scope and scale of micro
studies, which may have masked the influence of
curvature, the TWI, and aspect [40]. An understanding
of the impacts of terrain factors is needed to
contextualize the patterns of exposure analysis in the
mountainous region of Elgon County, Bulambuli District.
In this area, landslides are frequently caused by difficult
hilly topography, intense and protracted rainfall,
geological instability, and land use activity.

A significant proportion of settlements in Elgon
County have been identified as being exposed to high
and very high risks of landslides, with more than 76%
of all settlements falling into these categories. This figure
is comparable to the findings reported by Ratemo and
Bamutaze [17], who reported that over 90% of settle-
ments within the Manafwa River catchment were deemed
vulnerable to landslide risk. The co-occurrence of high-

susceptibility and dense settlement clusters indicates
increased disaster potential since more people and
assets are concentrated in the most hazard-prone zones.
These findings underscore the importance of prioritizing
such subcounties in risk reduction planning and targeted
interventions.

The multiresolution SHAP analysis used in the present
study provides clarity to the model interpretation results
and, in turn, enhances the usability of the model outputs.
Unlike the older approaches, such as the Gini index,
permutation importance, and correlation-based ranking,
which are usually biased and noncausal [58], SHAP
can offer model agnostics that offer both local interpret-
tability and global interpretability [47]. The multiresolution
SHAP design further extends this by capturing scale-
dependent feature contributions, permitting the exami-
nation of how predictors influence susceptibility across
different spatial contexts. The thematic level analysis
used in this study is beneficial to nontechnical stakeholders
because it makes use of meaningful thematic cate-
gories [59]. The approach offers both individual feature
contributions and thematic contributions, which translate
model behavior to more relevant domain explanations,
hence enhancing the accessibility and usability of the
model outputs by stakeholders. The thematic grouping
of the model interpretations can enhance model inter-
pretation and test whether the model output aligns with
geomorphic processes, which is necessary for local
understanding [60]. The correspondence between the
model interpretation results and the observable exposure
patterns, such as the concentrations of highly exposed
settlements in Masugu and Namagugu Vvillages,
demonstrates the geomorphic plausibility of the LSS
map. Furthermore, this relationship adds a layer of
credibility to the overall exposure assessment conducted.
As such, this study effectively addresses the historical
gap between predictive modeling and actual disaster
planning activities, particularly through effectively linking
the outputs of explainable machine learning algorithms
and the hazards that exist in the real world. In future
research, the types of buildings and other structures
should be considered in exposure analysis.

The modeling approach used in this study indicates
that incorporating LSS mapping with multiresolution
SHAP analysis can produce interpretable and spatially
explicit model outputs that can provide crucial
information for evidence-based policy formulation and
disaster risk reduction planning. The LSS and exposure
maps can be utilized by local governments and
planners to inform the regulation of settlements. For
example, by highlighting highly exposed settlement
areas such as Masugu and Namagugu, LSS and
exposure maps can be used by local governments to
select when and where to relocate settlements and/or
which mitigation measures should be undertaken.
Local governments may serve as frontline officers and
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utilize these outputs in enforcing land use regulations,
approving building plans, coordinating resettlement
programs, sensitizing the community, and implementing
early warning systems to translate these scientific
findings into actionable points. This information is also
important for settlement planners in the design and
approval of building plans for settlements in high-risk
zones. These maps can also guide planning for
infrastructure such as new roads, schools, health
facilities, and electricity distribution lines by ensuring
that they are situated in low-susceptibility zones to
reduce the risk of potential disruption from landslide
occurrences. Early warning systems that prioritize
monitoring and preparedness in high-risk hazard zones
and planning for resettlement camps where displaced
persons can access relief aid are planned. Hence, this
research also contributes to the attainment of the SDG
agenda by influencing safer land use and settlement
planning, enhancing resilience to landslides caused by
rainfall, and highlighting the function of vegetation
cover in stabilizing slopes. The thematic SHAP analysis
helps ensure that the model results are not only
statistically sound but also geomorphologically plausible
and simple to explain to nontechnical stakeholders.
Accordingly, this enhances transparency and community
trust and facilitates more inclusive and proactive risk
governance, especially in high-risk areas such as
Elgon County, where population pressure, terrain, and
vulnerability intersect.

Despite the strengths of this approach, certain
limitations persist. The world settlement footprint
dataset is limited in that it does not contain key
information needed for a more comprehensive exposure
and damage analysis, e.g., details on building quality,
type, and utility. This hinders the determination of the
precise level of damage exposure. These insights will
have implications for future research and policy,
especially as post-disaster damage inventories will be
needed to validate the model predictions. Furthermore,
the study employed a landslide inventory that had been
compiled up to the year 2018, with only limited updates
derived from Google Earth images. Hence, the LSS
map may not be representative of the current conditions
in the field and might produce biased model outputs.
Additionally, LSS maps present only a snapshot and
not a long-term dynamic tool; however, hazard risk is
dynamic. Therefore, LSS maps should be periodically
updated to reflect land use changes, the expansion of
settlements, and changing climatic patterns. This helps
ensure that the LSS maps remain relevant for decision-
making and accurately reflect the changing patterns of
the LSS. The exclusion of soils, rainfall, and geology
factors from the model is due to the absence of spatially
distributed good-quality datasets. These factors are
well-documented determinants of slope stability in the
Mt. Elgon region [1, 61]. In addition to the absence of

rainfall data, the temporal dynamics of rainfall, such as
short-term high-intensity storms and antecedent wetness,
which are crucial landslide triggers, are also missing in
this study. This could lead to an underestimation of LSS
in storm-prone areas. Therefore, excluding such key
landslide conditioning factors could limit the model's
ability to detect localized susceptibility patterns due to
local variations in lithologies, rainfall intensity, and soil
properties. Furthermore, with the projected increase in
rainfall extremes due to climate change and land use
pressure, susceptibility patterns may shift with time
[62]. Although topography and vegetation can provide
sufficient predictive capabilities, future research should
integrate detailed soil and lithology data to produce
more comprehensive susceptibility assessments.

Conclusions

The present study employed the XGBoost model to
map LSS in Elgon County, Bulambuli district. The results
revealed that mid-altitude zones with steep slopes are
highly susceptible to landslides. The lower slopes and
upper slopes under conservation forests are the least
susceptible areas in Elgon County. This study represents
the first county-level mapping of susceptibility and
exposure analysis in the entire Mount Elgon region.
The XGBoost model achieved a very high AUC of 95.2%.
This is a very good performance compared with previous
LSS studies in the area. This outcome demonstrates
the model's potential for effective application in other
comparable regions prone to landslides. The findings
of this study indicate that the majority of settlements in
Elgon County, Bulambuli District, are highly exposed to
landslide risk (76%), with more than 50% of the slopes
demonstrating susceptibility to landslides. Model inter-
pretation results based on both the SHAP summary
and thematic plots reveal that topographic factors
(slope and elevation) and the NDVI are the key factors
influencing landslide susceptibility in the region. The
least impactful factors included the hydrological factors,
aspect, and curvature. By linking susceptibility to observed
settlement exposure, this study assesses the geomorphic
plausibility of the model and offers guidance for targeted
interventions, resource allocation, and mitigation planning.
The findings of this study offer valuable insights for
developers, planners, and engineers in implementing
effective slope management and land-use planning
strategies that are not only statistically plausible but
also grounded in terrain reality. Moreover, this metho-
dology can be effectively applied in other regions with
similar geological and topographical characteristics.
This research not only enhances scientific knowledge
but also contributes to the attainment of the SDGs by
correlating LSS mapping with safe settlements, climate
resilience, and sustainable land management. Moreover,
maintaining the utility of such maps will require periodic
updating to ensure that future risk reduction strategies
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remain adaptive to changing land use patterns and
evolving climate trends.

Potential future research should consider conducting
a more comprehensive risk assessment by integrating
all the exposed elements and conditioning factors not
considered in this research, such as detailed geology,
soils, and rainfall thresholds. Specifically, an investigation
of the role of vegetation cover species on slope sta-
bility, which requires a systematic analysis of different
cover types to ascertain their influence, would be
valuable. Furthermore, incorporating high-resolution soil
and geological datasets is essential for capturing
localized slope instability processes that may not be
fully represented by topographic and vegetation factors
alone.
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