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Abstract 

Landslide susceptibility is a significant concern in Elgon County, Uganda, 

particularly during the rainy season. This vulnerability is attributable to several 

factors, including steep slopes, fertile soils, and dense settlements on volcanic 

ridges. Landslide susceptibility maps are important in mitigating the risk particularly 

at the local level. The objectives of this study were 1) to model landslide suscep-

tibility via an interpretable machine-learning model, 2) to identify the most 

influential factors for landslide susceptibility in the study area, and 3) to assess 

the exposure of settlements to landslide risk. This study employed the XGBoost 

model trained on nine conditioning factors via GIS data. Exposure analysis was 

performed through the zonal statistics and spatial overlay of the landslide 

susceptibility map with the settlement footprint data and classified into four risk 

exposure classes. The results show that the XGBoost model attained an AUC 

of 95.2%, indicating its precision. The results further revealed that approximately 

50% of the slopes are susceptible to landslides and that 76% of the settlements 

in the study area are highly exposed to landslide risk. Bulugunya, Sisiyi, Lusha, 

and Buginyanya subcounties located on the middle slopes are the most 

susceptible areas in Elgon County and have relatively high settlement exposure 

because of the overlap of dense settlements with unstable terrain. The SHAP 

analysis identified slope, elevation, and the NDVI as the key influencing factors 

of susceptibility. This study highlights the importance of conducting detailed, 

local-scale landslide susceptibility and risk exposure mapping as necessary for 

risk and vulnerability assessment. The generation of such maps has the potential 

to inform land-use planning and risk-reduction strategies, thus offering significant 

advantages over regional models. Furthermore, by interpreting the XGBoost 

model, this study provides valuable insights into the decision-making processes 

of machine learning models, promoting their practical application in designing 

appropriate disaster mitigation plans. 
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Introduction 

 Landslides are among the most significant natural 

hazards affecting mountainous regions worldwide [1–

2]. Landslides involve the mass flow/movement of 

rocks, debris, and earth downslope [3]. The estimated 

financial impact of these events on property damage is 

approximately US$4 billion per annum [4]. The continents 

of Asia, South America, and Africa have been particularly 

badly affected, with significant impacts on livelihoods 

as a result of their economic, social, political, and 

cultural vulnerabilities [5]. Landslides pose a serious 

hazard to densely populated mountainous areas in 
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Africa, including the Democratic Republic of the Congo, 

Uganda, and Cameroon [6]. 

 The Sendai Framework is centered on promoting an 

enhanced understanding of disaster risk and governance 

[7] and emphasizes enhancing communities' disaster 

resilience. Detailed landslide inventories and landslide 

susceptibility (LSS) maps are considered indispensable 

tools for mitigating landslide risk. However, the absence 

of such data in many African countries has been 

identified as a significant impediment to the implemen-

tation of effective risk-reduction strategies [8]. Despite 

the absence of quantitative exposure evaluations in the 

creation of focused mitigation strategies and the allocation 

of resources, landslide susceptibility maps offer valuable 

insights into hazard potential [9]. 

 The United Nations (UN) Sustainable Development 

Goals (SDGSs) prioritize community welfare, sustainable 

land use, and disaster resilience [10]. Landslide disasters 

result in enormous destruction of homes, farmland, and 

livelihoods, which impedes progress in attaining SDGs, 

especially SDGs 1 (no poverty) and 2 (zero hunger). 

Additionally, due to exposure due to settlement on 

unstable slopes, landslides also undermine SDG 11 

(sustainable cities and communities) and impact SDG 

3, which concerns good health and well-being due to 

deaths, injuries, and relocation. This research, therefore, 

contributes to the SDG agenda by offering creative 

geospatial modeling and emphasizing the need for 

local-scale risk assessment for development in the 

Bulambuli district. 

 The Mt. Elgon region of eastern Uganda is a 

relatively understudied region, with limited research on 

landslide susceptibility and exposure. The majority of 

landslide studies are case-specific in nature, with a 

focus on factors such as farmers' perceptions of 

landslides [11], soil and sediment yield [12], land use 

changes in landslides [13], and the topographic influence 

on landslides [14]. Several studies have addressed the 

issue of susceptibility, albeit at different geographical 

scales, LSS, and mobilization rates for the entire Mount 

Elgon region [1], susceptibility to road networks [15], 

and susceptibility of people with disabilities [16]. In 

relation to vulnerability and exposure, there is a paucity 

of research in this region. [17] studied the vulnerability 

of elements at risk in the Manafwa River catchment, 

and [8] studied the exposure of schools to landslides in 

the Bududa district. In other studies, the focus has been 

on the exposure of buildings in urban areas [18–19]. 

Urban areas, particularly in developed countries, are 

characterized by increased resilience levels. Consequently, 

the generalisability of such studies to developing countries, 

which are often associated with remote settlements on 

mountain slopes, is limited. 

 The Bulambuli District is located within the Mount 

Elgon region in eastern Uganda. This region is suscep-

tible to landslides triggered by rainfall, which occurs 

almost annually during the rainy season [15,20]. The 

area's topography is characterized by rugged terrain, 

heavy rainfall, rapid erosion, and high population density 

[17]. These factors contribute to frequent landslides, 

often resulting in fatalities and significant livelihood 

disruption (e.g., damaged homes, farmland, and infra-

structure). For example, on 29 November 2024, a 

landslide resulted in more than 28 fatalities and left 

several others missing (Figure 1). The region is subject 

to various mass wasting events, including rockfalls, 

mudslides, and landslides, which have been shown to 

result in severe consequences [1, 17]. Following the 

catastrophic Nametsi landslide, which resulted in the 

demise of more than 365 individuals in 2010 [13], the 

government of Uganda initiated a series of population 

relocation programs. This strategic intervention was 

intended to address overcrowding in upper Bududa 

slopes by relocating affected residents to specific areas 

within the Bulambuli district. This initiative has been met 

with several challenges [17], with people being unwilling 

to move to likely changes in social, cultural, political, and 

economic livelihoods. The region is considered one of 

Uganda's most densely populated areas, favored by its 

conducive climate and fertile soils. The distribution of 

settlements, which are predominantly composed of 

temporary structures dispersed across entire mountain 

slopes, has been identified as a contributing factor to 

high-risk exposure. Proposals for restructuring settlements 

into mini towns have been developed to increase their 

resilience to landslide hazards [17]. To complement the 

studies above, comparable research focusing on the 

effects of land use change and planning on landslides 

in mountainous areas highlights how integrated land 

use can reduce exposure to hazards, whereas defores-

tation, agricultural expansion, and unregulated settlements 

may exacerbate slope instability [21–23]. This indicates 

the urgency of applying geospatially informed planning 

techniques in Bulambuli, where land use and settlement 

expansion are unregulated, increasing the risk of 

landslides. 

 The geographical bias inherent in these LSS studies 

is evident, with a preponderance of research focusing 

on the Bududa District, whereas the other districts 

within the region receive comparatively less attention. 

Furthermore, none of these studies have focused on 

mapping LSSs via an interpretable model at the local 

scale, nor have they attempted to provide a compre-

hensive overview by assessing risk in the form of 

settlement exposure. It is imperative to recognize the 

pivotal role of local-level maps in comprehending risk 

and formulating suitable mitigation strategies, such as 

establishing early warning systems and planning 

resettlement reforms. This phenomenon is especially 

evident in Bulambuli, a resettlement area designated 

by the government of Uganda. Landslide exposure 

mapping is a rarely implemented tool that is nevertheless 
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important for informing land use planning, establishing 

risk management policies, and implementing risk miti-

gation strategies [24]. The evaluation of risk necessitates 

the identification of potential hazards, the identification 

of elements that are susceptible to risk (or exposure), 

and the determination of their vulnerability. 

 LSS maps can be produced swiftly via machine 

learning models, given the automation associated with 

machine learning. However, their utility can be hampered 

by failure to comprehend how the model decisions are 

made (black-box models). Therefore, LSS model inter-

pretability has become a key aspect of LSS studies to 

increase the practical utility of model outputs, especially 

given that maps may not conform to existing field 

conditions, resulting from inventory data bias. Recently, 

many model explanation techniques have emerged, 

including Shapley additive explanations (SHAPs), partial 

dependence plots, and permutation feature importance 

plots. These techniques, also known as post-hoc expla-

nations, have been successfully used in various fields, 

including medical diagnosis, legal decision-making, 

and LSS mapping [25–26]. Post hoc explanation methods 

can help us understand how machine learning models 

predict landslides. This makes these complex models 

easier to understand. However, there is a dearth of 

research on the effective application and interpretation 

of these methods, specifically for landslide suscep-

tibility analysis. Most studies have employed pretraining 

variable importance analysis [27–28], the Gini index 

[29], and partial dependency plots [30]. However, such 

analysis is not diagnostic and therefore provides no 

insights into the decision mechanisms of the machine 

learning model [31]. Pradhan et al. [25] applied SHAP 

summary and dependence plots to analyze the local 

and global contributions of individual features in their 

study. Nevertheless, the challenge is interpreting such 

plots by the end users, given their lack of familiarity with 

model interpretation techniques. Furthermore, given 

that standard SHAP outputs are purely local, applying 

them in thematic analysis may be challenging. To 

address this limitation, this study adopts a multi-

resolution SHAP analysis that considers individual 

contributions and thematic global effects on the basis 

of aggregated feature groups. It is expected that this 

will enhance usability by making model outputs more 

accessible and actionable for both technical experts 

and practitioners. 

 To address the knowledge gaps identified, the 

objectives of this research are as follows: (1) to create 

the first higher-resolution LSS map for Elgon County, 

(2) to identify the most influential landslide conditioning 

factors through multiresolution SHAP analysis, and (3) 

to assess the settlement exposure to landslide risk, 

which is the first of its kind for the study area. These 

findings help to further refine our understanding of 

landslide hazards in the area and their most significant 

conditioning factors. Furthermore, these findings will be 

instrumental in evaluating landslide risk reduction 

strategies and informing policy decisions about land 

use planning, infrastructure development, settlement 

patterns, and agricultural practices. This work will also 

further the utility of SHAP-based interpretation in 

landslide modeling via machine learning. 

 

Materials and methods 

1) Study area 

 The present study was conducted in Elgon County, 

which is part of the Bulambuli District in the Elgon 

subregion of Eastern Uganda. The Bulambuli District is 

situated on the eastern slopes of the Mt. Elgon land-

scape, an extinct shield volcano believed to have formed 

during the late Miocene era. Elgon County is bordered 

by Sironko District to the south, Bulambuli County to 

the west, Kapchorwa District to the north, and Kween 

District to the east (Figure 2). The highest peak of the 

mountain is located at an altitude of 4,321 m above sea 

level [15, 32]. The district is composed of two counties, 

which are divided into two distinct physiographic zones: 

the upper mountain zone, also known as Elgon County, 

and the lower Bulambuli County, which is characterized 

by extensive plains that extend up to Lake Bisinia and 

is situated at an elevation of 1000 m above sea level. 

[20]. The district’s population is approximately 230,000 

people, predominantly residing on fertile slopes in Elgon 

County. Geomorphologically, Bulambuli is distinguished 

by a contrasting relief characterized by cliffs, ridges, 

steep and gentler slopes, and river valleys occupied by 

major rivers draining the area. The upper part of the county, 

extending toward the mountain peak at altitudes above 

2,300 m, is characterized by a dense cover of natural 

vegetation, forming the protected expanse of Mount 

Elgon National Park. In contrast, the lower plains in 

Bulambuli County are characterized by a prepon-

derance of cropland and settlements. 

 The study area is characterized by a tropical 

climate, marked by high annual precipitation levels that 

exceed 1,500 millimeters [33]. The region is further 

divided into two distinct wet seasons, with the wettest 

months being from March to December and the drier 

season running between December and March. The 

rainfall patterns are influenced by the prevailing winds, 

location, and altitude. The area experiences a high 

mean annual temperature of 23°C and average daily 

maximum and minimum temperatures of 28°C and 

15°C, respectively [34].
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Figure 1 Examples of landslides and their impacts in Bulambuli District. (a) Mudslide that killed more than 28 

people in Masugu village (1.2174410 N, 34.3687460 E). (b) Damaged mud and wattle houses due to a recent 

landslide in Elgon County (1.2174410 N, 34.3738520 E). 

 

The geology of the Mount Elgon region is charac-

terized by the presence of ancient gneiss and granitic 

rocks. [35], which are dated to the Precambrian era. 

Additionally, younger carbonatite rocks of intrusive 

volcanic origin have been identified, estimated to be 

Oligocene to early Miocene in age, and they are believed 

to cover southern slopes. The rocks are weakened due 

to rock porphyrites and geological alteration [35]. These 

rocks are very susceptible to weathering processes, 

erosion, and landslides [32]. Scoon [35] reported that 

lava flows comprising nephelinite and basalt rocks, 

along with pyroclastic materials such as agglomerates 

and tuff, are predominant in the area. It is estimated 

that the last volcanic activity in the Mt. Elgon region 

occurred approximately 12 million years ago. In addition 

to the presence of volcanic rocks, the area is charac-

terized by the prevalence of sedimentary rocks, particularly 

within the valleys of the numerous rivers originating 

from the mountain peak. 

The area is characterized by deep, fertile, and well-

drained soils of volcanic origin, which exhibit a dark and 

red complex. The prevalent soil texture in the region is 

clay, with clay loams and sandy clay loams also present. 

During the rainy season, the soil becomes exceedingly 

adhesive [36], a property that contributes to their elevated 

water retention and nutrient-holding capacity. This results 

in significantly denser soils, leading to increased 

susceptibility to landslides during the wet season, 

particularly on middle slopes, which experience a 

greater frequency of landslides than upper slopes do. 

The area is drained by two primary rivers, Simu and 

Sisi, and their tributary streams, which originate from 

the mountain summit and descend into the Sironko 

River before discharging into Lake Bisinia. 

The major land use categories in the Bulambuli 

District include croplands, planted forests, natural forests, 

barren terrain, and built-up areas. Crop cultivation is 

the predominant agricultural practice in this region and 

is undertaken by smallholder farmers. This activity is 

primarily concentrated on slopes less than 2,000 m 

above sea level. Owing to rapid population growth, 

agricultural activities have encroached upon extant 

natural conservation areas. Indeed, a notable expanse 

of formerly forested land has been converted into areas 

suitable for crop and pasture cultivation over the past 

two decades [13]. It is hypothesized that this pheno-

menon is partly responsible for the degradation and 

erosion of land, which in turn leads to the instability of 

slopes. 

 

2) Data 

The present study utilized nine landslide conditioning 

factors/variables to model landslide susceptibility. These 

variables included seven topographic variables, namely, 

slope, elevation, topographic wetness index, relative 

slope position, aspect, profile, and plan curvature. In 

addition, a hydrological/distance variable (distance to 

stream) was utilized, with the understanding that only 

first-order and second-order streams were considered. 

Topographic and hydrological parameters were considered 

in this study on the basis of the literature and data 

access. These variables are crucial determinants of 

slope stability in the Elgon region [1,15]. Slope determines 

the gravitational force with which slope material is 

transported downslope. The steeper the slope is, the 

greater the chance of landslides. Elgon is dominated by 

slopes between 50 and 500 [33]. The slope influences 

the soil moisture retention capacity and microclimate 

through rainfall and solar energy. The angle of the 

slope determines the amount of solar radiation received 

on the slope, which affects the soil moisture retained in 

the soil. Soils with high moisture retention are suscep-

tible to landslides because of the added weight from the 

soil water. Elevation is another frequently used variable 

in LSS studies since the coefficient of elevation 

variation in an area affects the probability of landslide 

occurrence. Regions characterized by hills and mountains, 

such as Elgon County, are more prone to landslides 

than relatively flat terrains. Relatedly, the relative slope 

position also influences the susceptibility of a slope to 

landslides. It is used to determine where the slope lies, 

i.e., near the ridge, in the middle slope, or valley bottom, 
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and influences water accumulation, sediment movement, 

and stress distribution across the slope. Upper slopes 

are more prone to runoff flow, which may initiate shallow 

slides; the middle slope experiences erosion and 

deposition, making it prone to translational slides. The 

valley bottom/lower slope experiences more infiltration 

and deposition, which makes it less stable during the 

rainy season. Landslide density is highest on the lower 

and middle slopes because of higher moisture levels, 

sediment accumulation, and heightened instability [37]. 

Other variables include the normalized difference 

vegetation index (NDVI), which is used to measure the 

extent and condition of vegetation. Vegetated slopes are 

less prone to landslides than are bare slopes. The NDVI 

was derived via the Sentinel-2 bands (B4 -Red) and 

(B8 – Near infrared). The distance to a river or stream 

was also incorporated into the model as an indicator of 

slope instability. Rivers influence slope stability through 

erosion and incision; therefore, slopes nearer to streams 

are more unstable than those farther away. The topo-

graphic wetness index (TWI) measures the spatial 

distribution of water within a specific slope. This indicates 

the risk of landslides, as wet and heavy slopes are more 

susceptible than drier slopes are [38]. Curvature (profile 

and plan) is another conditioning factor used in this 

study. Plan curvature is defined as the measure of changes 

in the slope direction in the horizontal plane. Positive 

values indicate convex surfaces (e.g., ridges), whereas 

negative values indicate concave surfaces (e.g., hollows) 

[39]. Profile curvature is defined as the measurement 

of changes in the slope direction that are parallel to the 

steepest slope. Positive values indicate convex profiles, 

whereas negative values indicate concave profiles [40]. 

The aforementioned variables (Figure 3) were derived 

from the digital elevation model (DEM) via SAGA GIS 

at a resolution of 12.5 m. Stream distance was derived 

via Euclidean distance in ArcMap. The NDVI was derived 

from the Sentinel-2 image via surface reflectance values 

in the Google Earth Engine. The NDVI was selected to 

represent land cover, as it is a critical factor in slope 

stability and because part of the study area is a protected 

conservation forest. Soils and geology were not considered 

because of the coarse spatial resolution of the available 

data; the study area is classified as having uniform 

lithology and soil. All the variable maps were resampled 

to a uniform resolution of 12.5 m. A list of the variables 

and their respective data sources can be found in Table 

1. 

 

 
Figure 2 Study area, Elgon County, Bulambuli District. 
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Figure 3 Landslide conditioning factors including (a) aspect, (b) distance to the stream, (c) elevation, (d) NDVI,  

(e) plan curvature, (f) profile curvature, (g) relative slope position, (h) topographic wetness index, and (i) slope. 
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Table 1 Description of the datasets used in the study and the variables 

Dataset Source Derived variables Resolution 

ALOS Palsar DEM The DEM was obtained from the Alaska satellite 

facility (https://asf.alaska.edu/) 

 Elevation 

 Slope 

 TWI (Topographic 

wetness index 

 Relative slope 

position 

 Aspect 

 Profile curvature 

 Plan curvature 

 Distance to the river 

12.5 m 

Sentinel-2A Google Earth Engine  NDVI 10 m 

The settlement footprints The world settlement footprint 

(https://geoservice.dlr.de/web/maps/eoc:wsf2019) 

 Lithology 

 Distance to Faults 

10 m 

Landslide database Broeckx et al. [1]  Landslide and 

nonlandslide points 

30 m 

The present study utilized a landslide database that 

was meticulously compiled by [1] and made available 

as supplementary material. This database was then 

updated via Google Earth images. A total of 181 landslide 

and rockfall locations were obtained for the designated 

study area. A scale of 1:1 was then used to generate 

181 nonlandslide points randomly in ArcMap. For model 

training, an 80:20 split was employed to create training 

and testing datasets. 

The World Settlement Footprint data [41] were used 

to extract the settlement footprint for Elgon County. 

These 2019 data use information from the Copernicus 

Sentinel-1 and Sentinel-2 spacecrafts to provide 

unparalleled detail and precision regarding human 

settlements worldwide. These data were used to assess 

landslide exposure impacting the settlements. The relia-

bility of the data was verified by display on the Google 

Earth platform for review. The results of the exposure 

assessment were also verified via a recent preliminary 

report on landslides and affected households. 

 

3) Methods 

3.1) XGBoost landslide susceptibility model 

The present study employed the extreme gradient 

boosting (XGBoost) machine learning model to derive 

landslide predictions for Elgon County in Bulambuli 

District. This ML model was chosen because of the 

capabilities afforded by its tree boosting learning 

strategy, which has made it one of the most popular 

models for regression and classification tasks, such as 

LSS mapping [42–43]. Owing to its efficient parallel 

processing, optimized memory usage, and effective 

handling of sparse data, the XGBoost model is considered 

to be more accurate than linear models but more 

difficult to interpret [26]. The XGBoost model predicts 

LSS through an iterative process involving sequentially 

structured decision trees. These decision trees derive 

predictions sequentially, with each tree outputting a 

prediction and an error score. These error scores even-

tually constitute the final prediction error. Similarly, the 

prediction process involves progressively adding the 

predictions from individual decision trees to the 

previous prediction to improve accuracy. 

To obtain a satisfactory result, we trained the model 

for a specified number of boosting rounds, where the 

10-fold CV strategy was employed. The CV is essential 

for model generalization and preventing overfitting [44]. 

To obtain optimal model parameters and enhance the 

robustness of the model, we conducted a thorough 

hyperparameter grid search. The hyperparameter values 

used in the grid search included the following: learning 

rate (0.001, 0.1, 0.3), maximum tree depth (3, 5, 7, 10), 

minimum child weight (1, 3, 5), subsample ratio (0.6, 

0.8, 1.0), column sampling per tree (0.6, 0.8, 1.0), number 

of boosting rounds (100, 200, 500), and gamma regu-

larization (0, 1, 5). Model performance evaluation utilized 

the area under the curve of the receiver operating 

characteristic (ROC AUC). The ROC curve is derived 

from the model's specificity and sensitivity to predictions. 

These metrics were selected because they quantify the 

model’s ability to distinguish between positive and 

negative classes [45]. The higher the AUC score is, the 

better the model's performance. The trained model was 

used to predict the LSS and produce LSS index values. 

These were then classified via the equal interval 

method in ArcMap to produce the LSS map. The choice 

of the equal interval method to classify the landslide 

susceptibility index was based on the ability of the 

approach to produce uniform class ranges that facilitate 

comparisons of susceptibility across the study area. 

Unlike quantile classification, which may incorporate 

highly dissimilar susceptibility values within the same 

category, or natural breaks, which are dependent on 

certain distributions of the dataset, equal intervals offer 

clarity and consistency both for technical and nontechnical 

stakeholders [45–46]. Such clarity is particularly critical 

https://asf.alaska.edu/
https://geoservice.dlr.de/web/maps/eoc:wsf2019
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in local-scale risk communication, in which consistency 

and understandability are important objectives. 

 

3.2) Model interpretation via Shapley additive expla-

nation (SHAP) 

To gain insights into decision mechanisms and 

overcome the 'black-box' nature and complexity of ML 

models, the present study employed SHAP values. The 

purpose of model interpretation is to increase the 

practical utility of the model outputs. This is achieved 

by indicating whether the results are geomorphically 

plausible and by rendering the outputs more compre-

hensible to planners and policymakers. The SHAP method 

was introduced by Lundberg and Lee [47] after being 

inspired by game theory. The use of SHAP facilitates 

the elucidation of the influence of a landslide condition-

ing factor on model prediction. The SHAP value, which 

is defined as a measure of a feature's contribution, is 

derived via Eq.1. During the training or testing of a 

model, each sample is subjected to prediction. SHAP 

subsequently calculates a "SHAP value" for each 

feature within a given sample, thereby indicating the 

feature's contribution to the prediction. Models that 

demonstrate high performance in training environments 

may exhibit suboptimal performance in real-world 

scenarios because of an absence of interpretability 

[25]. Scholars widely acknowledge that a model's 

predictive accuracy alone does not guarantee its 

reliability [48–50]. To enhance the generalisability and 

credibility of machine learning applications, it is 

necessary to improve the interpretability of these "black 

box" models. It is imperative to comprehend the 

rationale underpinning a model's predictions to ascertain 

its reliability and address any potential biases or 

aberrant behaviors. The following equations, as proposed 

by Chen & Guestrin [51], were used to derive the SHAP 

values. Eq.1 calculates the contributions of individual 

features, whereas Eq.2 aggregates the values of indi-

vidual features on the basis of feature category to 

obtain the global importance of each landslide condi-

tioning factor group/category. 

 

       (x(i)) = ϕ0 + ∑ ϕj
(i)M

j=1              (Eq.1) 

 

                SHAPCk
=

1

n
∑ ∑ |ϕj

(i)
|j∈𝒥𝓀

n
i=1              (Eq.2) 

 

where f(x(i)) represents the model's prediction for the 

input i, Φj
(i) is the SHAP value, M is the number of input 

features, and ck denotes the global contribution to the 

model’s predictions. 

In this work, the multiresolution SHAP model was 

used to interpret the model in terms of feature importance, 

which was grouped into 3 categories: topography factors, 

hydrology, and vegetation, and factor interactions were 

analyzed. The SHAP model was implemented in the 

RStudio environment via the "SHAP" library. 

 

3.3) Settlement exposure to landslide risk 

Disaster exposure is defined as the location of people, 

infrastructure, and other human assets in hazard/disaster-

prone areas [52]. This can be defined on the basis of 

the number of people or settlements, vital infrastructure, 

or types of assets. Exposure is one of the aspects that 

makes up disaster risk (risk = exposure × hazard × 

vulnerability). Therefore, it forms a vital part of vulne-

rability and risk assessment. We assessed landslide 

risk to settlements by overlaying a landslide suscep-

tibility map with the settlement location data. Zonal 

statistics were computed to determine the percentage 

of settlements in each susceptibility zone. This helped 

us to classify the levels of settlement exposure to 

landslides in Elgon County. This was classified into four 

classes: low, moderate, high, and very high exposure. 

Verification of the results was performed by comparing 

our classification results with a preliminary disaster 

report of the district disaster management committee, 

adopting an approach used by Luu et al. [9]. 

 

Results 

This section discusses the results of landslide sus-

ceptibility mapping, model accuracy, model explanation, 

and assessment of settlement exposure. 

 

1) Landslide susceptibility mapping 

The trained XGBoost model was applied to raster 

maps to derive the landslide susceptibility index. To 

facilitate enhanced visualization, landslide susceptibility 

maps were developed within an ArcGIS environment, 

wherein susceptibility was categorized into four distinct 

landslide susceptibility classes through the implement-

tation of the equal interval method (Figure 4). As indicated 

by the cartographic representation, the regions designated 

high and very high susceptibility to landslides were 

confined to the mid-altitude zone (1,400-1,700 m asl) 

within the subcounties of the districts of Buginyanya, 

Bulugunya, Simu, Lusha, and Masiira. The higher altitude 

slopes are covered by the Mt. Elgon National Park 

conservation forest area, which is associated with very 

low susceptibility. The prevalence of low susceptibility 

has been observed in the lower elevation area encom-

passed by low-lying wetlands. The percentage area 

coverage per susceptibility class was computed as 

illustrated in Figure 5. The low-susceptibility group 

presented the highest percentage of LSS (52%), followed 

by the very high-susceptibility group (20%) and the 

moderate-susceptibility group (17%). The lowest area 

category was designated high susceptibility (11%). 

Upon aggregation, it becomes evident that the proportion 

of slopes demonstrating susceptibility to landslides is 

nearly equivalent to those exhibiting no such suscep-
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tibility. This observation is particularly pronounced when 

considering susceptibility levels categorized as high, 

moderate, and very high. It is also evident that the 

ridges characterized by steep slopes predominate in 

the high-susceptibility classes, whereas the largest area 

exhibiting low susceptibility is the conservation forest 

zone. This observation underscores the importance of 

forest cover in maintaining slope stability. 

 

2) Model accuracy 

In this study, the ROC curve was used to evaluate 

the efficacy of a landslide susceptibility prediction model. 

The ROC metric is frequently used for evaluating the 

performance of machine learning models. The AUC 

value of the ROC curve provides a quantitative repre-

sentation of the model's accuracy in distinguishing 

between classes ranging from 0 to 1, with higher values 

indicating higher accuracy and reliability. An AUC value 

greater than 0.7 is indicative of a credible model [28]. 

The XGBoost model used in this study yielded an AUC 

value of 0.95 (Figure 6), indicating the model’s ability to 

discriminate between landslide-prone areas and 

nonlandslide-prone areas. 

 

3) Model explanation via SHAP 

In the present study, SHAP values were applied to 

compute feature importance/contribution to the prediction 

result of the model and interaction between a selected 

pair of features via the SHAP dependence plot. The 

SHAP summary plot in Figure 7 shows the contributions 

of individual factors to the model predictions. The plot 

shows that slope and elevation strongly influence 

landslide occurrence in Elgon County. Higher altitudes 

generally have a lower landslide risk, whereas steeper 

slopes increase the risk. Slope influences the model 

prediction both positively and negatively, depending on 

the specific slope angle value, given the widespread of 

SHAP values in both the positive and negative directions. 

While slope angle is a major conditioning factor, the 

SHAP plots reveal that the NDVI and aspect also 

significantly contribute to landslide susceptibility in 

Elgon County or Bulambuli District. Areas with low 

NDVI values, which indicate a scarcity of vegetation, are 

associated with increased susceptibility to landslides, 

whereas areas with high values (indicating dense vege-

tative cover) are less susceptible to landslides. Further-

more, the plots show that the TWI and profile curvature 

are the least important features, with significantly lower 

average SHAP values (0.271 and 0.291, respectively). 

However, the narrow range of their values may suggest 

that these features have a more consistent influence on 

the model predictions. The plot further indicates that as 

the distance from the stream increases, the suscep-

tibility levels also decrease, which is an indicator of the 

marked influence of stream erosion and incision on 

landslide occurrence in the Bulambuli District. The 

relative slope position is an equally important predictor 

in this area, with ridges and middle slopes being more 

prone to landslides than the valley bottom. However, 

the importance of this feature is clearly dependent on 

other features, such as slope steepness, elevation, and 

vegetation cover. 

 

 
Figure 4 Landslide susceptibility map of Elgon County, Bulambuli District.
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Figure 5 Percentage area per landslide susceptibility 

class in Elgon County. 

 

 
Figure 6 Area under the receiver operating 

characteristic curve as a measure of model 

performance. 

 

 
Figure 7 SHAP summary plot for the training data. 

 

Furthermore, an analysis of the global SHAP contri-

bution based on a grouped category of the landslide 

conditioning factor maps (Figure 8) corroborates these 

findings, underscoring the significance of the topographic 

variables in determining slope stability in this area. The 

vegetation factor is the second most influential factor,  

 

whereas hydrology is the least influential set of para-

meters. As illustrated in Figure 8, the global feature 

importance is based on absolute SHAP values, with 

each bar illustrating the contribution of each feature. 

The values indicate the average impact of each 

variable on the model's predictions, irrespective of the 

direction of influence, as is usually indicated in the 

SHAP summary plot. It is generally accepted that 

higher SHAP values are indicative of a feature that 

significantly contributes to the model's output. The 

green bars represent topographic variables, the blue 

bars represent vegetation factors, and the red color 

denotes hydrological factors. The color grouping is 

deemed suitable for thematic interpretation, which 

supports easy interpretation and geomorphic plausibility 

and may facilitate the prioritization of factors for future 

monitoring and field validation. Among the topographic 

factors under consideration, slope and elevation clearly 

contributed most significantly, followed by elevation. 

Conversely, aspect and curvature were found to be the 

least contributing factors. The NDVI demonstrates 

equivalent levels of contribution, whereas hydrological 

factors (i.e., distance to the nearest watercourse and 

the total water index) exhibit the least significant levels 

of contribution. 

 

4) Assessment and verification of settlement expousre 

Figure 9 shows the exposure of settlements to 

landslide risk zones. The low-exposure class for settle-

ments in the Bulegeni subcounty comprises the smallest 

portion. The settlements in other subcounties are cate-

gorically classified as moderate, high, and very highly 

exposed. Figure 10 shows the percentage of settlements 

in the different landslide susceptibility classes; 76% of 

settlements are located in landslide risk zones, whereas 

only 24% of the total settlement area in Elgon County 

is classified as low-exposure settlements. Compared 

with the settlement density, high-risk exposure was 

concentrated in the Sisiyi, Buginyanya, Bulugunya, 

Simu, and Lusha subcounties, where dense settlement 

clusters coincided with highly susceptible zones. 

We verified the accuracy of our results by comparing 

them with a preliminary disaster report following the 

landslide of 27 November 2024 in the Bulugunya sub-

County, which was classified under high-risk and high-

exposure zones on the basis of our findings. The report 

clearly indicates that 35 homesteads and 2 commercial 

buildings in Namakyere village and 27 homesteads and 

1 school were affected in Musugu village (Table 2). The 

comparison results clearly confirm that Bulugunya 

subcounty is a highly susceptible area with very high 

settlement exposure. These results are in line with those 

of this study. 
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Figure 8 SHAP bar plot showing the global importance of the different landslide conditioning factors  

grouped by thematic category. 

 

 
Figure 9 Settlement exposure to landslide-prone areas as predicted by the susceptibility model. 
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Table 2 Homesteads and facilities in the landslide-affected villages before and after the disaster in Buluganya 

subcounty, Bulambuli District, on November 27, 2024 

Village Homesteads Commercial 

buildings 

Schools Homesteads Commercial 

buildings 

Schools 

Before After 

Buwayo 0 0 0 0 0 0 

Lusola 20 1 No data 0 0 0 

Lula 22 6 No data 0 0 0 

Buzemolili 9 1 No data 0 0 0 

Mamolo 42 3 No data 7 0 0 

Rukungiri 11 3 No data 0 0 0 

Nakitali 33 2 No data 0 0 0 

Namakyere 52 2 No data 35 2 0 

Masugu 38 2 1 26 1 1 

Tagalu 22 2 No data 7 0 0 

Nayinyinya 37 No data No data 0 0 0 

Masola 52 6 0 4 0 0 

Total 338 25 1 79 3 1 

Source: Bulambuli District Disaster Management Committee 

 

Discussion 

This study employed an interpretable XGBoost 

algorithm to model landslide susceptibility in Elgon 

County, Bulambuli District. A total of 182 landslides, 

encompassing both rockfalls and other landslide types, 

were mapped. In addition, nine conditioning factors 

were identified. The dataset was divided into two parts: 

80% was allocated for model training, while the remaining 

20% was utilized to assess the model's robustness. 

The XGBoost model achieved an AUC of 95.2%, which 

is comparable to the performance reported by the 

logistic regression model used by [1] for modeling LSS 

in the broader Mt. Elgon region. This finding suggests 

that the XGBoost model can be effectively applied to 

map LSS. Many studies have previously been conducted 

on LSS in the Elgon region, employing various method-

logies such as machine learning (ML), geographic 

information systems (GIS), and statistical models. Notably, 

the current model used also outperforms the fuzzy logic 

model used by [15] in terms of prediction accuracy for 

LSS studies. This study enhances the study of LSS in 

the area by incorporating exposure analysis, which also 

improves the practical utility of the model results. 

The LSS mapping results indicate that Elgon County 

in the Bulambuli district is highly prone to landslides. 

This susceptibility is attributable to the slope steepness, 

aspect, elevation, and vegetation cover in the area, which 

represent key landslide conditioning factors. The LSS 

is highest in the middle slope zones (20–35 degrees) 

located at middle to high elevations (1,500–2,000 m). 

These findings align with previous research by [14, 53–

54], who reported a predominance of shallow landslides 

on slopes ranging between 250 and 350. In a similar 

study, Hadmoko et al. [55] noted that slope angle and 

elevation were the leading factors influencing the spatial 

distribution of landslides on Java Island. The distribution 

of susceptible slopes in Elgon County also coincides 

with that of densely settled slopes, underscoring the 

impact of human activities on landslide occurrence, as 

reported by [13]. In contrast, the upper reaches of the 

county up to the mountain summit and forming part of 

Mt. Elgon National Park are classified as low-susceptibility 

areas since they are under dense vegetation cover. 

This highlights the importance of tree cover in ensuring 

slope stability. 

 

 
Figure 10 Percentage of settlements and  

their level of exposure to landslide risk. 

 

As illustrated by the SHAP plot (Figure 7), topo-

graphic factors and the NDVI had the most significant 

impacts on the model. This finding aligns with the 

prevailing landslide theory, which posits that steep 

slopes and elevated terrain are correlated with increased 

slope instability [53]. It is evident that topography exerts 
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a predominant influence on the susceptibility of slopes 

in the Mount Elgon region, and the SHAP results add 

value by quantifying their relative contributions at a 

local scale. This assertion is further substantiated by 

the pivotal role played by all other factors, which 

collectively contribute to the complexity of terrain-

related dynamics. Notably, NDVI has been identified as 

a primary indicator of slope instability in the region, 

demonstrating the strong role of vegetation dynamics 

and land use. Extensive vegetation clearance arising 

from increasing population pressure on available land 

resources has significantly depleted vegetative cover in 

Bulambuli, especially in the mid-slope areas where 

LSS is highest. Seasonal planting is a common practice 

that exposes soils on steep slopes to erosion agents, 

such as rainfall and runoff. On the other hand, low-

susceptibility classes are associated with areas with 

dense vegetation cover, which make up the largest 

proportion of the low-susceptibility class, e.g., Mt. Elgon 

National Park. This demonstrates the dual role of the 

NDVI as both an indicator of biophysical slope protection 

and a proxy for anthropogenic land-use changes. This 

finding contradicts the conclusions of [1], who excluded 

landcover as a predictor because of its perceived 

limited influence. 

The hydrological factors, such as the TWI and the 

distance from the stream, presented the lowest level of 

contribution. This phenomenon may be attributed to the 

overbearing influence of slopes in this particular study 

area and the inherent limitations of hydrological proxies 

derived from digital elevation models (DEMs) to 

capture the complex water-related processes that 

trigger landslides, such as rainfall and groundwater 

saturation. This finding is corroborated by the research 

of [56,57], who reported that drainage, infiltration, and 

pore pressure tend to accumulate over varying time 

scales, such that statistical proxies from DEM data may 

not capture such dynamics. Furthermore, the low 

impact of aspect, curvature, and the TWI could be 

attributed to the limited scope and scale of micro 

studies, which may have masked the influence of 

curvature, the TWI, and aspect [40]. An understanding 

of the impacts of terrain factors is needed to 

contextualize the patterns of exposure analysis in the 

mountainous region of Elgon County, Bulambuli District. 

In this area, landslides are frequently caused by difficult 

hilly topography, intense and protracted rainfall, 

geological instability, and land use activity. 

A significant proportion of settlements in Elgon 

County have been identified as being exposed to high 

and very high risks of landslides, with more than 76% 

of all settlements falling into these categories. This figure 

is comparable to the findings reported by Ratemo and 

Bamutaze  [17], who reported that over 90% of settle-

ments within the Manafwa River catchment were deemed 

vulnerable to landslide risk. The co-occurrence of high-

susceptibility and dense settlement clusters indicates 

increased disaster potential since more people and 

assets are concentrated in the most hazard-prone zones. 

These findings underscore the importance of prioritizing 

such subcounties in risk reduction planning and targeted 

interventions. 

The multiresolution SHAP analysis used in the present 

study provides clarity to the model interpretation results 

and, in turn, enhances the usability of the model outputs. 

Unlike the older approaches, such as the Gini index, 

permutation importance, and correlation-based ranking, 

which are usually biased and noncausal [58], SHAP 

can offer model agnostics that offer both local interpret-

tability and global interpretability [47]. The multiresolution 

SHAP design further extends this by capturing scale-

dependent feature contributions, permitting the exami-

nation of how predictors influence susceptibility across 

different spatial contexts. The thematic level analysis 

used in this study is beneficial to nontechnical stakeholders 

because it makes use of meaningful thematic cate-

gories [59]. The approach offers both individual feature 

contributions and thematic contributions, which translate 

model behavior to more relevant domain explanations, 

hence enhancing the accessibility and usability of the 

model outputs by stakeholders. The thematic grouping 

of the model interpretations can enhance model inter-

pretation and test whether the model output aligns with 

geomorphic processes, which is necessary for local 

understanding [60]. The correspondence between the 

model interpretation results and the observable exposure 

patterns, such as the concentrations of highly exposed 

settlements in Masugu and Namagugu villages, 

demonstrates the geomorphic plausibility of the LSS 

map. Furthermore, this relationship adds a layer of 

credibility to the overall exposure assessment conducted. 

As such, this study effectively addresses the historical 

gap between predictive modeling and actual disaster 

planning activities, particularly through effectively linking 

the outputs of explainable machine learning algorithms 

and the hazards that exist in the real world. In future 

research, the types of buildings and other structures 

should be considered in exposure analysis. 

The modeling approach used in this study indicates 

that incorporating LSS mapping with multiresolution 

SHAP analysis can produce interpretable and spatially 

explicit model outputs that can provide crucial 

information for evidence-based policy formulation and 

disaster risk reduction planning. The LSS and exposure 

maps can be utilized by local governments and 

planners to inform the regulation of settlements. For 

example, by highlighting highly exposed settlement 

areas such as Masugu and Namagugu, LSS and 

exposure maps can be used by local governments to 

select when and where to relocate settlements and/or 

which mitigation measures should be undertaken. 

Local governments may serve as frontline officers and 
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utilize these outputs in enforcing land use regulations, 

approving building plans, coordinating resettlement 

programs, sensitizing the community, and implementing 

early warning systems to translate these scientific 

findings into actionable points. This information is also 

important for settlement planners in the design and 

approval of building plans for settlements in high-risk 

zones. These maps can also guide planning for 

infrastructure such as new roads, schools, health 

facilities, and electricity distribution lines by ensuring 

that they are situated in low-susceptibility zones to 

reduce the risk of potential disruption from landslide 

occurrences. Early warning systems that prioritize 

monitoring and preparedness in high-risk hazard zones 

and planning for resettlement camps where displaced 

persons can access relief aid are planned. Hence, this 

research also contributes to the attainment of the SDG 

agenda by influencing safer land use and settlement 

planning, enhancing resilience to landslides caused by 

rainfall, and highlighting the function of vegetation 

cover in stabilizing slopes. The thematic SHAP analysis 

helps ensure that the model results are not only 

statistically sound but also geomorphologically plausible 

and simple to explain to nontechnical stakeholders. 

Accordingly, this enhances transparency and community 

trust and facilitates more inclusive and proactive risk 

governance, especially in high-risk areas such as 

Elgon County, where population pressure, terrain, and 

vulnerability intersect. 

Despite the strengths of this approach, certain 

limitations persist. The world settlement footprint 

dataset is limited in that it does not contain key 

information needed for a more comprehensive exposure 

and damage analysis, e.g., details on building quality, 

type, and utility. This hinders the determination of the 

precise level of damage exposure. These insights will 

have implications for future research and policy, 

especially as post-disaster damage inventories will be 

needed to validate the model predictions. Furthermore, 

the study employed a landslide inventory that had been 

compiled up to the year 2018, with only limited updates 

derived from Google Earth images. Hence, the LSS 

map may not be representative of the current conditions 

in the field and might produce biased model outputs. 

Additionally, LSS maps present only a snapshot and 

not a long-term dynamic tool; however, hazard risk is 

dynamic. Therefore, LSS maps should be periodically 

updated to reflect land use changes, the expansion of 

settlements, and changing climatic patterns. This helps 

ensure that the LSS maps remain relevant for decision-

making and accurately reflect the changing patterns of 

the LSS. The exclusion of soils, rainfall, and geology 

factors from the model is due to the absence of spatially 

distributed good-quality datasets. These factors are 

well-documented determinants of slope stability in the 

Mt. Elgon region [1, 61]. In addition to the absence of 

rainfall data, the temporal dynamics of rainfall, such as 

short-term high-intensity storms and antecedent wetness, 

which are crucial landslide triggers, are also missing in 

this study. This could lead to an underestimation of LSS 

in storm-prone areas. Therefore, excluding such key 

landslide conditioning factors could limit the model’s 

ability to detect localized susceptibility patterns due to 

local variations in lithologies, rainfall intensity, and soil 

properties. Furthermore, with the projected increase in 

rainfall extremes due to climate change and land use 

pressure, susceptibility patterns may shift with time 

[62]. Although topography and vegetation can provide 

sufficient predictive capabilities, future research should 

integrate detailed soil and lithology data to produce 

more comprehensive susceptibility assessments. 

 

Conclusions 

 The present study employed the XGBoost model to 

map LSS in Elgon County, Bulambuli district. The results 

revealed that mid-altitude zones with steep slopes are 

highly susceptible to landslides. The lower slopes and 

upper slopes under conservation forests are the least 

susceptible areas in Elgon County. This study represents 

the first county-level mapping of susceptibility and 

exposure analysis in the entire Mount Elgon region. 

The XGBoost model achieved a very high AUC of 95.2%. 

This is a very good performance compared with previous 

LSS studies in the area. This outcome demonstrates 

the model's potential for effective application in other 

comparable regions prone to landslides. The findings 

of this study indicate that the majority of settlements in 

Elgon County, Bulambuli District, are highly exposed to 

landslide risk (76%), with more than 50% of the slopes 

demonstrating susceptibility to landslides. Model inter-

pretation results based on both the SHAP summary 

and thematic plots reveal that topographic factors 

(slope and elevation) and the NDVI are the key factors 

influencing landslide susceptibility in the region. The 

least impactful factors included the hydrological factors, 

aspect, and curvature. By linking susceptibility to observed 

settlement exposure, this study assesses the geomorphic 

plausibility of the model and offers guidance for targeted 

interventions, resource allocation, and mitigation planning. 

The findings of this study offer valuable insights for 

developers, planners, and engineers in implementing 

effective slope management and land-use planning 

strategies that are not only statistically plausible but 

also grounded in terrain reality. Moreover, this metho-

dology can be effectively applied in other regions with 

similar geological and topographical characteristics. 

This research not only enhances scientific knowledge 

but also contributes to the attainment of the SDGs by 

correlating LSS mapping with safe settlements, climate 

resilience, and sustainable land management. Moreover, 

maintaining the utility of such maps will require periodic 

updating to ensure that future risk reduction strategies 
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remain adaptive to changing land use patterns and 

evolving climate trends. 

Potential future research should consider conducting 

a more comprehensive risk assessment by integrating 

all the exposed elements and conditioning factors not 

considered in this research, such as detailed geology, 

soils, and rainfall thresholds. Specifically, an investigation 

of the role of vegetation cover species on slope sta-

bility, which requires a systematic analysis of different 

cover types to ascertain their influence, would be 

valuable. Furthermore, incorporating high-resolution soil 

and geological datasets is essential for capturing 

localized slope instability processes that may not be 

fully represented by topographic and vegetation factors 

alone. 
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