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Abstract

Machine learning algorithms are currently widely used to classify satellite
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images to create surface maps of the earth. Support vector machines (SVMs) and
random forests (RFs) are more effective ML algorithms and more accurate
classifications than other methods. The aim of this study is to analyze the
performance of these two algorithms in land-use and land cover classification.
For this purpose, the Landsat 8 OLI satellite image freely provided by the United
States Geological Survey (USGS) was used to classify land use in the Phu Giao
District, Binh Duong Province, Vietnam, where forestland is being strongly
converted into rubber plantations and cultivated land. The results revealed that
the accuracies of the SVM model were 0.87 (overall accuracy) and 0.89
(Cohen’s kappa), which are 2% lower than those of the optimal RF model. The
land-use classification maps can be used as essential information in ecological
and environmental management, such as natural habitats, urbanization and
deforestation status, and species impact. Therefore, accurate and objective
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data/tools are extremely important.

Introduction

Information about land cover (LC) is among the most
important data for a variety of fields, such as environ-
mental, ecological, and climate change studies, as well
as resource management and monitoring [1,2]. The use
of land cover and land use maps is the most effective
method for recording and conveying information related
to land use and land cover (LULC) data. LULC maps
require consideration of many issues, including purpose,
content, scale, input data types, and algorithms used.
The land-use map can be divided into three categories
on the basis of the extent of the area that it covers: local
scale (covering a small area from 100-103 km?), regional
scale (104-106 km?), and continent-to-global scale
(>106 km?) [3] or according to its spatial resolution: low
(2 km), medium (1 km-100 m) and high resolution (<10
m) [4].

In the past, traditional classification techniques,
including supervised and unsupervised techniques, were
widely applied to create land-use maps with different

resolutions [1,5-6]. Nevertheless, because of their signi-
ficant drawbacks, the use of these methods has begun
to decrease, such as the Gaussian normal distribution,
which rarely occurs in remote sensing data [7-8], and
pixel clustering algorithms with similar spatial properties
classified into a single class on the basis of some
predefined criteria [9].

To overcome the constraints related to classification
by traditional methods, new classification methods have
been invented and utilized in recent years to obtain
better classification performances [7—9]. Machine learning
(ML) algorithms are among the most powerful and widely
used classification algorithms [5,7,10-12].

The ML algorithms are nonparametric supervised
techniques without any assumptions about the statistical
distribution of entered datasets, in contrast to traditional
methods [7-9]. There are numerous varieties of ML
algorithms that have been rigorously applied in actual
environments (nonresearch). Therefore, these methods,
such as support vector machines (SVMs), random forests
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(RFs), and artificial neural networks (ANNSs), are advanced.
With respect to the overall performance of ML algorithms,
many previous studies have confirmed that ML strategies
yield greater accuracy outcomes than traditional para-
meter classification does, particularly for complex multi-
variate data [5, 7,13-16].

Although some studies have compared two widely
adopted and powerful machine learning algorithms, RF
and SVM, using different RS datasets for distinctive
aims, the conclusions drawn have been inconsistent
and contradictory. For example, [14,17-18] stated that
SVM and RF obtained comparable classification accu-
racies, or, in other words, both were equally reliable,
whereas [8, 12, 16,19—,20] claimed that SVM outperformed
RF. In the assessment of each finding, the examination
of previous studies [21-22] indicated that the RF was
better than the SVM. Furthermore, these studies were
carried out on a small, local scale with medium- or
excessive-resolution satellite images as input data.

Research on land-use classification in Southeast
Asia has evolved significantly over the past few decades,
reflecting the region's diverse ecosystems, rapid urbani-
zation, and agricultural expansion [23,24]. Early approaches
relied heavily on field surveys, which were time-consuming
and limited in scalability. By the late 20 century, the
advent of satellite remote sensing, particularly Landsat
imagery, enabled broader coverage and more systematic
classification via supervised and unsupervised methods
[25]. However, challenges such as cloud cover in tropical
regions and mixed land-use patterns (e.g., agroforestry
and fragmented urban areas) often reduce accuracy.
More recently, advancements in machine learning, geo-
graphic information systems (GIS), and high-resolution
datasets (e.g., Sentinel-2, LIDAR) have improved classi-
fication precision, incorporating spectral, temporal, and
spatial dimensions [26—28]. Despite these innovations,
inconsistencies persist owing to varying national classi-
fication systems, limited ground-truth data, and dynamic
land-use changes driven by deforestation, plantations,
and urban sprawl. Collaborative efforts between govern-
ments, researchers, and regional organizations (e.g.,
ASEAN) have sought to standardize methodologies,
yet localized adaptations remain critical for capturing
the complexity of Southeast Asia's landscapes.

Phu Giao, a district in Binh Duong Province, Vietnam,
has a dynamic land-use structure characterized by a
mix of agriculture (rubber, fruit orchards, and crop farms),
forestry, and emerging industrial and residential zones.
Rapid urbanization and industrialization, driven by Binh
Duong’s strategic location near Ho Chi Minh City and
its economic growth policies, are key forces transforming
land use. These changes are further broadened by
infrastructure development, population growth, and
investment in industrial parks. Every year, local authorities
conduct field surveys to inventory the types of land use
in the area. No studies have yet been conducted to

classify land in the Phu Giao District via remote sensing
and machine learning meth-ods. The main objective of
this study is to evaluate the performance of these
powerful machine learning algorithms in LULC classi-
fication. For this purpose, RF and SVM algorithms have
been selected and applied to Landsat 8 OLI satellite
image solutions to classify land use in the Phu Giao
District, Binh Duong Province, Vietham. The best model
of each classification model (RF and SVM) was selected
by testing the models generated throughout various
values of the maximum influential parameters of every
set of rules, which can be the wide variety of trees (ntree)
and the wide variety of variables (mtry) in the RF and
the cost function (cost) and gamma within the SVM.

Materials and methods
1) Study area

Phu Giao is a district located in northeast Binh Duong
Province, approximately 70 km from Ho Chi Minh City.
The east is Vinh Cuu District (Dong Nai), the west is Ben
Cat District (Binh Duong), the south is Bac Tan Uyen
District (Binh Duong), and the north is Dong Phu District
(Binh Phuoc) (Figure 1). In equable climate conditions,
including temperatures ranging from 26°C to 31°C, the
average annual rainfall in the district is 1,947.7 mm,
with an average of 163 rainy days per year and high
humidity. The Phu Giao District is suitable for the planting
of high-value industrial crops such as rubber, cashew,
pepper, etc. Forest and agricultural land have been
immediately decreasing due to the process of urbani-
zation, which may cause some difficulties in land-use
management [29].

2) Data and sample
2.1) Remote sensing data

Landsat 8 OLI remote sensing data are freely down-
loaded from the United States Geological Survey (USGS)
website [30]. The eight spectral bands (from 1 to 7 and
9) of the Landsat 8 OLI image range from visible wave
to shortwave infrared (SWIR) with a resolution of 30 m.
Band 8 has a panchromatic wavelength with a resolution
of 15 m. In this study, Landsat 8 OLI images with bands
(2,3,4,5,7,9,10, and 11) taken on June 30, 2023, were
used. This image is not affected by cloud cover.

Band combinations in remote sensing refer to the
selection and merging of different spectral bands from
satellite or aerial imagery to enhance the visibility of
specific LULC features. Different band combinations
help distinguish between vegetation, water, urban areas,
and other land cover types. Examples include NIR-Red—
Green (5-4-3) for vegetation, SWIR-NIR-Red (7-5-4) for
urban areas, and NIR-SWIR-Green (5-6-3) for water.
However, in this study, we used bands (2-7, 9, and 10) of
multitemporal satellite imagery Landsat 8 as predictors
in the models. We then compared the predictive power
of the RF and SVM models for classification.
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Figure 1 Satellite map of Phu Giao District.
Table 1 Landsat 8 OLI images used in this study
Image bands Wavelength (micrometer) Resolution (meter) Date
Band 2 — Blue 0.45-0.51 30 30t June 2023
Band 3 — Green 0.53-0.59 30 (Path=125, Row=052)
Band 4 — Red 0.64 — 0.67 30
Band 5 — Near infrared 0.85-0.88 30
Band 6 — Infrared 1 (SWIR 1) 1.57 -1.65 30
Range 7 — Infrared 2 (SWIR 1) 211-2.29 30
Band 9 — Cirrus 1.36 —1.38 30
Band 10 — Thermal Infrared 1 10.60 - 11.19 100
Band 11 — Thermal Infrared 2 11.50-12.51 100

2.2) Training data and test data

In this study, the six types of land use in the Phu Giao
District are listed in Table 2. The training and testing data
are based on field point samples and the local land-use
plan map from 2022. This method has been widely applied
and published in previous studies [6, 31-32]. The data
used for training (70%) and testing (30%) for the classi-
fication models, including 655 samples and the number
for each land-use type, are provided in Table 2.

3) Algorithms
3.1) Random forest (RF)

RF is a machine learning method introduced by
Breiman [31] that allows for improved accuracy prediction
and classification without overfitting data. RF is based on
classification and regression trees (CARTS). The training
and testing data are described in Table 2. We used
repeated cross-evaluations to divide the training data

into 10 datasets (k-fold=10) and 3 repetitions to determine
the optimal parameters, including the number of randomly
selected variables (mtry) and the number of trees (ntree)
at each node.

Table 2 Number of samples used in training and testing
for each soil classification

Type of Total Training Testing
land-use number of sample sample
samples
Forestland 93 65 28
Urban land 125 87 38
Rubber land 115 80 35
Water 120 84 36
surface
Bareland 100 70 30
Agricultural 102 72 30
land

Total 655 458 197
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In detail, the repeated cross-validation technique
consists of randomly dividing the initial reference data
into 10 groups, with group 1%t as the validation group
and groups 2M-10t as the training group. The same
procedure was repeated 3 times each time, with distinct
groups used as the validation group and the rest of the
groups used as the training group. Compared with other
machine learning methods, RF models are insensitive
to overfitting, can model nonlinear relationships, and
have high predictive performance. Numerous previous
studies have implemented RF classification to map land
cover with high precision. In their initial assessment of
the RF's performance for land cover classification in
Spain, Rodriguez-Galiano et al. [33] obtained a higher
overall accuracy of 91% and a kappa coefficient of
0.92. Using an RF classifier, Hayes et al. [34] created a
high-resolution (1 m) land cover map of Wyoming,
achieving a kappa coefficient of 0.79 and an overall
accuracy of 81%. The RF classification method has also
been used in recent studies to generate flood inundation
maps [35-36].

3.2) Support vector machine (SVM) model

The concept of the SVM was introduced in 1979 by
Vapnik [37]. SVM is a powerful tool for multidimensional,
linear, and nonlinear data. SVMs are typically chosen
for classification and regression analysis because of
their high degree of customization. However, the critical
parameter search procedure is more complicated than
that of the RF. SVM is based on the principle of per-
forming a "hyperplane" that divides layers into two
separate parts [38—39]. In reference to kernel functions,
there are numerous varieties, including sigmoid, linear,
polynomial, and radial basis functions (RBFs). The
most effective and often utilized method for image
classification via remote sensing is the radial basis
function [40]. Therefore, two parameters (Cost-C) and
gamma ({y), which are essential for regulating the
SVM's performance in the radial basis function, were
used in this study. SVMs are capable of classifying data
linearly or nonlinearly. Nonlinear data are handled by

the kernel function. Compared with previous studies
[13, 41-42]. Relatively accurate classification can be
achieved with SVM. Foody confirmed that accurate clas-
sifications may be obtained via a single multiclassifi-
cation SVM [13]. They evaluated several classification
techniques, such as SVM, feed-forward neural networks,
decision trees, and discriminant analysis, and discovered
that SVM had the highest accuracy. These results are
consistent with those of a study by Shi and Yang [42],
which indicated that the SVM outperforms the MLC in
terms of quantitative accuracy. Additionally, Candale
and Dixon [41] reported that the SVM outperforms other
classification methods. Figure 2 shows a summary of
the land cover classification results of the RF and SVM
methods. All calculations and imaging in the study were
performed in R version 4.1.2 [43].

4) Model variation

The best RF and VSM models are determined with
test data during the model's internal accuracy validation.
The factors that must be applied to evaluate the accu-
racy of the classification model include the error matrix,
overall accuracy (OA), manufacturer accuracy (PA),
user accuracy (UA) and the kappa coefficient [44]. The
confusion matrix quantifies the similarity be-tween the
model-classified samples and the reference data. The
OA is the number of samples that are efficiently labeled,
which is consistent with the pattern that enters the
category. However, the OA tends to overestimate the
overall performance. The kappa coefficient is used to
assess the overall performance of the model. The PA
is the percentage of efficiently labeled samples of a
particular category. Moreover, the UA is the percentage
of efficiently labeled samples, and the entire wide
variety of samples are labeled into that category [45].

For algorithm comparison, we also applied the OA,
UA, PA and kappa coefficient to determine the classi-
fication method that achieves better accuracy [11, 40—
46]. Figure 2 shows the process of land-use classifi-
cation applied in this study.
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Figure 2 Diagram of the classification process of the land-use layer.
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Results
1) Engineering features

Figure 3 (a-d) shows similar trends for all classifi-
cation classes in bands 2-4. In detail, the value in bands
2-4 for barren land is the highest (ranging from 0.05-
0.5), followed by urban (0.03-0.16), agricultural (0.02--
0.15), water bodies (0.02-0.1), rubber (0.02-0.08) and
forestland (0.02-0.1). The values of brands 5-9 are the
lowest for the water surface, whereas the values of 10
and 11 are the lowest for barren land.

2) Adjustment parameter

In repeated cross-evaluation with Kfold = 10 and
number of repetitions of 3, the initial reference sample
is randomly divided into 10 groups to build each decision
tree during the training process. The training samples
are predicted from the model to evaluate the classifi-
cation accuracy, and the out of bag error (OBB) is the
lowest. The number of decision trees that need to be
optimally constructed (ntree = 1,000) and the number
of variables at each decision tree node split (mtry = 6)
create the highest accuracy in the RF model (Figure 4).
On the other hand, the parameters determining the
optimal SVM model include Cost = 10 and gamma = 1.
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3) Classification results

Table 3 shows the overall accuracy and kappa value
generated by the land-use type classification via the RF
and SVM models. In addition, errors are also presented
for all classified layers. In general, the classification accu-
racy of both models is approximately 90%. The optimal
SVM algorithm achieved overall accuracy (OA = 0.89),
and the kappa value (0.87) was 2% lower than that of
the RF algorithm (Table 3). Therefore, the two models
create slightly different land cover maps (Figure 5). Further-
more, the map generated by the SVM seemed less
accurate because of the misclassification between
layers, a common phenomenon in interpreting satellite
images, which is represented by the confusion matrix
below. The reason may be that the multiclassifier
combination process in the RF algorithm plays a crucial
role. The combination of multiclass classification for
decision making can be more accurate than single-
class classification. The SVM model does not have this
mechanism; as a result, the RF can solve the problem
of multilayer classification.
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Figure 3 Variation of waveband in land-use types with band 2 (a), band 3 (b), band 4 (c), and band 5 (d)
(see other band in the Supplementary Figure 1).
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Table 3 Number of samples used in training and testing for each soil classification
Confusion matrix in the RF model
Vacant Urban Agricultural Forest Rubber Water Total UA
Vacant 27 2 1 0 0 0 30 90
Urban 2 36 3 0 0 0 41 87.8
Agricultural 1 0 25 1 0 1 28 89.3
Forest 0 0 1 24 1 0 26 92.3
Rubber 0 0 0 2 34 0 36 94.4
Water 0 0 0 1 0 35 36 97.2
Total 30 38 30 28 35 36 197 NA
PA 90 94.7 87.1 85.7 100 94.4 NA 91.9
Kappa 0.89
Confusion matrix in the SVM model
Vacant Urban Agricultural Forest Rubber Water Total UA
Vacant 26 3 1 0 0 0 30 86.7
Urban 4 33 1 0 0 0 38 86.8
Agricultural 0 2 27 1 0 1 31 87.1
Forest 0 0 1 23 1 2 27 85.2
Rubber 0 0 0 3 34 0 37 91.9
Water 0 0 0 1 0 33 34 97.1
Total 30 38 30 28 35 36 197 NA
PA 86.7 86.8 90 82.1 97.1 91.7 NA 89.3
Kappa 0.87
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Furthermore, Du et al. [47] applied SVM and RF
algorithms to divide airborne visible/infrared imaging
spectrometer (AVIRIS) images into nine land-use groups.
The results show that the general classification accu-
racy and kappa coefficient of the RF and SVM algo-
rithms are 95.1%, 94.3%, 0.94, and 0.93, respectively.
Li et al. [48] used the Landsat thematic mapper dataset
in Guangzhou city, China, to test 13 supervised and
two unsupervised classification techniques, including
the SVM and RF algorithms. With an accuracy of 0.917
for RF and an SVM of 0.891, the final results demonstrate
that the RF algorithm has higher classification accuracy.
On the basis of Lidar data, Qin et al. [49] classified the
land cover of Zhangye city via the maximum likelihood
classification (MLC), SVM, and RF algorithms. The results
revealed that the RF model yielded the highest accu-
racy, with an overall classification accuracy of 91.82%
and a kappa coefficient of 0.88, whereas those of the
SVM model were 88.48% and 0.83, respectively. Compared
with other machine learning methods, RF models are
insensitive to overfitting, can model nonlinear rela-
tionships, and have high predictive performance. RF
classification has been used in many previous studies
because of its high accuracy in land cover mapping.
Faeehem et al. [50] applied RF with an overall accuracy
of 0.99 to determine LCLU changes over the past three
decades (1990-2020) in an arid ecosystem in Pakistan.
Svoboda et al. (2022) focused on the development of
Sentinel-2 data and RF classification according to the
LULUCF requirements on the cloud-based platform
Google Earth Engine (GEE). The results obtained an
accuracy classification with an overall accuracy =
89.1% and Cohen’s kappa = 0.84. Kasahun and Legesse
[51] compared three machine learning algorithms—
ANN, SVM, and RF—for LULC classification via Google
Earth images from the years 2006, 2014, and 2022 in
Dilla town, Ethiopia. The results showed that the RF
algorithm outperformed both the SVM and ANN algo-
rithms, with an average OA of 0.97, a kappa of 0.98, a
PA of 0.99, and a UA of 0.97. Rodriguez-Galiano et al.
[21] initially evaluated the performance of the RF for
classifying land cover in Spain and achieved a higher
overall accuracy of 91% and a kappa coefficient of
0.92. Hayes et al. [22] prepared a high-resolution (1 m)
land cover map in Wyoming via an RF classifier and
obtained an overall accuracy of 81% and a kappa
coefficient of 0.79. The RF classification method has
also been used in recent studies to generate flood
inundation maps [23-24].

Through the previous comparison, we determined
that with the improvement in the resolution of the image
data, the accuracy of RF and SVM classification also
gradually improved. Under the same image resolution
conditions, the accuracy of the RF model is better than
that of the SVM model. There are other factors that
affect the classification accuracy, such as the selection

of the right parameters or the number of samples for
each class in the training data. Some environmental and
geographical variables, such as topographic features,
elevation, slope, texture, the vegetable index, and soil
properties, were omitted from our models [52-56];
therefore, our classification for this area may be biased.
We chose the RF model with more accurate classifi-
cation to classify land-use types for Phu Giao in 2023.
The results of the study revealed that the total area of
land-use types in Phu Giao is 536.74 km?, of which the
forest cover area is 11.5%, which is equivalent to 61.52
km2 and the area of rubber plantations is 55.5%, which
is equivalent to 297.69 kmZ. In the LULC group without
forest, cropland occupied the largest area (16.7% of the
total area), equivalent to 89.61 km?2 (Figure 6).

4) Model limitations

Owing to the limited sample numbers for training,
the sampling sites were spatially unevenly distributed,
and some areas of Phu Giao lacked sampling sites,
leading to an inadequate representation in the study
region [57], particularly when classifying multitemporal
satellite imagery from dates mismatched with field
surveys. In agricultural land, for example, crop develop-
ment throughout the year can alter spectral signatures
[58]. Second, other input variables, such as the normalized
difference vegetation index (NDVI), normalized difference
water index (NDWI), and normalized difference built-up
index (NDBI), were omitted from our model; this issue
is likely to be a general issue in statistical models.
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Conclusions

RF and SVM were applied to classify land use in the
Phu Giao district, Binh Duong Province, Vietham. The
results of the study indicate that the SVM model has
2% lower accuracy than the RF model for mapping the
studied area. In addition, the values of the image
brands are necessary to add other variables, such as
terrain (elevation and slope), the NDVI, NDWI, NDBI,
etc. These factors can increase the performance of the
models. Further studies should consider the use of
these variables to investigate improvements in model
performance.
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