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Abstract 

Accurate prediction of the water quality index (WQI) lays the groundwork for 

integrated river basins and sustainable water resource management. Recent 

and accelerated advances in machine learning have led to various promising 

applications in water quality assessment. The present study leverages the predictive 

performance of several ML algorithms, including extreme gradient boosting (XGB), 

the gradient boosting model (GBM), support vector regression (SVR), and the 

radial basic function (RBF), to predict the WQI at three monitoring sites on the 

Sai Gon River from 2015–2019. In comparison, the results indicate that the XGB 

model outperforms the other models when eight parameters, including DO, BOD5, 

COD, N-NH₄⁺, P-PO₄³⁻, pH, temperature, and total coliforms, are input. Specifically, 

the XGB model exhibited the lowest error rates (RMSE = 1.630 and MAE = 0.782) 

and highest correlation (R2 = 0.960 and NSE = 0.953), followed by the GBM, SVR, 

and RBF models. This study also revealed that model performance decreased 

substantially when N-NH₄⁺ and P-PO₄³⁻ were removed, whereas the exclusion of 

COD or BOD5 caused marginal declines in predictive capacity. These findings 

highlight that parsimonious ML models can minimize the parameters required 

for WQI prediction but still maintain satisfactory simulations and effectively 

capture potential relationships between input parameters and derive WQI. 

Generally, this study provides an analytical framework for simulating WQI based 

on parsimonious and accurate ML algorithms, which are conducive to water 

quality assessment and monitoring in developing nations. 
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Introduction 

 The water quality index (WQI) is a vital tool in water 

resource management, as it is considered a simple 

method for assessing and monitoring water quality. 

Furthermore, the WQI contributes to public health 

protection by evaluating the suitability of water for use 

and facilitating the early identification of pollution sources. 

The WQI was initially proposed by Horton (1965) in the 

USA. It is calculated on the basis of a combination of 

physical, chemical, and biological parameters, producing 

a single value from 0–100. In Horton [1], the procedure 

for calculating the WQI involves the following key steps: 

(1) selection of relevant parameters; (2) conversion of 

raw data into a standardized scale; (3) allocation of weights 

to the parameters; and (4) aggregation of the subindices 

to derive the final WQI. 

 From a global perspective, the WQI has been widely 

implemented in practice by numerous countries and has 

been the subject of extensive investigations to refine 

and adapt various WQI models [2]. For example, in the 

United States, the National Sanitation Foundation pioneered 

the development of the NSF–WQI in 1970 [3]. By the 

mid-1990s, the British Columbia Ministry of Environment, 

Lands, and Parks introduced a new WQI to evaluate 

the water quality of diverse water bodies within British 

Columbia, Canada [4-5]. This model was subsequently 

refined and adopted in 2001 by the Canadian Council 

of Ministers of the Environment as the CCME WQI [4, 
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6–7]. In Southeast Asia, Malaysia introduced its WQI 

model in 2007, which incorporates six parameters: DO, 

BOD, COD, NH₃-N, SS, and pH [8]. In Vietnam, the General 

Department of Environment – Ministry of Natural Resources 

and Environment (VEA–MONRE) issued Decision No. 

1460/QĐ-TCMT in 2019 [9], providing technical guide-

lines for calculating and publishing the Vietnam Water 

Quality Index (VN_WQI), replacing the previous decision 

made in 2011. According to this decision, the VN_WQI 

is calculated on the basis of five parameter groups: pH, 

pesticide residues, heavy metals, organic and nutrient 

parameters, and microbiological parameters. The conven-

tional approaches to WQI calculation involve deriving a 

WQI index by aggregating numerous subindices, which 

requires the measurement of a substantial number of 

water quality parameters. Moreover, traditional water quality 

monitoring methods involve the manual collection of 

water samples followed by laboratory analysis, which is 

both time-consuming and costly [10]. Consequently, this 

poses significant challenges to water quality assessment, 

particularly in developing countries with limited infra-

structure and financial resources. 

 Recently, machine learning (ML)-based techniques 

have emerged as promising alternatives for WQI calcu-

lations in various regions. By leveraging their capacity 

to process complex, nonlinear relationships within data, 

ML algorithms can identify underlying mechanisms, 

enabling accurate predictions of WQI values. Hameed 

et al. [11] indicated that the RBF model performed more 

effectively than the Back-Propagation Neural Network 

(BPNN) model in simulating the WQI over tropical 

Malaysia and addressed the implications of omitting 

BOD from WQI predictions because of the high costs 

associated with analyzing this parameter. Asadollah et 

al. [12] applied the extra tree regression (ETR) model 

to predict the monthly WQI in Hong Kong's Lam Tsuen 

River, which uses 10 water quality parameters and achieves 

high accuracy (R² = 0.98, RMSE = 2.99). However, using 

all 10 input variables increased monitoring costs. To 

address this, the study used partial correlation to create 

different input combinations, identifying a reduced set 

of parameters (BOD, turbidity, and phosphate concen-

tration) that still performed well. The study also compared 

output results and quantified input variable uncertainty 

via the R-factor approach, assessing how the choice of 

input variables affected prediction uncertainty. Bui et al. 

[13] applied 16 machine learning algorithms to six years 

(2012–2018) of monthly data from two stations in the 

Talar catchment (Iran) and used 10 water quality para-

meters. Pearson correlation coefficients were used to 

create 10 different input combinations. The results 

revealed that the fecal coliform (FC) concentration had 

the greatest effect on predicting the IRWQI, whereas 

the total solids (TS) concentration had the smallest 

effect. The best input combinations varied across algo-

rithms, with variables showing very low correlations 

generally performing poorly. Kamyab-Talesh et al. [14] 

employed the support vector machine (SVM) model for 

WQI prediction and determined the key parameters 

influencing the WQI via monthly data from December 

2007–November 2008 at five stations in the Sefidrud 

Basin, Iran. Othman et al. [15] employed artificial neural 

networks (ANNs) to simulate the WQI in the Klang River 

Basin and further analyzed the sensitivity of the WQI to 

the parameters needed, identifying DO and pH as the 

most and least influential inputs, respectively. Another 

important theme is a comparative analysis of various 

ML models for WQI prediction. For example, Mohd Zebaral 

Hoque et al. [16] demonstrated that the linear regression 

(LR) and ridge models performed most accurately in 

predicting the WQI among eight regression ML models. 

Furthermore, Raheja et al. [17] compared the predictive 

performance of three ML algorithms (i.e., DNN, GBM, 

and XGB) in analyzing the entropy water quality index 

(EWQI) and WQI over Haryana State and reported that 

the deep neural network (DNN) outperformed the other 

two models. Additionally, electrical conductivity (EC) was 

demonstrated to be the most determinant parameter, 

whereas pH appeared to be the least impactful input. 

Hussein et al. [18] employed the XGB, SVR, and K-

nearest neighbor (KNN) models to assess the irrigation 

water quality index (IWQI) in Naama (southwest Algeria) 

and reported that each model exhibited unique strengths 

in WQI prediction for the region. In particular, XGB 

demonstrated high accuracy, closely aligned reference 

data, and low variability, whereas the SVR model generated 

stable and consistent predictions that closely approximated 

the reference data. The KNN forecasts, on the other hand, 

aligned well with the reference data, displaying reduced 

variance and standard deviation. Kamel and Eltarabily 

[19] applied Bayesian optimization to indicate better 

performance of XGB in estimating the irrigation water 

quality index (IWQI) than those generated by random 

forest (RF) and AdaBoost in El Moghra (Egypt). 

 In Vietnam, Khoi et al. [20] also demonstrated the 

superiority of XGB over the other 11 ML models in 

predicting the WQI in the La Buong River. Nguyen et 

al. [21] performed a comparative analysis of boosting 

algorithms (i.e., GBM and XGB) and deep learning 

models (i.e., RNN and LSTM) and reported the high-

performing abilities of boosting models in simulating 

WQI. This study also employed the Bayesian model 

averaging (BMA) method to reduce the inputs to three 

parameters, much fewer than those required by conditional 

approaches. Recently, Lap et al. [22] integrated filtering 

methods into RF models to reduce the number of input 

variables for estimating WQI in the An Kim Hai irrigation 

system in Vietnam and reported that the optimal models 

could reduce from ten to four parameters (i.e., coliform, 

DO, turbidity, and TSS). 

 Although ML models typically require large datasets 

to achieve optimal performance, effective strategies 
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can enable high performance even with limited data. 

For example, a previous study [14] demonstrated that 

SVM has been effectively applied to improve accuracy 

and reduce the risk of overfitting, even with small datasets. 

In addition, incorporating machine learning models in 

hybrid models has also shown potential for improving 

water quality prediction performance, as noted in Bui et 

al. [13]. 

 ML algorithms can effectively simulate the WQI. Most 

previous investigations have focused mainly on deter-

mining superior models [16–18, 20–22], defining essential 

and decisive factors [15, 17, 19], and reducing the number 

of required parameters compared with traditional methods 

[11, 20–22]. Nevertheless, while the WQI is widely used 

to assess the pollution levels of water sources through 

a categorical rating scale, prior studies have focused 

predominantly on analyzing WQI's quantitative outcomes 

as specific values and overlooked variations within 

water quality classes. In Vietnam, most previous studies 

have reduced the number of input parameters mainly 

on the basis of the outcomes of ML models (i.e., feature 

importance) and paid less attention to standards and 

regulations in the established guidelines for WQI calcu-

lation, thereby limiting practical applicability. Additionally, 

although there is a wide range of ML algorithms for 

water quality assessment, selecting the most appropriate 

techniques for specific regions is of concern. This study 

selected four ML algorithms for WQI prediction on the 

basis of their representation of different learning paradigms, 

including a neural network model (RBF), a kernel-based 

method (SVM), and ensemble boosting techniques 

(XGB and GBM), and their proven effectiveness in 

previous studies. Specifically, the RBF [11], SVM [12, 

14, 18], XGB [18–20], and GBM [21] methods have 

demonstrated strong performance in similar tasks. 

 The present study strove to address these gaps and 

assess the water quality of the Sai Gon River, a vital 

river network in the critical economic region of southeast 

Vietnam, in which the river water quality has highly 

deteriorated due to industrial activities and massive 

urbanization. Specifically, by employing (parsimonious) 

machine learning algorithms, this study aimed to 

minimize the number of input variables required for 

calculating the WQI while adhering to the established 

standards and regulations. Furthermore, this study not 

only evaluates prediction results on the basis of 

individual WQI values but also incorporates an analysis 

within the context of WQI classification ranges. This 

integrated approach offers a more comprehensive and 

accurate evaluation of the model's effectiveness in 

predicting WQI, providing deeper insights into its 

overall performance. 

 

Materials and data used 

The study was conducted following the steps illustrated 

in Figure 1. Water quality data, including parameters 

such as BOD₅, DO, COD, temperature, N-NH₄⁻, P-PO₄³⁻, 

total coliform, and pH, were collected and used to 

calculate the VN_WQI in accordance with Decision No. 

1460/QĐ-TCMT. The dataset was normalized via the 

StandardScaler method and divided into training and 

testing subsets. Several machine learning models—the 

RBF, XGB, GBM, and SVR—were developed and optimized 

via GridSearchCV. The best-performing model was selected 

via metrics (e.g., RMSE, MAE, R², and NSE) and a Taylor 

diagram. Scenario analyses were then conducted to 

predict WQI under reduced input parameters. 

 

 

 
Figure 1 General flow chart of the research. 
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1) Study area 

 The study area is located in the lower basin of the 

Sai Gon River, at a longitude of 10°30'–11°30'N and a 

latitude of 106°15'–107°15'E (Figure 2). The study area 

covers approximately 3,200 km² and passes through 

the provinces of Binh Phuoc, Binh Duong, Tay Ninh, 

Long An, Dong Nai, and Ho Chi Minh City. 

 The climate of the study area is tropical monsoon, 

with a relatively high average annual rainfall of appro-

ximately 1,800 mm. There are two distinct seasons: the 

rainy season (from April to October) and the dry season 

(from November to March of the following year), with 

rainfall during the rainy season accounting for appro-

ximately 80–85% of the annual total. Additionally, the 

lower Sai Gon River flows through Ho Chi Minh City, 

Dong Nai, and Binh Duong Provinces, which are considered 

economically rich and dynamic areas and are among 

the leading economic driving forces of Vietnam now 

and in the coming years [23]. Under the influence of 

massive urbanization and industrial activities, surface 

water pollution has become increasingly problematic 

and continues to be exacerbated in this area. Therefore, 

it is imperative to conduct a comprehensive analysis of 

water quality in the Sai Gon River. 

 

 
Figure 2 Geographical location of the study area. 

 

2) WQI calculation 

 In this study, the WQI index was calculated on the 

basis of Decision No. 1460/QD-TCMT, issued by the 

Vietnam Environmental Administration – Ministry of 

Natural Resources and Environment (VEA–MONRE) in 

2019, regarding the promulgation of technical guidelines 

for the calculation and disclosure of the Vietnam Water 

Quality Index (VN-WQI). As outlined in Decision No. 

1460/QD-TCMT, VN_WQI requires data from at least 

three of the five designated parameter groups, with 

Group IV (the group containing organic and nutrient 

parameters) being a mandatory inclusion, comprising a 

minimum of three parameters. Specifically, Group I 

includes the pH parameter. Group II encompasses 

pesticide indicators, such as Aldrin, BHC, Dieldrin, and 

various DDT compounds (p,p’-DDT, p,p’-DDD, p,p’-

DDE), as well as heptachlor and Hepta chlorepoxide. 

Group III focuses on heavy metal indicators, including 

arsenic (As), cadmium (Cd), lead (Pb), hexavalent chro-

mium (Cr6+), copper (Cu), zinc (Zn), and mercury (Hg). 

Group IV includes organic and nutrient indicators, 

incorporating measures such as dissolved oxygen (DO), 

5-day biochemical oxygen demand (BOD5), chemical 

oxygen demand (COD), total organic carbon (TOC), 

and nitrogen compounds (N–NH4, N–NO3, N-NO2) and 

phosphate (P–PO4). Finally, Group V included microbial 

indicators such as coliform and E. coli. 

 According to Decision No. 1460/QD-TCMT, the VN-

WQI index is calculated via eight water quality para-

meters, including pH (Group I), DO, BOD5, COD, N-NH₄, 

P-PO₄ (Group IV), temperature, and total coliforms 

(Group V). The formula for calculating the VN-WQI index 

in this study, characterized by organic and nutrient 

pollution, is expressed as follows (Eq.1): 

 

VN_WQI =
WQII

100
× [(

1

k
∑ WQIIV

k

i=1

)2 ×
1

l
∑ WQIV

l

i=1

]

1/3

 

           (Eq. 1) 

 

where WQII represents the WQI value for pH; WQIIV 

represents the WQI value for organic and nutrient para-

meters (including DO, BOD5, COD, N-NH4, and P-PO4); 

and WQIV represents the WQI value for microbiological 

parameters, including coliform. 

A comprehensive description and step-by-step pro-

cedure for calculating the WQI are documented in 

Decision No. 1460/QD-TCMT. 

The final VN-WQI values are rounded to the nearest 

integer on a scale from 0 to 100 and are classified into 

six distinct categories, each representing a different level 

of water quality. The water quality is considered excellent, 

with a WQI between 91 and 100, indicating optimal quality. 

Values between 76 and 90 fall into the good category, 

whereas a WQI of 51 to 75 indicates moderate quality. 

Water quality is categorized as poor when the WQI 

ranges from 26 to 50 and very poor when it falls between 

10 and 25. WQI values below 10 indicate extreme pollution. 

The classification of water quality levels on the basis of 

VN_WQI values and their suitability for intended use is 

presented in Table 1. 
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Table 1 WQI water quality index rating scale 

WQI ranges Water quality RGB 

color code 

Suitable usage 

91 – 100 Excellent 51;51;255 Suitable for domestic water supply 

76 – 90 Good 0;228;0 Suitable for domestic water supply with appropriate treatment 

51 – 75 Moderate 255;255;0 Suitable for irrigation and other similar purposes 

26 – 50 Poor 255;126;0 Suitable for waterway transport and other similar uses 

10 – 25 Very poor 255;0;0 Heavily polluted, requires treatment for future use 

< 10 Extreme pollution 126;0;35 Toxic water, requires remediation and treatment 

 

3) Description of ML algorithms 

3.1) Radial basic function neuron network 

The radial basic function (RBF) was introduced by 

Lowe and Broomhead [24] and is a type of feedforward 

neural network. The architecture of an RBF neural net-

work consists of three layers: input, hidden, and output. 

The input layer receives the raw data (feature vectors) 

and passes it to the hidden layer. Each neuron in the 

hidden layer computes the resemblance between the 

input data and the prototype stored in that neuron. It 

uses a Gaussian activation function defined by the 

following formula: 
 

     ϕ(‖x − cj‖) = e
−(

‖x−cj‖
2

2σj
2 )

                   (Eq. 2) 

 

where x is the input vector, cj represents the center 

of the Gaussian function, and σj specifies the width of 

the Gaussian function of the jth neuron. 

The output is determined via the weighted average 

approach, expressed via the following formula: 

 

       yi = ∑ Wij
n
j=1 ϕj(x)                         (Eq. 3) 

 

where W ij is the ith weight between the hidden and 

output layers and n is the number of neurons in the 

hidden layer. 

The classical RBF process primarily depends on 

three factors: the prototypes within each RBF neuron 

and how they are optimally chosen, the beta value, and 

the weights connecting the hidden layer and the output 

layer (which influence the final decision) [25]. 

 

3.2) Support vector regression 

The SVR is a supervised learning algorithm for 

regression tasks derived from the support vector 

machine algorithm. Introduced by Vapnik et al. [26], 

SVR is grounded in statistical learning theory and has 

demonstrated marked effectiveness [27]. It is valuable 

for modeling data with nonlinear relationships and 

complex patterns, making it a robust choice for various 

predictive modeling challenges. 

In the context of an SVR model, the connection 

between the target variable and the predictive variables 

(x) is captured through a regression function. According 

to Smola and Schölkopf [28], the regression function 

can be expressed as follows (Eq.4): 

 

         ŷ =  f(x) = ω ∗ φ(x) + b                 (Eq. 4) 

 

where φ is a set of functions that replaces complex 

nonlinear relationships with simpler linear relationships 

and where ω and b denote the regression function weight 

and bias, respectively, which are determined by minimizing 

the difference between the predicted function f(x) and 

the observed value (y). 

Several hyperparameters of the SVR play a critical 

role in its predictive performance. The regularization 

parameter (C) regulates the trade-off between minimizing 

training errors and maintaining a large margin. The 

epsilon (ϵ) defines the tolerance margin around the 

predicted hyperplane where errors are not penalized. 

The kernel function transforms input data into a higher-

dimensional space to handle nonlinear relationships. 

The RBF is the most common kernel function used to 

transform the input data into a higher-dimensional space 

[29]. 

 

3.3) Gradient boosting model 

The gradient boosting model (GBM), originally 

introduced by Friedman [30], is an advanced ensemble-

supervised algorithm. The GBM has become widely used 

in both regression and classification tasks because of 

its ability to handle nonlinear data and its high flexibility. 

The GBM is designed to construct robust predictive 

models by iteratively combining a series of weak 

learners, typically decision trees. As each new weak 

learner is added, it fits a model that enhances the 

accuracy of predicting the response variable. These 

additional learners are aligned with the negative gra-

dient of the loss function, ensuring that they effectively 

reduce error across the entire ensemble. The model 

predicts values for the structure y = F(x), minimizing the 

mean squared error as described in Eq. 5 [17]: 

 

        ŷ =  F(x) =
1

n
∑ (i ŷi − yi)

2              (Eq. 5) 

 

where yi is the actual value; ŷi is the predicted value; 

i represents the equities over some test data of size; 

and n represents the number of samples. 
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3.4) Extreme gradient boosting 

Extreme gradient boosting (XGB), originated by Chen 

and Guestrin [31], represents an optimized version of 

gradient-boosted decision trees designed for fast and 

efficient execution. This algorithm excels at handling 

sparse data and demonstrates strong performance in 

both classification and regression tasks owing to its 

flexibility and versatility. 

The XGB model uses an additive training approach, 

incrementally constructing trees in sequence to minimize 

the defined loss function. At each iteration t, the prediction 

is updated by adding the output of the newly trained 

tree ft (xi): 

 

ŷ𝐢
(𝐭)

=   ŷ𝐢
(𝐭−𝟏)

 + ft(xi)                (Eq. 6) 

 

The XGB framework optimizes an objective function 

Obj(θ), which balances the loss between the predicted 

and actual values, and a regularization term that penalizes 

model complexity: 

 

     Obj(θ) = ∑ l(yi , ŷi
(t)

) + ∑ Ω(fk
t
i=1

n
i=1 )          (Eq. 7) 

 

where l(yi , ŷi
(t)

) is the loss function, typically the 

squared error for regression, and where Ω(Dt) is the 

regularization term that controls the complexity of the 

trees. The regularization term is formulated as follows: 

 

Ω(fk) = γT +
1

2
λ ∑ ωj

2t
j=1               (Eq. 8) 

 

where T is the number of leaves in the tree, ωj 

represents the weight of the jth leaf, and γ and λ are 

regularization parameters. 

The theoretical foundation and detailed calculation 

procedure of the XGB model are comprehensively 

described by Chen and Guestrin [31]. 

According to Hussein et al. [18], the advantages of 

XGB's functionality can be summarized as follows: 

XGB is a gradient boosting algorithm that enhances 

predictive accuracy through iterative additive functions, 

where each decision tree in the sequence refines the 

model by correcting the errors of its predecessor. It uses 

decision trees as base learners trained to minimize a 

loss function. The model iteratively adds trees, each 

focusing on the residuals from previous trees to correct 

errors. Additionally, XGB incorporates regularization 

(L1 and L2) to prevent overfitting and improve generali-

zability. It utilizes ensemble learning by combining the 

predictions of all trees and parallel and distributed 

computing to handle large datasets efficiently. XGB 

also provides feature importance scores and supports 

hyperparameter tuning to optimize model performance. 

In this study, four models (i.e., XGB, GBM, SVR, 

and RBF) were implemented in Python 3.10.9 via the 

Scikit-learn 1.2.1 and TensorFlow 2.12.0 frameworks 

and executed on a Windows 11 platform. During model 

training, a 10-fold cross-validation strategy was applied 

via GridSearchCV to select optimal hyperparameters 

and ensure robustness. The hyperparameters for each 

model, following the training process, are presented in 

Table 2. 

 

Table 2 Hyperparameter tuning 

Model Hyperparameter Range Optimal value 

RBF Node of layer [5, 7, 10, 12, 15] 10 

learning_rate [0.001, 0.01, 0.03, 0.05, 0.1] 0.001 

batch_size [1, 4, 8, 16, 32, 64] 4 

epochs [50, 100, 200, 300, 500] 500 

Early stopping (patience) [5, 10, 15, 20, 30] 15 

activation ['relu', 'tanh', 'sigmoid'] relu 

optimizer ['adam', 'sgd', 'rmsprop'] rmsprop 

SVR C [1, 5, 10, 50] 10 

epsilon [0.01, 0.03, 0.05, 0.07, 0.1] 0.05 

kernel ['linear', 'rbf', 'sigmoid'] rbf 

gamma ['scale', 'auto'] scale 

GBM learning_rate [0.01, 0.03, 0.05, 0.1] 0.1 

max_depth [3, 4, 5, 6, 7, 8] 3 

n_estimators [100, 200, 300, 400, 500] 200 

subsample [0.6, 0.8, 0.9, 1.0] 0.8 

max_features ['auto', 'sqrt', 'log2'] sqrt 

XGB learning_rate [0.01, 0.03, 0.05, 0.1] 0.1 

max_depth [1, 3, 5, 7, 9, 11] 3 

n_estimators [100, 300, 500, 700, 900] 300 

reg_lambda [0.01, 0.05, 0.1, 0.5] 0.1 
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4) Data collection and processing 

The data used as input for the WQI prediction model 

in the lower Sai Gon River area include eight water quality 

parameters: DO, BOD5, COD, N-NH₄, P-PO₄, pH, tempe-

rature (T), and total coliforms (coliform). Monthly data 

spanning five years, from 2015–2019, were collected 

from the Southern Regional Hydrometeorological Center 

at three water quality monitoring stations: SG1, SG2, and 

SG3. These stations were strategically selected to represent 

upstream, midstream, and downstream zones, ensuring the 

comprehensive capture of pollution dynamics along the 

river. The geographical locations of the selected sites 

are shown in Figure 2. 

To further illustrate the distribution and variability of 

the water quality parameters across the monitoring 

stations, Figure 3 presents a series of boxplots for each 

parameter at SG1, SG2, and SG3. 

These visualizations demonstrate that the parameters 

measured at the three stations varied significantly, 

especially for organic and microbiological pollution 

indicators. Apparent differences in median values for 

COD, BOD₅, N-NH₄, and coliform were observed 

between the stations, reflecting an increase in pollution 

levels from SG1 to SG3. The boxplots also highlight the 

presence of outliers, especially for COD, BOD₅, N–NH₄, 

coliform, and P–PO₄. In environmental monitoring, outliers 

may indicate discharges or seasonal variations in pollutant 

loads rather than errors, providing critical information 

for model training and decision-making. Therefore, these 

outliers are retained in the dataset to preserve repre-

sentativeness in the study area. 

Table 3 presents a statistical description of the water 

quality data in the study area. The statistical analysis 

reveals significant discrepancies between the maximum 

and minimum values of the parameters. For example, 

the maximum value of total coliform bacteria is 4,450 

MPN per 100 mL, which is more than 20 times greater than 

the minimum value at 220 MPN per 100 mL, whereas the 

maximum and minimum values of COD are 134 mg L-1 

and 5 mg L-1, respectively. The variance among the para-

meters is also considerable, with the average value of 

total coliform bacteria at approximately 1,809 MPN per 

100 mL and a temperature average of approximately 

29.4°C, in contrast to the other parameters, which present 

relatively low average values, such as P-PO4 (0.05 mg L-1) 

and DO (3.72 mg L-1). Furthermore, the standard deviation 

of total coliform bacteria is 854 MPN per 100 mL, indi-

cating substantial data dispersion relative to the mean. 

In addition, the measurement units across the dataset 

are inconsistent: the temperature is recorded in °C, the 

total coliform concentration is in MPN per 100 mL, and 

the remaining parameters are in mg L-1. These inconsis-

tencies in both the magnitude of the values and the 

units of measurement highlight the need for standar-

dization. 

Standardizing the dataset is imperative prior to 

model training to ensure a consistent value range and 

unit system, as well as to improve convergence during 

training. On the basis of the characteristics of the collected 

dataset, this study employs the StandardScaler method 

to standardize the model's input data. This is a simple 

method that standardizes numerical features by scaling 

them to have a mean of 0 and a standard deviation of 

1. The specific formula is expressed as follows: 
 

         xi
′ =

xi − x

σ
                            (Eq. 9) 

 

where xi and x’
i are the original feature value and the 

normalized feature value, respectively, and where x and 

 are the mean and standard deviation values of the 

feature in the dataset. 

 

 
Figure 3 Boxplots of eight water quality parameters at three stations from 2015–2019. 
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Table 3  Statistical characteristics of the water quality parameters in the study area 

Parameters Unit Maximum Minimum Mean Standard deviation 

T oC 32.60 27.75 29.40 0.92 

pH - 7.50 6.10 6.57 0.28 

DO mg L-1 5.80 2.40 3.72 0.75 

COD mg L-1 134.00 5.00 14.76 14.95 

BOD5 mg L-1 69.00 3.00 7.18 7.69 

N–NH4 mg L-1 10.64 0.07 1.03 1.23 

P–PO4 mg L-1 0.19 0.01 0.05 0.04 

Coliform MPN per 100 mL 4,450.00 220.00 1,809.00 854.00 

Subsequent to this preprocessing step, the dataset 

is divided into training and testing sets using an 80:20 

split ratio, with a fixed random seed (random state=1) 

to ensure reproducibility. The data were split without 

shuffling to preserve the temporal sequence. Specifically, 

80% (comprising 202 data points per parameter) are 

allocated for model training, whereas the remaining 

20% (equivalent to 60 data points per parameter from 

the year 2019) are reserved for model evaluation. This 

allocation ratio has been widely adopted and has 

demonstrated substantial effectiveness in several studies 

employing artificial intelligence models for water quality 

prediction [11, 14, 16, 21, 32]. 

 

5) Model evaluation 

Model performance is assessed through both gra-

phical and statistical methods to evaluate the reliability 

of the predicted results relative to the observed data. In 

this study, the statistical evaluation metrics include the 

coefficient of determination (R²), Nash–Sutcliffe efficiency 

(NSE) [33], mean absolute error (MAE), and root mean 

square error (RMSE). These indices collectively provide 

a comprehensive assessment of model accuracy and 

predictive reliability. Notably, the NSE measures how 

closely the plot of observed versus simulated data aligns 

with the 1:1 line, indicating the model's ability to replicate 

observed data accurately. The R², on the other hand, 

assesses the strength of the linear relationship between 

observed and simulated data, providing insight into the 

degree of association between the two datasets [34]. 

The RMSE and MAE can be used to determine confidence 

intervals in model predictions, with the potential to 

incorporate measurement uncertainty into the analysis 

[35-36]. The closer the values of R² and NSE are to 1, 

the higher the model performance. Conversely, the closer 

the values of the MAE and RMSE are to 0, the smaller 

the model's error is [34]. These statistics are determined 

via the following formulas: 

 

MAE =
1

n
∑ |Yi

obs − Yi
sim|n

i=1            (Eq.10) 

 

             RMSE = √
1

n
∑ (Yi

obs − Yi
sim)

2n
i=1      (Eq.11) 

       NSE = 1 −  
∑ (Yi

obs−Yi
sim)

2
n
i−1

∑ (Yi
obs−Y̅obs)

2
n
i−1

                                 (Eq.12) 

 

         R2 = [
∑ (Yobs

i−Y̅obs)×(Ysim
i−Y̅sim)n

i=1

√∑ (Yobs
i−Y̅obs)

2n
i=1  √∑ (Ysim

i−Y̅sim)
2n

i=1  

]

2

    (Eq.13) 

 

where Yi
obs represents the ith observed value; Yi

sim 

represents the ith simulated value; Y̅sim represents the 

average simulated value; and Y̅obs represents the average 

observed value. 

 

6) Scenario 

The WQI is traditionally calculated through extensive, 

time-intensive computational methods and is often prone 

to occasional errors, particularly during subindex calcu-

lations. Additionally, traditional methods for calculating 

WQI require numerous physical and chemical parameters. 

To provide an efficient alternative for WQI calculation 

and prediction, Scenario S8 was developed, incorporating 

eight water quality parameters, including DO, BOD5, 

COD, N-NH₄, P-PO₄, pH, T, and coliform. 

Furthermore, the challenges associated with collecting 

and analyzing all these parameters, especially those 

that require precise laboratory conditions, significant 

time, and high costs, should be recognized. This study 

investigated the feasibility of reducing the number of 

input variables while maintaining predictive performance 

and regulatory compliance. Specifically, a set of reduced-

input scenarios (S7-COD, S7-BOD, S7-NH₄, and S7-PO₄) 

was developed, with each scenario excluding one para-

meter (COD, BOD₅, N-NH₄, or P-PO₄, respectively) from 

the prediction model. These reduced scenarios aim to 

minimize information loss while still complying with 

Decision No. 1460/QĐ-TCMT, which requires at least 

three designated parameter groups (I, IV, and V) for 

WQI computation, with group IV being compulsory. 

Furthermore, at least three parameters from group IV 

must be used in the calculation. 

This approach reflects real-world constraints in water 

quality monitoring and shares a similar purpose of 

parameter exclusion with previous studies by Hameed 

et al. [11], Khoi et al. [20], and Nguyen et al. [21]. 

However, the specific methods for selecting which 
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parameters to exclude in our study differ, as they are 

based on practical factors such as laboratory costs, 

analysis time requirements, and regulatory compliance 

rather than correlations among parameters. Table 4 

presents the specific input parameters used for the 

scenarios analyzed. 

 

Results  

1) Performance evaluation of the ML algorithms 

This study evaluated the performance of four machine 

learning (ML) algorithms, including RBF, SVR, GBM, and 

XGB, in simulating the WQI using eight input parameters: 

pH, T, DO, COD, BOD5, P-PO4, N-NH4, and coliform 

(Scenario S8). To ensure consistent evaluation, a quanti-

tative comparison was conducted Table 5 presents per-

formance metrics, including the MAE, RMSE, NSE, and 

R2, which are based on both training and testing results 

for all the models. 

During the training phase, all four models demonstrated 

excellent simulation performance, characterized by low 

error rates and high correlation coefficients. In particular, 

the values of the MAE and RMSE vary from approximately 

0.199 to 1.355 and 0.259 to 2.197, respectively. The values 

of NSE and R2 exceed 0.9. Additionally, Figure 4 these 

findings further confirm this excellent performance. The 

scatter points in the Taylor diagram approximate the 

reference point very well, indicating similar variations, 

few errors, and high correlations compared with the 

observations. In comparison, the GBM model exhibits 

the best performance, followed by XGB, SVR, and 

RBF, in that order. 

In the testing phase, the RMSE values for XGB, SVR, 

RBF, and GBM were 1.630, 3.303, 3.926, and 2.656, 

respectively. The corresponding NSE values were 0.953, 

0.807, 0.728, and 0.875, respectively. Among the models, 

the XGB model showed the best alignment with the actual 

measured WQI, achieving the lowest error rates (RMSE = 

1.630, MAE = 0.782) and the highest correlation (R2 = 

0.960, NSE = 0.953). Its position is closest to the reference 

point on the Taylor diagram (representing actual measure-

ments) (Figure 4b), underscoring its superior performance. 

The GBM ranks second, followed by SVR, whereas the 

RBF model has the lowest simulation performance, as 

evidenced by its position being farthest from the reference 

point on the Taylor diagram. 

To further evaluate robustness, a stratified analysis by 

stations and years was also conducted to interpret model 

performance across spatial and temporal dimensions. 

As shown in Figure 5, XGB and the GBM consistently 

outperformed the other models at all three stations, 

achieving high R² values (generally >0.95) and low RMSEs 

across most years. At SG1, XGB and the GBM exhibited 

stable performance, whereas the RBF exhibited large 

fluctuations, particularly in 2016 and 2019. SG2 demon-

strated the most consistent results, with XGB and GBM 

maintaining near-perfect R² values and minimal RMSEs 

throughout the five years. In contrast, SG3 experienced 

a slight decline in prediction accuracy in 2019 across 

all the models due to increased data variability and the 

presence of outliers at SG3. However, XGB maintained 

higher accuracy than GBM did, with better R² values 

and lower RMSEs. It can be concluded that XGB was 

the most robust model despite spatial and temporal 

variability. These results highlight its robustness in 

modeling complex and variable real-world water quality 

conditions. 

Owing to its superior performance, the XGB model 

is selected to predict the WQI under various scenarios 

that are designed to minimize water quality parameters 

when calculating the WQI within the study area. 

 

Table 4 Scenarios of WQI prediction 

No. Scenario Input parameters Excluded parameter 

1 S8 pH, T, DO, COD, BOD5, P-PO4, N-NH4, and Coliform None 

2 S7-BOD pH, T, DO, COD, P-PO4, N-NH4, and Coliform BOD5 

3 S7-COD pH, T, DO, BOD5, P-PO4, N-NH4, and Coliform COD 

4 S7-PO4 pH, T, DO, COD, BOD5, N-NH4, and Coliform P-PO4 

5 S7-NH4 pH, T, DO, COD, BOD5, P-PO4, and Coliform N-NH4 

 

Table 5 Efficiency statistics of the ML models in scenario S8 

Model Phases MAE RMSE NSE R2 

RBF Training 1.355 2.197 0.917 0.932 

Testing 2.688 3.926 0.728 0.767 

SVR Training 0.435 0.573 0.994 0.995 

Testing 2.030 3.303 0.807 0.830 

GBM Training 0.199 0.259 0.999 0.999 

Testing 1.432 2.656 0.875 0.898 

XGB Training 0.334 0.451 0.997 0.997 

Testing 0.782 1.630 0.953 0.960 
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(a) (b)  

Figure 4 Taylor diagrams comparing simulation results between the ML models  

in the (a) training and (b) testing phases. 
 

 
Figure 5 Comparison of model performance by station and year. 

 

2) Performance evaluation of scenarios 

Table 6 presents the performance of the XGB model 

in predicting the WQI of the Sai Gon River under five 

scenarios designed to test input exclusion, as evaluated 

by statistical performance measures, including the MAE, 

RMSE, NSE, and R². 

The results indicate that in the training phase, 

Scenarios S8, S7-BOD, and S7-COD yield highly 

accurate simulations characterized by low errors and 

high correlations. Specifically, the NSE and R² indices 

exceed 0.990, whereas the MAE and RMSE values 

remain below 0.5. Conversely, Scenarios S7-PO4 and 

S7-NH4 achieve high correlations with NSE and R² 

values above 0.880, although their relative errors are 

greater than those of the other scenarios, with MAE 

and RMSE values ranging from 1.803 to 2.644. 

In the testing phase, Scenario S8, which integrates 

all the parameters, achieves the highest predictive 

accuracy, as evidenced by the lowest MAE (0.782) and  

RMSE (1.630) values. The strong alignment between 

the simulated and observed WQI values, demonstrated 

by high NSE (0.953) and R² (0.960) values, underscores 

the effectiveness of including all eight parameters for 

reliable prediction. Scenarios S7-COD and S7-BOD also 

perform satisfactorily, with moderate error levels (MAEs 

of 1.075 and 1.052 and RMSEs of 1.890 and 2.003, 

respectively) and high correlations with observed values 

(NSE and R² values above 0.92). Scenarios S7-COD 

and S7-BOD also perform satisfactorily, with moderate 

error levels (MAEs of 1.075 and 1.052 and RMSEs of 

1.890 and 2.003, respectively) and high correlations 

with observed values (NSE and R² values above 0.92). 

In comparison, Scenario S7-PO4, which excludes the 

P-PO4 parameter, results in increased error (MAE of 

2.676 and RMSE of 3.138) and a slightly reduced 

correlation (NSE of 0.826 and R² of 0.850), indicating a 

decline in predictive accuracy. Moreover, Scenario S7-

NH4, which omits N-NH4, produces the highest errors 

(MAE of 3.718 and RMSE of 4.661) and the weakest 

correlation (NSE of 0.616 and R² of 0.635), reflecting a 

substantial decrease in predictive performance. 
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Figure 6 further depicts scatter plots between the 

observed and simulated WQI values during the training 

and testing phases across the five scenarios. These 

plots illustrate the alignment between the observed and 

simulated WQI values generated by the XGB model. 

The observed and simulated WQI values during the 

training phase (blue circles) clearly exhibit less dispersion 

than those in the testing phase (orange triangles). The 

correlation between the observed and simulated WQI 

values is notably lower in scenarios S7-NH4 and S7-PO4, 

whereas scenarios S8, S7-BOD, and S7-COD demonstrate 

greater correlations. 

To compare the simulation performance of the XGB 

model across five scenarios, this study presents the 

outcomes for each scenario during the training period 

(2015–2018) and the testing period (2019) via Taylor 

diagrams (Figure 7). 

An examination of the scatter positions on the diagrams 

indicates that the scenario incorporating all eight para-

meters (Scenario S8) achieves the highest correlation 

with the observed data, along with the lowest error and 

similar variations to the observations, thus demonstrating 

the most accurate simulation performance. Scenarios 

that exclude individual parameters, specifically COD 

and BOD5 (scenarios S7-COD and S7-BOD), also perform 

robustly, maintaining a high correlation with the observed 

WQI values. Moreover, the scenario excluding P-PO4 

(scenarios S7-PO4) results in low errors but high biases 

and reduced correlations. In particular, Scenario S7-NH4 

yields the least effective WQI simulation among all five 

scenarios across both the training and testing phases, 

as evidenced by its position being farthest from the 

reference points. 

Table 6 Efficiency statistics of the XGB model under the 5 scenarios of input variable combinations 

Scenarios 

Phases 

S8 S7-BOD S7-COD S7-PO4 S7-NH4 

Training MAE 0.334 0.372 0.375 1.803 2.030 

RMSE 0.451 0.507 0.494 2.411 2.644 

NSE 0.997 0.996 0.996 0.900 0.880 

R2 0.997 0.996 0.996 0.901 0.881 

Testing MAE 0.782 1.052 1.075 2.676 3.718 

RMSE 1.630 2.003 1.890 3.138 4.661 

NSE 0.953 0.929 0.937 0.826 0.616 

R2 0.960 0.932 0.948 0.850 0.635 

 

  
(a) S8 (b) S7-COD 

   
(c) S7-BOD (d) S7-PO4 (e) S7-NHO4 

Figure 6 Plots of the predicted and actual WQI values across the five scenarios. 
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(a) (b)  

Figure 7 Taylor diagrams comparing simulation results between scenarios  

in the (a) training and (b) testing phases. 

 

3) Comparison with actual WQI ranges 

This study further analyzed sample distributions 

across six water quality classification thresholds, as 

specified in Decision No. 1460/QD-TCMT, dated November 

12, 2019. This analysis compares the observed WQI 

values with the simulated WQI values across various 

scenarios via the XGB model to assess whether the 

model predictions significantly diverge from the actual 

measurements. The statistical findings are presented 

in Figure 8. Figure 8a compares the WQI ranges across 

different scenarios, with each range color-coded according 

to the guidelines outlined in Decision No. 1460/QD-TCMT. 

Figure 8b illustrates the changes in the number of 

samples in each WQI classification, indicating whether 

the number increased (positive value) or decreased 

(negative value) compared with the actual data, as 

displayed in the heatmap. 

A statistical analysis of WQI values derived from 

observed data between 2015 and 2019 reveals the 

following distribution: 3.4% (9 samples) fall within the 

"Excellent" category (WQI range: 91–100), 52.7% (138 

samples) are classified as "Good" (WQI range: 76–90), 

and 43.9% (115 samples) are classified as "Moderate" 

(WQI range: 51–75), with no samples below a WQI of 

50. These findings suggest that the surface water quality 

of the Sai Gon River primarily aligns with the "good" 

and "moderate" classification levels. 

Figure 8 also indicates that the distribution of samples 

across the simulated water quality ranges in scenario 

S7-COD closely aligns with that of the observed WQI 

values. This alignment indicates that the COD parameter 

could be considered nonessential for WQI prediction 

within the XGB model in this study area. In Scenario S8, 

which incorporates all eight input parameters, although 

this scenario has the highest correlation among the five 

scenarios, there are differences in the distributions of 

samples across the "good" and "moderate" water quality 

levels in the simulated results. Specifically, four samples 

initially classified as "good" shifted to the "moderate" 

category, with this discrepancy occurring during the testing 

phase in 2019. Similar differences arise in Scenario S7-

BOD, where the BOD5 parameter is excluded: three 

samples initially classified as "good" shift to "moderate" 

in the simulated results. The simulated sample distribution 

in this scenario aligns with the observed data for the 

remaining water quality levels. 
 

  
(a) Comparison of WQI classification across scenarios (b) Change in sample number relative to actual data 

Figure 8 Characteristics of observed and simulated WQI values across different scenarios. 
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For the scenario in which the P-PO4 parameter is 

excluded, the model's simulated results diverge signifi-

cantly from the observed WQI values. Specifically, the 

number of samples in the "Excellent" and "Good" quality 

categories decreases to 3 and 6 samples, respectively, 

whereas the number of "Moderate" quality samples 

increases by 9. Excluding the N-NH4 parameter results 

in the most significant discrepancy between the simulated 

and observed WQI values: no samples reach the 

"Excellent" category, the "Good" category has 19 additional 

samples compared with the observed data, and the 

"Moderate" category has ten fewer samples. These 

findings suggest that excluding P-PO4 and N-NH4 is 

inappropriate for WQI prediction, as it significantly 

affects water quality assessment outcomes in this 

study area. 

 

Discussion 

Research findings demonstrate that boosting algo-

rithms, particularly XGB, perform effectively in predicting 

the WQI, which is consistent with previous studies [18-

20], which also identify XGB as more effective than other 

ML models. 

However, in other cases, Raheja et al. [17] reported 

that the DNN model outperforms both XGB and the 

GBM. Moreover, Nguyen et al. [21] reported that the 

GBM is more effective than XGB and deep learning 

algorithms. These results suggest that different models 

excel with particular datasets or areas, as their effect-

tiveness depends on factors such as data distribution, 

regional traits, and how well the model adapts to these 

variations. For example, in southern Vietnam, including 

the Sai Gon River (in this study) and the La Buong River 

[20], XGB has been identified as the most effective 

predictive model. Conversely, in northern Vietnam, such 

as the Red River Basin [21] and the An Kim Hai system 

[22], the GBM and RF have demonstrated superior 

predictive capabilities. These findings highlight the 

necessity of model selection for the specific local context 

and data characteristics, as no model is universally optimal. 

The study also considers the effects of reducing the 

input water quality parameters when calculating the 

WQI. The results reveal that the parameters P-PO4 and 

N-NH4 substantially impact WQI outcomes. Conversely, 

omitting the parameters BOD5 or COD did not signifi-

cantly affect the WQI results of the XGB model. Notably, 

when the COD parameter is excluded, the water quality 

classification based on the WQI is closely aligned with 

the measured data. This finding is consistent with those 

reported by Hameed et al. [11], which also indicates that 

excluding the BOD5 parameter had minimal impact on 

WQI predictions. Furthermore, Kamyab-Talesh et al. [14] 

identified nitrate and phosphate as the most critical 

factors influencing the WQI. On the other hand, Mohd 

Zebaral Hoque et al. [16], Khoi et al. [20], and Lap et al. 

[22] demonstrated that omitting these parameters still 

resulted in accurate WQI predictions. The influence of 

input water quality parameters on WQI calculations 

varies depending on the model and the study's specific 

context. As such, it is necessary to quantify each para-

meter's contribution to WQI prediction through approaches 

such as sensitivity analysis in future research. This would 

allow for the exclusion of less influential parameters 

while maintaining model accuracy. 

In addition, despite the limitations of sample size, 

several factors support their suitability for ML modeling 

and contribute to the reliability of the results. First, the 

three monitoring stations represented hydrological zones, 

upstream, midstream, and downstream, allowing a compre-

hensive understanding of the pollution dynamics along 

the river. Second, the monthly data spans multiple dry 

and rainy seasons across five years, providing sufficient 

temporal variability for modeling water quality trends. 

Additionally, 10-fold cross-validation was applied to enhance 

model generalizability and reduce potential bias due to 

the limited dataset size. The XGB model's performance 

indicated reliability despite the modest dataset size, 

further supporting its effectiveness in handling limited 

data, as demonstrated in previous studies [18–20]. 

Similar studies in the literature have effectively utilized 

ML models with datasets of comparable or even smaller 

scales, achieving high predictive accuracy. Table 7 

summarizes the selected studies for comparison. These 

findings suggest that, when carefully designed, ML models 

can deliver reliable results even with limited datasets, 

particularly when high-quality input features and appropriate 

validation strategies are used. This is meaningful in 

water quality management in developing countries, where 

water quality monitoring faces significant challenges 

due to the lack of monitoring sensors and high costs, 

resulting in sparse and infrequent datasets. Nevertheless, 

increasing the spatial coverage and extending the time 

series would undoubtedly further improve the generali-

zability and robustness of the models. Future studies 

should explore the integration of additional stations and 

longer data records to enhance predictive capabilities 

and support broader application, as well as integrate 

site-specific contextual information at monitoring stations, 

such as hydraulic conditions or point-source discharge 

locations, to enhance interpretability. 

 

Conclusions 

An informed decision on water quality management 

requires tailored tools for accurately predicting the water 

quality index. State-of-the-art machine learning algorithms 

have offered various efficient toolkits for assessing water 

quality. In an attempt to simulate the WQI in the Sai Gon 

River from 2015–2019, the present study applied four 

ML algorithms (i.e., XGB, GBM, RBF, and SVR) to monthly 

data of eight water quality parameters, including DO, 

BOD5, COD, N-NH₄, P-PO₄, pH, temperature, and total 

coliforms. Moreover, five scenarios with varying input 
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parameters were designed to identify the best-

performing model and further explore the possibility of 

minimizing the number of input parameters for WQI 

calculation in this study area. 

On the basis of the same scenario with all eight input 

parameters (i.e., Scenario S8), this study first identified 

the optimal model by comparing the simulation perfor-

mance of the four models in predicting the WQI during 

the training and testing phases. The optimal model was 

subsequently adopted to simulate the remaining sce-

narios to evaluate the possibility of reducing the number 

of input parameters for WQI calculation. The results 

demonstrate that the XGB model effectively simulates 

the WQI for this study, achieving the lowest error rates 

and the highest correlation, followed by GBM, SVR, 

and RBF. Moreover, this study also indicates that N-

NH₄ and P-PO₄ are essential factors in WQI prediction 

in the study area, whereas omitting BOD5 results in only 

minor decreases in model performance. Therefore, 

COD or BOD5 may be excluded when the WQI is calcu-

lated via the XGB model in cases where these data are 

not available or where it is desirable to reduce the cost 

and time of analyzing these parameters in the laboratory. 

The results of this study provide solid evidence 

supporting the application of ML algorithms in calculating 

WQI. This study demonstrates that ML models can reduce 

the number of parameters needed for WQI estimation 

while ensuring accuracy, providing a practical solution 

for water quality monitoring in developing countries such 

as Vietnam. By adopting these techniques, developing 

nations can enhance their assessment and management 

of surface water resources more effectively and sustainably. 

 

Table 7 Comparison of this research with previous studies using small datasets 

Location Time (monthly) No. of 

stations/samples 

Best model R² Ref. 

Saigon River, Vietnam 2015–2019 03/262 XGB 0.96 This 

study 

Lam Tsuen River, Hong Kong 1998–2017 01/240 ETR 

SVR 

0.98 

0.96 

[12] 

Northern Iran 2012–2018 02/144 BA-RF 0.94 [13] 

Sefidrud Basin, Iran 12/2007–11/2008 05 stations SVR 0.87 [14] 

Naama, Algeria - 166 samples XGB (10) 

SVR (4) 

KNN (5) 

0.96 

0.96 

0.94 

[18] 

El Moghra, Egypt 11/2018–12/2019 46/46 XGB 0.872 [19] 

La Buong River, Vietnam 2010–2018 02/220 XGB 0.989 [20] 
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