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Abstract

Accurate prediction of the water quality index (WQI) lays the groundwork for
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integrated river basins and sustainable water resource management. Recent
and accelerated advances in machine learning have led to various promising
applications in water quality assessment. The present study leverages the predictive
performance of several ML algorithms, including extreme gradient boosting (XGB),
the gradient boosting model (GBM), support vector regression (SVR), and the
radial basic function (RBF), to predict the WQI at three monitoring sites on the
Sai Gon River from 2015-2019. In comparison, the results indicate that the XGB
model outperforms the other models when eight parameters, including DO, BODs,
COD, N-NH,*, P-PO,37, pH, temperature, and total coliforms, are input. Specifically,
the XGB model exhibited the lowest error rates (RMSE = 1.630 and MAE = 0.782)
and highest correlation (R? = 0.960 and NSE = 0.953), followed by the GBM, SVR,
and RBF models. This study also revealed that model performance decreased
substantially when N-NH,* and P-PO,3~ were removed, whereas the exclusion of
COD or BODs caused marginal declines in predictive capacity. These findings
highlight that parsimonious ML models can minimize the parameters required
for WQI prediction but still maintain satisfactory simulations and effectively
capture potential relationships between input parameters and derive WQI.
Generally, this study provides an analytical framework for simulating WQI based
on parsimonious and accurate ML algorithms, which are conducive to water
quality assessment and monitoring in developing nations.
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Introduction

The water quality index (WQ)I) is a vital tool in water
resource management, as it is considered a simple
method for assessing and monitoring water quality.
Furthermore, the WQI contributes to public health
protection by evaluating the suitability of water for use
and facilitating the early identification of pollution sources.
The WQI was initially proposed by Horton (1965) in the
USA. It is calculated on the basis of a combination of
physical, chemical, and biological parameters, producing
a single value from 0-100. In Horton [1], the procedure
for calculating the WQI involves the following key steps:
(1) selection of relevant parameters; (2) conversion of
raw data into a standardized scale; (3) allocation of weights

to the parameters; and (4) aggregation of the subindices
to derive the final WQI.

From a global perspective, the WQI has been widely
implemented in practice by numerous countries and has
been the subject of extensive investigations to refine
and adapt various WQI models [2]. For example, in the
United States, the National Sanitation Foundation pioneered
the development of the NSF-WQI in 1970 [3]. By the
mid-1990s, the British Columbia Ministry of Environment,
Lands, and Parks introduced a new WQI to evaluate
the water quality of diverse water bodies within British
Columbia, Canada [4-5]. This model was subsequently
refined and adopted in 2001 by the Canadian Council
of Ministers of the Environment as the CCME WQI [4,
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6—7]. In Southeast Asia, Malaysia introduced its WQI
model in 2007, which incorporates six parameters: DO,
BOD, COD, NH3-N, SS, and pH [8]. In Vietnam, the General
Department of Environment — Ministry of Natural Resources
and Environment (VEA-MONRE) issued Decision No.
1460/QD-TCMT in 2019 [9], providing technical guide-
lines for calculating and publishing the Vietnam Water
Quality Index (VN_WQI), replacing the previous decision
made in 2011. According to this decision, the VN_WQI
is calculated on the basis of five parameter groups: pH,
pesticide residues, heavy metals, organic and nutrient
parameters, and microbiological parameters. The conven-
tional approaches to WQI calculation involve deriving a
WQI index by aggregating numerous subindices, which
requires the measurement of a substantial number of
water quality parameters. Moreover, traditional water quality
monitoring methods involve the manual collection of
water samples followed by laboratory analysis, which is
both time-consuming and costly [10]. Consequently, this
poses significant challenges to water quality assessment,
particularly in developing countries with limited infra-
structure and financial resources.

Recently, machine learning (ML)-based techniques
have emerged as promising alternatives for WQI calcu-
lations in various regions. By leveraging their capacity
to process complex, nonlinear relationships within data,
ML algorithms can identify underlying mechanisms,
enabling accurate predictions of WQI values. Hameed
et al. [11] indicated that the RBF model performed more
effectively than the Back-Propagation Neural Network
(BPNN) model in simulating the WQI over tropical
Malaysia and addressed the implications of omitting
BOD from WQI predictions because of the high costs
associated with analyzing this parameter. Asadollah et
al. [12] applied the extra tree regression (ETR) model
to predict the monthly WQI in Hong Kong's Lam Tsuen
River, which uses 10 water quality parameters and achieves
high accuracy (R2 =0.98, RMSE = 2.99). However, using
all 10 input variables increased monitoring costs. To
address this, the study used partial correlation to create
different input combinations, identifying a reduced set
of parameters (BOD, turbidity, and phosphate concen-
tration) that still performed well. The study also compared
output results and quantified input variable uncertainty
via the R-factor approach, assessing how the choice of
input variables affected prediction uncertainty. Bui et al.
[13] applied 16 machine learning algorithms to six years
(2012-2018) of monthly data from two stations in the
Talar catchment (Iran) and used 10 water quality para-
meters. Pearson correlation coefficients were used to
create 10 different input combinations. The results
revealed that the fecal coliform (FC) concentration had
the greatest effect on predicting the IRWQI, whereas
the total solids (TS) concentration had the smallest
effect. The best input combinations varied across algo-
rithms, with variables showing very low correlations

generally performing poorly. Kamyab-Talesh et al. [14]
employed the support vector machine (SVM) model for
WQI prediction and determined the key parameters
influencing the WQI via monthly data from December
2007-November 2008 at five stations in the Sefidrud
Basin, Iran. Othman et al. [15] employed artificial neural
networks (ANNS) to simulate the WQI in the Klang River
Basin and further analyzed the sensitivity of the WQI to
the parameters needed, identifying DO and pH as the
most and least influential inputs, respectively. Another
important theme is a comparative analysis of various
ML models for WQI prediction. For example, Mohd Zebarall
Hoque et al. [16] demonstrated that the linear regression
(LR) and ridge models performed most accurately in
predicting the WQI among eight regression ML models.
Furthermore, Raheja et al. [17] compared the predictive
performance of three ML algorithms (i.e., DNN, GBM,
and XGB) in analyzing the entropy water quality index
(EWQI) and WQI over Haryana State and reported that
the deep neural network (DNN) outperformed the other
two models. Additionally, electrical conductivity (EC) was
demonstrated to be the most determinant parameter,
whereas pH appeared to be the least impactful input.
Hussein et al. [18] employed the XGB, SVR, and K-
nearest neighbor (KNN) models to assess the irrigation
water quality index (IWQI) in Naama (southwest Algeria)
and reported that each model exhibited unique strengths
in WQI prediction for the region. In particular, XGB
demonstrated high accuracy, closely aligned reference
data, and low variability, whereas the SVR model generated
stable and consistent predictions that closely approximated
the reference data. The KNN forecasts, on the other hand,
aligned well with the reference data, displaying reduced
variance and standard deviation. Kamel and Eltarabily
[19] applied Bayesian optimization to indicate better
performance of XGB in estimating the irrigation water
quality index (IWQI) than those generated by random
forest (RF) and AdaBoost in El Moghra (Egypt).

In Vietham, Khoi et al. [20] also demonstrated the
superiority of XGB over the other 11 ML models in
predicting the WQI in the La Buong River. Nguyen et
al. [21] performed a comparative analysis of boosting
algorithms (i.e., GBM and XGB) and deep learning
models (i.e., RNN and LSTM) and reported the high-
performing abilities of boosting models in simulating
WQI. This study also employed the Bayesian model
averaging (BMA) method to reduce the inputs to three
parameters, much fewer than those required by conditional
approaches. Recently, Lap et al. [22] integrated filtering
methods into RF models to reduce the number of input
variables for estimating WQI in the An Kim Hai irrigation
system in Vietnam and reported that the optimal models
could reduce from ten to four parameters (i.e., coliform,
DO, turbidity, and TSS).

Although ML models typically require large datasets
to achieve optimal performance, effective strategies
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can enable high performance even with limited data.
For example, a previous study [14] demonstrated that
SVM has been effectively applied to improve accuracy
and reduce the risk of overfitting, even with small datasets.
In addition, incorporating machine learning models in
hybrid models has also shown potential for improving
water quality prediction performance, as noted in Bui et
al. [13].

ML algorithms can effectively simulate the WQI. Most
previous investigations have focused mainly on deter-
mining superior models [16-18, 20—22], defining essential
and decisive factors [15, 17, 19], and reducing the number
of required parameters compared with traditional methods
[11, 20-22]. Nevertheless, while the WQI is widely used
to assess the pollution levels of water sources through
a categorical rating scale, prior studies have focused
predominantly on analyzing WQI's quantitative outcomes
as specific values and overlooked variations within
water quality classes. In Vietnam, most previous studies
have reduced the number of input parameters mainly
on the basis of the outcomes of ML models (i.e., feature
importance) and paid less attention to standards and
regulations in the established guidelines for WQI calcu-
lation, thereby limiting practical applicability. Additionally,
although there is a wide range of ML algorithms for
water quality assessment, selecting the most appropriate
techniques for specific regions is of concern. This study
selected four ML algorithms for WQI prediction on the
basis of their representation of different learning paradigms,
including a neural network model (RBF), a kernel-based
method (SVM), and ensemble boosting techniques
(XGB and GBM), and their proven effectiveness in
previous studies. Specifically, the RBF [11], SVM [12,
14, 18], XGB [18-20], and GBM [21] methods have
demonstrated strong performance in similar tasks.

Data Collection
Collected water quality parameters:
BOD; , DO, COD, Temperature, N-

The present study strove to address these gaps and
assess the water quality of the Sai Gon River, a vital
river network in the critical economic region of southeast
Vietnam, in which the river water quality has highly
deteriorated due to industrial activities and massive
urbanization. Specifically, by employing (parsimonious)
machine learning algorithms, this study aimed to
minimize the number of input variables required for
calculating the WQI while adhering to the established
standards and regulations. Furthermore, this study not
only evaluates prediction results on the basis of
individual WQI values but also incorporates an analysis
within the context of WQI classification ranges. This
integrated approach offers a more comprehensive and
accurate evaluation of the model's effectiveness in
predicting WQI, providing deeper insights into its
overall performance.

Materials and data used

The study was conducted following the steps illustrated
in Figure 1. Water quality data, including parameters
such as BODs, DO, COD, temperature, N-NH,~, P-PO 37,
total coliform, and pH, were collected and used to
calculate the VN_WQI in accordance with Decision No.
1460/QD-TCMT. The dataset was normalized via the
StandardScaler method and divided into training and
testing subsets. Several machine learning models—the
RBF, XGB, GBM, and SVR—were developed and optimized
via GridSearchCV. The best-performing model was selected
via metrics (e.g., RMSE, MAE, R2, and NSE) and a Taylor
diagram. Scenario analyses were then conducted to
predict WQI under reduced input parameters.
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Figure 1 General flow chart of the research.
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1) Study area

The study area is located in the lower basin of the
Sai Gon River, at a longitude of 10°30'-11°30'N and a
latitude of 106°15'-107°15'E (Figure 2). The study area
covers approximately 3,200 km2 and passes through
the provinces of Binh Phuoc, Binh Duong, Tay Ninh,
Long An, Dong Nai, and Ho Chi Minh City.

The climate of the study area is tropical monsoon,
with a relatively high average annual rainfall of appro-
ximately 1,800 mm. There are two distinct seasons: the
rainy season (from April to October) and the dry season
(from November to March of the following year), with
rainfall during the rainy season accounting for appro-
ximately 80-85% of the annual total. Additionally, the
lower Sai Gon River flows through Ho Chi Minh City,
Dong Nai, and Binh Duong Provinces, which are considered
economically rich and dynamic areas and are among
the leading economic driving forces of Vietham now
and in the coming years [23]. Under the influence of
massive urbanization and industrial activities, surface
water pollution has become increasingly problematic
and continues to be exacerbated in this area. Therefore,
it is imperative to conduct a comprehensive analysis of
water quality in the Sai Gon River.
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Figure 2 Geographical location of the study area.

2) WQI calculation

In this study, the WQI index was calculated on the
basis of Decision No. 1460/QD-TCMT, issued by the
Vietham Environmental Administration — Ministry of
Natural Resources and Environment (VEA-MONRE) in

2019, regarding the promulgation of technical guidelines
for the calculation and disclosure of the Vietham Water
Quality Index (VN-WQI). As outlined in Decision No.
1460/QD-TCMT, VN_WAQI requires data from at least
three of the five designated parameter groups, with
Group IV (the group containing organic and nutrient
parameters) being a mandatory inclusion, comprising a
minimum of three parameters. Specifically, Group |
includes the pH parameter. Group Il encompasses
pesticide indicators, such as Aldrin, BHC, Dieldrin, and
various DDT compounds (p,p’-DDT, p,p’-DDD, p,p’-
DDE), as well as heptachlor and Hepta chlorepoxide.
Group 1l focuses on heavy metal indicators, including
arsenic (As), cadmium (Cd), lead (Pb), hexavalent chro-
mium (Cr®*), copper (Cu), zinc (Zn), and mercury (Hg).
Group IV includes organic and nutrient indicators,
incorporating measures such as dissolved oxygen (DO),
5-day biochemical oxygen demand (BODs), chemical
oxygen demand (COD), total organic carbon (TOC),
and nitrogen compounds (N—NH4, N-NOs, N-NO2) and
phosphate (P—POa). Finally, Group V included microbial
indicators such as coliform and E. coli.

According to Decision No. 1460/QD-TCMT, the VN-
WQI index is calculated via eight water quality para-
meters, including pH (Group 1), DO, BODs, COD, N-NHy,,
P-PO, (Group V), temperature, and total coliforms
(Group V). The formula for calculating the VN-WQI index
in this study, characterized by organic and nutrient
pollution, is expressed as follows (Eq.1):

3

k | 1

VN_WQI wal, 1ZW I1y)? 1ZW I

= x| (= X —

_WQ 100 k-1 Qly) 1-1 Qly
1= i=

(Ea. 1)

where WQI represents the WQI value for pH; WQlw
represents the WQI value for organic and nutrient para-
meters (including DO, BODs, COD, N-NHa, and P-POQOy);
and WQIv represents the WQI value for microbiological
parameters, including coliform.

A comprehensive description and step-by-step pro-
cedure for calculating the WQI are documented in
Decision No. 1460/QD-TCMT.

The final VN-WQI values are rounded to the nearest
integer on a scale from 0to 100 and are classified into
six distinct categories, each representing a different level
of water quality. The water quality is considered excellent,
with a WQI between 91 and 100, indicating optimal quality.
Values between 76 and 90 fall into the good category,
whereas a WQI of 51 to 75 indicates moderate quality.
Water quality is categorized as poor when the WQI
ranges from 26 to 50 and very poor when it falls between
10 and 25. WQI values below 10 indicate extreme pollution.
The classification of water quality levels on the basis of
VN_WQI values and their suitability for intended use is
presented in Table 1.
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Table 1 WQI water quality index rating scale

Suitable usage

WQI ranges Water quality RGB
color code
91 -100 Excellent
76 — 90 Good
51-75 Moderate 255;255;0
26 — 50 Poor 255;126;0
10-25 Very poor

Suitable for domestic water supply

Suitable for domestic water supply with appropriate treatment
Suitable for irrigation and other similar purposes

Suitable for waterway transport and other similar uses
Heavily polluted, requires treatment for future use

<10 Extreme pollution 126;0;35 Toxic water, requires remediation and treatment

3) Description of ML algorithms
3.1) Radial basic function neuron network

The radial basic function (RBF) was introduced by
Lowe and Broomhead [24] and is a type of feedforward
neural network. The architecture of an RBF neural net-
work consists of three layers: input, hidden, and output.
The input layer receives the raw data (feature vectors)
and passes it to the hidden layer. Each neuron in the
hidden layer computes the resemblance between the
input data and the prototype stored in that neuron. It
uses a Gaussian activation function defined by the
following formula:

_<||X-cj||2>
(l—cl)=e \ ™

where x is the input vector, ¢j represents the center
of the Gaussian function, and oj specifies the width of
the Gaussian function of the j'" neuron.

The output is determined via the weighted average
approach, expressed via the following formula:

(N

(Eq. 2)

Vi = 2jtq Wy () (Eq. 3)

where Wi is the i" weight between the hidden and
output layers and n is the number of neurons in the
hidden layer.

The classical RBF process primarily depends on
three factors: the prototypes within each RBF neuron
and how they are optimally chosen, the beta value, and
the weights connecting the hidden layer and the output
layer (which influence the final decision) [25].

3.2) Support vector regression

The SVR is a supervised learning algorithm for
regression tasks derived from the support vector
machine algorithm. Introduced by Vapnik et al. [26],
SVR is grounded in statistical learning theory and has
demonstrated marked effectiveness [27]. It is valuable
for modeling data with nonlinear relationships and
complex patterns, making it a robust choice for various
predictive modeling challenges.

In the context of an SVR model, the connection
between the target variable and the predictive variables
(x) is captured through a regression function. According

to Smola and Schdélkopf [28], the regression function
can be expressed as follows (Eq.4):
y=fx)=w*eXx)+b (Eq. 4)
where @ is a set of functions that replaces complex
nonlinear relationships with simpler linear relationships
and where w and b denote the regression function weight
and bias, respectively, which are determined by minimizing
the difference between the predicted function f(x) and
the observed value (y).

Several hyperparameters of the SVR play a critical
role in its predictive performance. The regularization
parameter (C) regulates the trade-off between minimizing
training errors and maintaining a large margin. The
epsilon (€) defines the tolerance margin around the
predicted hyperplane where errors are not penalized.
The kernel function transforms input data into a higher-
dimensional space to handle nonlinear relationships.
The RBF is the most common kernel function used to
transform the input data into a higher-dimensional space
[29].

3.3) Gradient boosting model
The gradient boosting model (GBM), originally
introduced by Friedman [30], is an advanced ensemble-
supervised algorithm. The GBM has become widely used
in both regression and classification tasks because of
its ability to handle nonlinear data and its high flexibility.
The GBM is designed to construct robust predictive
models by iteratively combining a series of weak
learners, typically decision trees. As each new weak
learner is added, it fits a model that enhances the
accuracy of predicting the response variable. These
additional learners are aligned with the negative gra-
dient of the loss function, ensuring that they effectively
reduce error across the entire ensemble. The model
predicts values for the structure y = F(x), minimizing the
mean squared error as described in Eq. 5 [17]:
§ = FO =255 — y)? (Eq.5)
where vyiis the actual value; Vi is the predicted value;
i represents the equities over some test data of size;
and n represents the number of samples.
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3.4) Extreme gradient boosting

Extreme gradient boosting (XGB), originated by Chen
and Guestrin [31], represents an optimized version of
gradient-boosted decision trees designed for fast and
efficient execution. This algorithm excels at handling
sparse data and demonstrates strong performance in
both classification and regression tasks owing to its
flexibility and versatility.

The XGB model uses an additive training approach,
incrementally constructing trees in sequence to minimize
the defined loss function. At each iteration t, the prediction
is updated by adding the output of the newly trained
tree ft (xi):

719 = 5P + ) (Eq. 6)
The XGB framework optimizes an objective function
Obj(B), which balances the loss between the predicted
and actual values, and a regularization term that penalizes
model complexity:
0bj(8) = B, 1(y:,9:) + ZL, 0 (Ea.7)
where 1(y;, ;) is the loss function, typically the
squared error for regression, and where Q(D,) is the

regularization term that controls the complexity of the
trees. The regularization term is formulated as follows:

where T is the number of leaves in the tree, wj

represents the weight of the jh leaf, and y and A are
regularization parameters.

The theoretical foundation and detailed calculation
procedure of the XGB model are comprehensively
described by Chen and Guestrin [31].

According to Hussein et al. [18], the advantages of
XGB's functionality can be summarized as follows:
XGB is a gradient boosting algorithm that enhances
predictive accuracy through iterative additive functions,
where each decision tree in the sequence refines the
model by correcting the errors of its predecessor. It uses
decision trees as base learners trained to minimize a
loss function. The model iteratively adds trees, each
focusing on the residuals from previous trees to correct
errors. Additionally, XGB incorporates regularization
(L1 and L2) to prevent overfitting and improve generali-
zability. It utilizes ensemble learning by combining the
predictions of all trees and parallel and distributed
computing to handle large datasets efficiently. XGB
also provides feature importance scores and supports
hyperparameter tuning to optimize model performance.

In this study, four models (i.e., XGB, GBM, SVR,
and RBF) were implemented in Python 3.10.9 via the
Scikit-learn 1.2.1 and TensorFlow 2.12.0 frameworks
and executed on a Windows 11 platform. During model
training, a 10-fold cross-validation strategy was applied
via GridSearchCV to select optimal hyperparameters
and ensure robustness. The hyperparameters for each

Q) =yT + %}‘Zitﬂ ‘*’1‘2 (Eq. 8) model, following the training process, are presented in
Table 2.
Table 2 Hyperparameter tuning

Model Hyperparameter Range Optimal value

RBF Node of layer [5, 7,10, 12, 15] 10
learning_rate [0.001, 0.01, 0.03, 0.05, 0.1] 0.001
batch_size [1, 4, 8, 16, 32, 64] 4
epochs [50, 100, 200, 300, 500] 500
Early stopping (patience) [5, 10, 15, 20, 30] 15
activation ['relu’, ‘tanh’, 'sigmoid] relu
optimizer ['adam’, 'sgd’, 'rmsprop’] rmsprop

SVR C [1, 5, 10, 50] 10
epsilon [0.01, 0.03, 0.05, 0.07, 0.1] 0.05
kernel [linear', 'rbf', 'sigmoid'] rbf
gamma ['scale’, ‘auto’] scale

GBM learning_rate [0.01, 0.03, 0.05, 0.1] 0.1
max_depth [3,4,5,6,7,8] 3
n_estimators [100, 200, 300, 400, 500] 200
subsample [0.6, 0.8, 0.9, 1.0] 0.8
max_features ['auto’, 'sqrt’, 'log21] sqrt

XGB learning_rate [0.01, 0.03, 0.05, 0.1] 0.1
max_depth [1,3,5,7,9,11] 3
n_estimators [100, 300, 500, 700, 900] 300
reg_lambda [0.01, 0.05, 0.1, 0.5] 0.1
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4) Data collection and processing

The data used as input for the WQI prediction model
in the lower Sai Gon River area include eight water quality
parameters: DO, BODs, COD, N-NH,, P-PO,, pH, tempe-
rature (T), and total coliforms (coliform). Monthly data
spanning five years, from 2015-2019, were collected
from the Southern Regional Hydrometeorological Center
at three water quality monitoring stations: SG1, SG2, and
SG3. These stations were strategically selected to represent
upstream, midstream, and downstream zones, ensuring the
comprehensive capture of pollution dynamics along the
river. The geographical locations of the selected sites
are shown in Figure 2.

To further illustrate the distribution and variability of
the water quality parameters across the monitoring
stations, Figure 3 presents a series of boxplots for each
parameter at SG1, SG2, and SG3.

These visualizations demonstrate that the parameters
measured at the three stations varied significantly,
especially for organic and microbiological pollution
indicators. Apparent differences in median values for
COD, BODg, N-NH,, and coliform were observed
between the stations, reflecting an increase in pollution
levels from SG1 to SG3. The boxplots also highlight the
presence of outliers, especially for COD, BODs, N-NHy,,
coliform, and P—PO,. In environmental monitoring, outliers
may indicate discharges or seasonal variations in pollutant
loads rather than errors, providing critical information
for model training and decision-making. Therefore, these
outliers are retained in the dataset to preserve repre-
sentativeness in the study area.

Table 3 presents a statistical description of the water
quality data in the study area. The statistical analysis
reveals significant discrepancies between the maximum
and minimum values of the parameters. For example,
the maximum value of total coliform bacteria is 4,450
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MPN per 100 mL, which is more than 20 times greater than
the minimum value at 220 MPN per 100 mL, whereas the
maximum and minimum values of COD are 134 mg L
and 5 mg L1, respectively. The variance among the para-
meters is also considerable, with the average value of
total coliform bacteria at approximately 1,809 MPN per
100 mL and a temperature average of approximately
29.4°C, in contrast to the other parameters, which present
relatively low average values, such as P-PO4 (0.05 mg L?)
and DO (3.72 mg L1). Furthermore, the standard deviation
of total coliform bacteria is 854 MPN per 100 mL, indi-
cating substantial data dispersion relative to the mean.
In addition, the measurement units across the dataset
are inconsistent: the temperature is recorded in °C, the
total coliform concentration is in MPN per 100 mL, and
the remaining parameters are in mg L. These inconsis-
tencies in both the magnitude of the values and the
units of measurement highlight the need for standar-
dization.

Standardizing the dataset is imperative prior to
model training to ensure a consistent value range and
unit system, as well as to improve convergence during
training. On the basis of the characteristics of the collected
dataset, this study employs the StandardScaler method
to standardize the model's input data. This is a simple
method that standardizes numerical features by scaling
them to have a mean of 0 and a standard deviation of
1. The specific formula is expressed as follows:

12 _Xi—i
X =

(Eq.9)

o

where x;j and x| are the original feature value and the
normalized feature value, respectively, and where X and
c are the mean and standard deviation values of the
feature in the dataset.
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Table 3 Statistical characteristics of the water quality parameters in the study area

Parameters Unit Maximum Minimum Mean Standard deviation
T °C 32.60 27.75 29.40 0.92
pH - 7.50 6.10 6.57 0.28
DO mg L* 5.80 2.40 3.72 0.75
COoD mg L* 134.00 5.00 14.76 14.95
BODs mg L* 69.00 3.00 7.18 7.69
N—NH4 mg L* 10.64 0.07 1.03 1.23
P—PO4 mg L* 0.19 0.01 0.05 0.04
Coliform MPN per 100 mL 4,450.00 220.00 1,809.00 854.00
Subsequent to this preprocessing step, the dataset Zin_l(YiObs_YiSim)z
is divided into training and testing sets using an 80:20 NSE=1- W (Eq.12)
split ratio, with a fixed random seed (random state=1) T
to ensure reproducibility. The data were split without 2
shuffling to preserve the temporal sequence. Specifically, R? — ¥ (YObs;—yobs)x(ysim,_ysim) (Eq.13)

80% (comprising 202 data points per parameter) are
allocated for model training, whereas the remaining
20% (equivalent to 60 data points per parameter from
the year 2019) are reserved for model evaluation. This
allocation ratio has been widely adopted and has
demonstrated substantial effectiveness in several studies
employing artificial intelligence models for water quality
prediction [11, 14, 16, 21, 32].

5) Model evaluation

Model performance is assessed through both gra-
phical and statistical methods to evaluate the reliability
of the predicted results relative to the observed data. In
this study, the statistical evaluation metrics include the
coefficient of determination (R2), Nash—Sutcliffe efficiency
(NSE) [33], mean absolute error (MAE), and root mean
square error (RMSE). These indices collectively provide
a comprehensive assessment of model accuracy and
predictive reliability. Notably, the NSE measures how
closely the plot of observed versus simulated data aligns
with the 1:1 line, indicating the model's ability to replicate
observed data accurately. The R2, on the other hand,
assesses the strength of the linear relationship between
observed and simulated data, providing insight into the
degree of association between the two datasets [34].
The RMSE and MAE can be used to determine confidence
intervals in model predictions, with the potential to
incorporate measurement uncertainty into the analysis
[35-36]. The closer the values of R2 and NSE are to 1,
the higher the model performance. Conversely, the closer
the values of the MAE and RMSE are to 0, the smaller
the model's error is [34]. These statistics are determined
via the following formulas:

MAE = -3, [VP* — ™| (Eq.10)

RMSE = \/%zin:l(yiobs —ysim)®  (Eq.11)

\/Zinzl(yobsi_?obs)z \/Zin=1(YSimi _?sim)z

where Y°PS represents the ith observed value; Y™
represents the ith simulated value; Ys'™ represents the
average simulated value; and Y°P* represents the average
observed value.

6) Scenario

The WQI is traditionally calculated through extensive,
time-intensive computational methods and is often prone
to occasional errors, particularly during subindex calcu-
lations. Additionally, traditional methods for calculating
WQI require numerous physical and chemical parameters.
To provide an efficient alternative for WQI calculation
and prediction, Scenario S8 was developed, incorporating
eight water quality parameters, including DO, BODs,
COD, N-NH,, P-PO,, pH, T, and coliform.

Furthermore, the challenges associated with collecting
and analyzing all these parameters, especially those
that require precise laboratory conditions, significant
time, and high costs, should be recognized. This study
investigated the feasibility of reducing the number of
input variables while maintaining predictive performance
and regulatory compliance. Specifically, a set of reduced-
input scenarios (S7-COD, S7-BOD, S7-NH,, and S7-PO,)
was developed, with each scenario excluding one para-
meter (COD, BODs, N-NH,, or P-PO,, respectively) from
the prediction model. These reduced scenarios aim to
minimize information loss while still complying with
Decision No. 1460/QB-TCMT, which requires at least
three designated parameter groups (I, IV, and V) for
WQI computation, with group IV being compulsory.
Furthermore, at least three parameters from group IV
must be used in the calculation.

This approach reflects real-world constraints in water
quality monitoring and shares a similar purpose of
parameter exclusion with previous studies by Hameed
et al. [11], Khoi et al. [20], and Nguyen et al. [21].
However, the specific methods for selecting which
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parameters to exclude in our study differ, as they are
based on practical factors such as laboratory costs,
analysis time requirements, and regulatory compliance
rather than correlations among parameters. Table 4
presents the specific input parameters used for the
scenarios analyzed.

Results
1) Performance evaluation of the ML algorithms

This study evaluated the performance of four machine
learning (ML) algorithms, including RBF, SVR, GBM, and
XGB, in simulating the WQI using eight input parameters:
pH, T, DO, COD, BODs, P-PO4, N-NH4, and coliform
(Scenario S8). To ensure consistent evaluation, a quanti-
tative comparison was conducted Table 5 presents per-
formance metrics, including the MAE, RMSE, NSE, and
R2, which are based on both training and testing results
for all the models.

During the training phase, all four models demonstrated
excellent simulation performance, characterized by low
error rates and high correlation coefficients. In particular,
the values of the MAE and RMSE vary from approximately
0.199t0 1.355 and 0.259 to 2.197, respectively. The values
of NSE and R? exceed 0.9. Additionally, Figure 4 these
findings further confirm this excellent performance. The
scatter points in the Taylor diagram approximate the
reference point very well, indicating similar variations,
few errors, and high correlations compared with the
observations. In comparison, the GBM model exhibits
the best performance, followed by XGB, SVR, and
RBF, in that order.

In the testing phase, the RMSE values for XGB, SVR,
RBF, and GBM were 1.630, 3.303, 3.926, and 2.656,
respectively. The corresponding NSE values were 0.953,
0.807,0.728, and 0.875, respectively. Among the models,

Table 4 Scenarios of WQI prediction

the XGB model showed the best alignment with the actual
measured WQI, achieving the lowest error rates (RMSE =
1.630, MAE = 0.782) and the highest correlation (R2 =
0.960, NSE = 0.953). Its position is closest to the reference
point on the Taylor diagram (representing actual measure-
ments) (Figure 4b), underscoring its superior performance.
The GBM ranks second, followed by SVR, whereas the
RBF model has the lowest simulation performance, as
evidenced by its position being farthest from the reference
point on the Taylor diagram.

To further evaluate robustness, a stratified analysis by
stations and years was also conducted to interpret model
performance across spatial and temporal dimensions.
As shown in Figure 5, XGB and the GBM consistently
outperformed the other models at all three stations,
achieving high R2 values (generally >0.95) and low RMSEs
across most years. At SG1, XGB and the GBM exhibited
stable performance, whereas the RBF exhibited large
fluctuations, particularly in 2016 and 2019. SG2 demon-
strated the most consistent results, with XGB and GBM
maintaining near-perfect R? values and minimal RMSEs
throughout the five years. In contrast, SG3 experienced
a slight decline in prediction accuracy in 2019 across
all the models due to increased data variability and the
presence of outliers at SG3. However, XGB maintained
higher accuracy than GBM did, with better R2 values
and lower RMSEs. It can be concluded that XGB was
the most robust model despite spatial and temporal
variability. These results highlight its robustness in
modeling complex and variable real-world water quality
conditions.

Owing to its superior performance, the XGB model
is selected to predict the WQI under various scenarios
that are designed to minimize water quality parameters
when calculating the WQI within the study area.

No. Scenario Input parameters Excluded parameter
1 S8 pH, T, DO, COD, BODs, P-POa4, N-NHa, and Coliform None
2 S7-BOD pH, T, DO, COD, P-POa4, N-NH4, and Coliform BODs
3 S7-COD pH, T, DO, BODs, P-POa4, N-NH4, and Coliform COD
4 S7-PO4 pH, T, DO, COD, BODs, N-NH4, and Coliform P-POs4
5 S7-NH4 pH, T, DO, COD, BODs, P-PO4, and Coliform N-NHa

Table 5 Efficiency statistics of the ML models in scenario S8

Model Phases MAE RMSE NSE R?
RBF Training 1.355 2.197 0.917 0.932
Testing 2.688 3.926 0.728 0.767
SVR Training 0.435 0.573 0.994 0.995
Testing 2.030 3.303 0.807 0.830
GBM Training 0.199 0.259 0.999 0.999
Testing 1.432 2.656 0.875 0.898
XGB Training 0.334 0.451 0.997 0.997
Testing 0.782 1.630 0.953 0.960
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2) Performance evaluation of scenarios

Table 6 presents the performance of the XGB model
in predicting the WQI of the Sai Gon River under five
scenarios designed to test input exclusion, as evaluated
by statistical performance measures, including the MAE,
RMSE, NSE, and R2,

The results indicate that in the training phase,
Scenarios S8, S7-BOD, and S7-COD vyield highly
accurate simulations characterized by low errors and
high correlations. Specifically, the NSE and R2 indices
exceed 0.990, whereas the MAE and RMSE values
remain below 0.5. Conversely, Scenarios S7-PO4 and
S7-NH4 achieve high correlations with NSE and R?
values above 0.880, although their relative errors are
greater than those of the other scenarios, with MAE
and RMSE values ranging from 1.803 to 2.644.

In the testing phase, Scenario S8, which integrates
all the parameters, achieves the highest predictive
accuracy, as evidenced by the lowest MAE (0.782) and
RMSE (1.630) values. The strong alignment between
the simulated and observed WQI values, demonstrated

by high NSE (0.953) and R? (0.960) values, underscores
the effectiveness of including all eight parameters for
reliable prediction. Scenarios S7-COD and S7-BOD also
perform satisfactorily, with moderate error levels (MAEs
of 1.075 and 1.052 and RMSEs of 1.890 and 2.003,
respectively) and high correlations with observed values
(NSE and R? values above 0.92). Scenarios S7-COD
and S7-BOD also perform satisfactorily, with moderate
error levels (MAEs of 1.075 and 1.052 and RMSEs of
1.890 and 2.003, respectively) and high correlations
with observed values (NSE and R2 values above 0.92).
In comparison, Scenario S7-PO4, which excludes the
P-PO4 parameter, results in increased error (MAE of
2.676 and RMSE of 3.138) and a slightly reduced
correlation (NSE of 0.826 and R2 of 0.850), indicating a
decline in predictive accuracy. Moreover, Scenario S7-
NHas, which omits N-NHa4, produces the highest errors
(MAE of 3.718 and RMSE of 4.661) and the weakest
correlation (NSE of 0.616 and R2 of 0.635), reflecting a
substantial decrease in predictive performance.
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Figure 6 further depicts scatter plots between the
observed and simulated WQI values during the training
and testing phases across the five scenarios. These
plots illustrate the alignment between the observed and
simulated WQI values generated by the XGB model.
The observed and simulated WQI values during the
training phase (blue circles) clearly exhibit less dispersion
than those in the testing phase (orange triangles). The
correlation between the observed and simulated WQI
values is notably lower in scenarios S7-NH4 and S7-POa,
whereas scenarios S8, S7-BOD, and S7-COD demonstrate
greater correlations.

To compare the simulation performance of the XGB
model across five scenarios, this study presents the
outcomes for each scenario during the training period
(2015-2018) and the testing period (2019) via Taylor
diagrams (Figure 7).

An examination of the scatter positions on the diagrams
indicates that the scenario incorporating all eight para-
meters (Scenario S8) achieves the highest correlation
with the observed data, along with the lowest error and
similar variations to the observations, thus demonstrating
the most accurate simulation performance. Scenarios
that exclude individual parameters, specifically COD
and BODs (scenarios S7-COD and S7-BOD), also perform
robustly, maintaining a high correlation with the observed
WQI values. Moreover, the scenario excluding P-POa4
(scenarios S7-POg) results in low errors but high biases
and reduced correlations. In particular, Scenario S7-NHa
yields the least effective WQI simulation among all five
scenarios across both the training and testing phases,
as evidenced by its position being farthest from the
reference points.

Table 6 Efficiency statistics of the XGB model under the 5 scenarios of input variable combinations

Scenarios S8 S7-BOD S7-COD S7-POq4 S7-NH4
Phases
Training MAE 0.334 0.372 0.375 1.803 2.030
RMSE 0.451 0.507 0.494 2.411 2.644
NSE 0.997 0.996 0.996 0.900 0.880
R? 0.997 0.996 0.996 0.901 0.881
Testing MAE 0.782 1.052 1.075 2.676 3.718
RMSE 1.630 2.003 1.890 3.138 4.661
NSE 0.953 0.929 0.937 0.826 0.616
R? 0.960 0.932 0.948 0.850 0.635
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3) Comparison with actual WQI ranges

This study further analyzed sample distributions
across six water quality classification thresholds, as
specified in Decision No. 1460/QD-TCMT, dated November
12, 2019. This analysis compares the observed WQI
values with the simulated WQI values across various
scenarios via the XGB model to assess whether the
model predictions significantly diverge from the actual
measurements. The statistical findings are presented
in Figure 8. Figure 8a compares the WQI ranges across
different scenarios, with each range color-coded according
to the guidelines outlined in Decision No. 1460/QD-TCMT.
Figure 8b illustrates the changes in the number of
samples in each WQI classification, indicating whether
the number increased (positive value) or decreased
(negative value) compared with the actual data, as
displayed in the heatmap.

A statistical analysis of WQI values derived from
observed data between 2015 and 2019 reveals the
following distribution: 3.4% (9 samples) fall within the
"Excellent" category (WQI range: 91-100), 52.7% (138
samples) are classified as "Good" (WQI range: 76—90),
and 43.9% (115 samples) are classified as "Moderate"
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(WQI range: 51-75), with no samples below a WQI of
50. These findings suggest that the surface water quality
of the Sai Gon River primarily aligns with the "good"
and "moderate” classification levels.

Figure 8 also indicates that the distribution of samples
across the simulated water quality ranges in scenario
S7-COD closely aligns with that of the observed WQI
values. This alignment indicates that the COD parameter
could be considered nonessential for WQI prediction
within the XGB model in this study area. In Scenario S8,
which incorporates all eight input parameters, although
this scenario has the highest correlation among the five
scenarios, there are differences in the distributions of
samples across the "good" and "moderate” water quality
levels in the simulated results. Specifically, four samples
initially classified as "good" shifted to the "moderate"
category, with this discrepancy occurring during the testing
phase in 2019. Similar differences arise in Scenario S7-
BOD, where the BODs parameter is excluded: three
samples initially classified as "good" shift to "moderate”
in the simulated results. The simulated sample distribution
in this scenario aligns with the observed data for the
remaining water quality levels.
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For the scenario in which the P-PO4 parameter is
excluded, the model's simulated results diverge signifi-
cantly from the observed WQI values. Specifically, the
number of samples in the "Excellent” and "Good" quality
categories decreases to 3 and 6 samples, respectively,
whereas the number of "Moderate" quality samples
increases by 9. Excluding the N-NH4 parameter results
in the most significant discrepancy between the simulated
and observed WQI values: no samples reach the
"Excellent" category, the "Good" category has 19 additional
samples compared with the observed data, and the
"Moderate" category has ten fewer samples. These
findings suggest that excluding P-POs4 and N-NH4 is
inappropriate for WQI prediction, as it significantly
affects water quality assessment outcomes in this
study area.

Discussion

Research findings demonstrate that boosting algo-
rithms, particularly XGB, perform effectively in predicting
the WQI, which is consistent with previous studies [18-
20], which also identify XGB as more effective than other
ML models.

However, in other cases, Raheja et al. [17] reported
that the DNN model outperforms both XGB and the
GBM. Moreover, Nguyen et al. [21] reported that the
GBM is more effective than XGB and deep learning
algorithms. These results suggest that different models
excel with particular datasets or areas, as their effect-
tiveness depends on factors such as data distribution,
regional traits, and how well the model adapts to these
variations. For example, in southern Vietnam, including
the Sai Gon River (in this study) and the La Buong River
[20], XGB has been identified as the most effective
predictive model. Conversely, in northern Vietnam, such
as the Red River Basin [21] and the An Kim Hai system
[22], the GBM and RF have demonstrated superior
predictive capabilities. These findings highlight the
necessity of model selection for the specific local context
and data characteristics, as no model is universally optimal.

The study also considers the effects of reducing the
input water quality parameters when calculating the
WQI. The results reveal that the parameters P-PO4 and
N-NH4 substantially impact WQI outcomes. Conversely,
omitting the parameters BODs or COD did not signifi-
cantly affect the WQI results of the XGB model. Notably,
when the COD parameter is excluded, the water quality
classification based on the WQI is closely aligned with
the measured data. This finding is consistent with those
reported by Hameed et al. [11], which also indicates that
excluding the BODs parameter had minimal impact on
WQI predictions. Furthermore, Kamyab-Talesh et al. [14]
identified nitrate and phosphate as the most critical
factors influencing the WQI. On the other hand, Mohd
Zebaral Hoque et al. [16], Khoi et al. [20], and Lap et al.
[22] demonstrated that omitting these parameters still

resulted in accurate WQI predictions. The influence of
input water quality parameters on WQI calculations
varies depending on the model and the study's specific
context. As such, it is necessary to quantify each para-
meter's contribution to WQI prediction through approaches
such as sensitivity analysis in future research. This would
allow for the exclusion of less influential parameters
while maintaining model accuracy.

In addition, despite the limitations of sample size,
several factors support their suitability for ML modeling
and contribute to the reliability of the results. First, the
three monitoring stations represented hydrological zones,
upstream, midstream, and downstream, allowing a compre-
hensive understanding of the pollution dynamics along
the river. Second, the monthly data spans multiple dry
and rainy seasons across five years, providing sufficient
temporal variability for modeling water quality trends.
Additionally, 10-fold cross-validation was applied to enhance
model generalizability and reduce potential bias due to
the limited dataset size. The XGB model's performance
indicated reliability despite the modest dataset size,
further supporting its effectiveness in handling limited
data, as demonstrated in previous studies [18-20].

Similar studies in the literature have effectively utilized
ML models with datasets of comparable or even smaller
scales, achieving high predictive accuracy. Table 7
summarizes the selected studies for comparison. These
findings suggest that, when carefully designed, ML models
can deliver reliable results even with limited datasets,
particularly when high-quality input features and appropriate
validation strategies are used. This is meaningful in
water quality management in developing countries, where
water quality monitoring faces significant challenges
due to the lack of monitoring sensors and high costs,
resulting in sparse and infrequent datasets. Nevertheless,
increasing the spatial coverage and extending the time
series would undoubtedly further improve the generali-
zability and robustness of the models. Future studies
should explore the integration of additional stations and
longer data records to enhance predictive capabilities
and support broader application, as well as integrate
site-specific contextual information at monitoring stations,
such as hydraulic conditions or point-source discharge
locations, to enhance interpretability.

Conclusions

An informed decision on water quality management
requires tailored tools for accurately predicting the water
quality index. State-of-the-art machine learning algorithms
have offered various efficient toolkits for assessing water
quality. In an attempt to simulate the WQI in the Sai Gon
River from 2015-2019, the present study applied four
ML algorithms (i.e., XGB, GBM, RBF, and SVR) to monthly
data of eight water quality parameters, including DO,
BODs, COD, N-NH,, P-PO,, pH, temperature, and total
coliforms. Moreover, five scenarios with varying input
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parameters were designed to identify the best-
performing model and further explore the possibility of
minimizing the number of input parameters for WQI
calculation in this study area.

On the basis of the same scenario with all eight input
parameters (i.e., Scenario S8), this study first identified
the optimal model by comparing the simulation perfor-
mance of the four models in predicting the WQI during
the training and testing phases. The optimal model was
subsequently adopted to simulate the remaining sce-
narios to evaluate the possibility of reducing the number
of input parameters for WQI calculation. The results
demonstrate that the XGB model effectively simulates
the WQI for this study, achieving the lowest error rates
and the highest correlation, followed by GBM, SVR,
and RBF. Moreover, this study also indicates that N-

NH, and P-PO, are essential factors in WQI prediction
in the study area, whereas omitting BODs results in only
minor decreases in model performance. Therefore,
COD or BOD5 may be excluded when the WQI is calcu-
lated via the XGB model in cases where these data are
not available or where it is desirable to reduce the cost
and time of analyzing these parameters in the laboratory.

The results of this study provide solid evidence
supporting the application of ML algorithms in calculating
WQI. This study demonstrates that ML models can reduce
the number of parameters needed for WQI estimation
while ensuring accuracy, providing a practical solution
for water quality monitoring in developing countries such
as Vietnam. By adopting these techniques, developing
nations can enhance their assessment and management
of surface water resources more effectively and sustainably.

Table 7 Comparison of this research with previous studies using small datasets

Location Time (monthly) No. of Best model R2 Ref.
stations/samples
Saigon River, Vietham 2015-2019 03/262 XGB 0.96 This
study
Lam Tsuen River, Hong Kong 1998-2017 01/240 ETR 0.98 [12]
SVR 0.96
Northern Iran 2012-2018 02/144 BA-RF 0.94 [13]
Sefidrud Basin, Iran 12/2007-11/2008 05 stations SVR 0.87 [14]
Naama, Algeria - 166 samples XGB (10) 0.96 [18]
SVR (4) 0.96
KNN (5) 0.94
El Moghra, Egypt 11/2018-12/2019 46/46 XGB 0.872 [19]
La Buong River, Vietham 2010-2018 02/220 XGB 0.989 [20]
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