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Abstract 

Machine learning algorithms are currently widely used to classify satellite 

images to create surface maps of the earth. Support vector machines (SVMs) and 

random forests (RFs) are more effective ML algorithms and more accurate 

classifications than other methods. The aim of this study is to analyze the 

performance of these two algorithms in land-use and land cover classification. 

For this purpose, the Landsat 8 OLI satellite image freely provided by the United 

States Geological Survey (USGS) was used to classify land use in the Phu Giao 

District, Binh Duong Province, Vietnam, where forestland is being strongly 

converted into rubber plantations and cultivated land. The results revealed that 

the accuracies of the SVM model were 0.87 (overall accuracy) and 0.89 

(Cohen’s kappa), which are 2% lower than those of the optimal RF model. The 

land-use classification maps can be used as essential information in ecological 

and environmental management, such as natural habitats, urbanization and 

deforestation status, and species impact. Therefore, accurate and objective 

data/tools are extremely important. 
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Introduction 

 Information about land cover (LC) is among the most 

important data for a variety of fields, such as environ-

mental, ecological, and climate change studies, as well 

as resource management and monitoring [1,2]. The use 

of land cover and land use maps is the most effective 

method for recording and conveying information related 

to land use and land cover (LULC) data. LULC maps 

require consideration of many issues, including purpose, 

content, scale, input data types, and algorithms used. 

The land-use map can be divided into three categories 

on the basis of the extent of the area that it covers: local 

scale (covering a small area from 100-103 km2), regional 

scale (104-106 km2), and continent-to-global scale 

(>106 km2) [3] or according to its spatial resolution: low 

(1 km), medium (1 km-100 m) and high resolution (<10 

m) [4].’ 

In the past, traditional classification techniques, 

including supervised and unsupervised techniques, were 

widely applied to create land-use maps with different 

resolutions [1,5–6]. Nevertheless, because of their signi-

ficant drawbacks, the use of these methods has begun 

to decrease, such as the Gaussian normal distribution, 

which rarely occurs in remote sensing data [7–8], and 

pixel clustering algorithms with similar spatial properties 

classified into a single class on the basis of some 

predefined criteria [9]. 

 To overcome the constraints related to classification 

by traditional methods, new classification methods have 

been invented and utilized in recent years to obtain 

better classification performances [7–9]. Machine learning 

(ML) algorithms are among the most powerful and widely 

used classification algorithms [5,7,10–12]. 

 The ML algorithms are nonparametric supervised 

techniques without any assumptions about the statistical 

distribution of entered datasets, in contrast to traditional 

methods [7–9]. There are numerous varieties of ML 

algorithms that have been rigorously applied in actual 

environments (nonresearch). Therefore, these methods, 

such as support vector machines (SVMs), random forests 
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(RFs), and artificial neural networks (ANNs), are advanced. 

With respect to the overall performance of ML algorithms, 

many previous studies have confirmed that ML strategies 

yield greater accuracy outcomes than traditional para-

meter classification does, particularly for complex multi-

variate data [5, 7,13–16]. 

 Although some studies have compared two widely 

adopted and powerful machine learning algorithms, RF 

and SVM, using different RS datasets for distinctive 

aims, the conclusions drawn have been inconsistent 

and contradictory. For example, [14,17–18] stated that 

SVM and RF obtained comparable classification accu-

racies, or, in other words, both were equally reliable, 

whereas [8, 12, 16,19–,20] claimed that SVM outperformed 

RF. In the assessment of each finding, the examination 

of previous studies [21–22] indicated that the RF was 

better than the SVM. Furthermore, these studies were 

carried out on a small, local scale with medium- or 

excessive-resolution satellite images as input data. 

 Research on land-use classification in Southeast 

Asia has evolved significantly over the past few decades, 

reflecting the region's diverse ecosystems, rapid urbani-

zation, and agricultural expansion [23,24]. Early approaches 

relied heavily on field surveys, which were time-consuming 

and limited in scalability. By the late 20th century, the 

advent of satellite remote sensing, particularly Landsat 

imagery, enabled broader coverage and more systematic 

classification via supervised and unsupervised methods 

[25]. However, challenges such as cloud cover in tropical 

regions and mixed land-use patterns (e.g., agroforestry 

and fragmented urban areas) often reduce accuracy. 

More recently, advancements in machine learning, geo-

graphic information systems (GIS), and high-resolution 

datasets (e.g., Sentinel-2, LiDAR) have improved classi-

fication precision, incorporating spectral, temporal, and 

spatial dimensions [26–28]. Despite these innovations, 

inconsistencies persist owing to varying national classi-

fication systems, limited ground-truth data, and dynamic 

land-use changes driven by deforestation, plantations, 

and urban sprawl. Collaborative efforts between govern-

ments, researchers, and regional organizations (e.g., 

ASEAN) have sought to standardize methodologies, 

yet localized adaptations remain critical for capturing 

the complexity of Southeast Asia's landscapes. 

 Phu Giao, a district in Binh Duong Province, Vietnam, 

has a dynamic land-use structure characterized by a 

mix of agriculture (rubber, fruit orchards, and crop farms), 

forestry, and emerging industrial and residential zones. 

Rapid urbanization and industrialization, driven by Binh 

Duong’s strategic location near Ho Chi Minh City and 

its economic growth policies, are key forces transforming 

land use. These changes are further broadened by 

infrastructure development, population growth, and 

investment in industrial parks. Every year, local authorities 

conduct field surveys to inventory the types of land use 

in the area. No studies have yet been conducted to 

classify land in the Phu Giao District via remote sensing 

and machine learning meth-ods. The main objective of 

this study is to evaluate the performance of these 

powerful machine learning algorithms in LULC classi-

fication. For this purpose, RF and SVM algorithms have 

been selected and applied to Landsat 8 OLI satellite 

image solutions to classify land use in the Phu Giao 

District, Binh Duong Province, Vietnam. The best model 

of each classification model (RF and SVM) was selected 

by testing the models generated throughout various 

values of the maximum influential parameters of every 

set of rules, which can be the wide variety of trees (ntree) 

and the wide variety of variables (mtry) in the RF and 

the cost function (cost) and gamma within the SVM. 

 

Materials and methods 

1) Study area 

Phu Giao is a district located in northeast Binh Duong 

Province, approximately 70 km from Ho Chi Minh City. 

The east is Vinh Cuu District (Dong Nai), the west is Ben 

Cat District (Binh Duong), the south is Bac Tan Uyen 

District (Binh Duong), and the north is Dong Phu District 

(Binh Phuoc) (Figure 1). In equable climate conditions, 

including temperatures ranging from 26°C to 31°C, the 

average annual rainfall in the district is 1,947.7 mm, 

with an average of 163 rainy days per year and high 

humidity. The Phu Giao District is suitable for the planting 

of high-value industrial crops such as rubber, cashew, 

pepper, etc. Forest and agricultural land have been 

immediately decreasing due to the process of urbani-

zation, which may cause some difficulties in land-use 

management [29]. 

 

2) Data and sample 

2.1) Remote sensing data 

Landsat 8 OLI remote sensing data are freely down-

loaded from the United States Geological Survey (USGS) 

website [30]. The eight spectral bands (from 1 to 7 and 

9) of the Landsat 8 OLI image range from visible wave 

to shortwave infrared (SWIR) with a resolution of 30 m. 

Band 8 has a panchromatic wavelength with a resolution 

of 15 m. In this study, Landsat 8 OLI images with bands 

(2, 3, 4, 5, 7, 9, 10, and 11) taken on June 30, 2023, were 

used. This image is not affected by cloud cover. 

 Band combinations in remote sensing refer to the 

selection and merging of different spectral bands from 

satellite or aerial imagery to enhance the visibility of 

specific LULC features. Different band combinations 

help distinguish between vegetation, water, urban areas, 

and other land cover types. Examples include NIR-Red‒

Green (5-4-3) for vegetation, SWIR-NIR-Red (7-5-4) for 

urban areas, and NIR-SWIR-Green (5-6-3) for water. 

However, in this study, we used bands (2-7, 9, and 10) of 

multitemporal satellite imagery Landsat 8 as predictors 

in the models. We then compared the predictive power 

of the RF and SVM models for classification. 
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Figure 1 Satellite map of Phu Giao District. 

 

Table 1 Landsat 8 OLI images used in this study 

Image bands Wavelength (micrometer) Resolution (meter) Date 

Band 2 – Blue 0.45 – 0.51 30 30th June 2023 

(Path=125, Row=052) Band 3 – Green 0.53 - 0.59 30 

Band 4 – Red 0.64 – 0.67 30 

Band 5 – Near infrared 0.85 – 0.88 30 

Band 6 – Infrared 1 (SWIR 1) 1.57 – 1.65 30 

Range 7 – Infrared 2 (SWIR 1) 2.11 – 2.29 30 

Band 9 – Cirrus 1.36 – 1.38 30 

Band 10 – Thermal Infrared 1 10.60 – 11.19 100 

Band 11 – Thermal Infrared 2 11.50 – 12.51 100 

2.2) Training data and test data 

In this study, the six types of land use in the Phu Giao 

District are listed in Table 2. The training and testing data 

are based on field point samples and the local land-use 

plan map from 2022. This method has been widely applied 

and published in previous studies [6, 31–32]. The data 

used for training (70%) and testing (30%) for the classi-

fication models, including 655 samples and the number 

for each land-use type, are provided in Table 2. 

 

3) Algorithms 

3.1) Random forest (RF) 

 RF is a machine learning method introduced by 

Breiman [31] that allows for improved accuracy prediction 

and classification without overfitting data. RF is based on 

classification and regression trees (CARTs). The training 

and testing data are described in Table 2. We used 

repeated cross-evaluations to divide the training data  

 

into 10 datasets (k-fold=10) and 3 repetitions to determine  

the optimal parameters, including the number of randomly 

selected variables (mtry) and the number of trees (ntree) 

at each node.  

 

Table 2 Number of samples used in training and testing 

for each soil classification 

Type of 

land-use 

Total 

number of 

samples 

Training 

sample 

Testing 

sample 

Forestland 93 65 28 

Urban land 125 87 38 

Rubber land 115 80 35 

Water 

surface 

120 84 36 

Bareland 100 70 30 

Agricultural 

land 

102 72 30 

Total 655 458 197 
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 In detail, the repeated cross-validation technique 

consists of randomly dividing the initial reference data 

into 10 groups, with group 1st as the validation group 

and groups 2nd-10th as the training group. The same 

procedure was repeated 3 times each time, with distinct 

groups used as the validation group and the rest of the 

groups used as the training group. Compared with other 

machine learning methods, RF models are insensitive 

to overfitting, can model nonlinear relationships, and 

have high predictive performance. Numerous previous 

studies have implemented RF classification to map land 

cover with high precision. In their initial assessment of 

the RF's performance for land cover classification in 

Spain, Rodriguez-Galiano et al. [33] obtained a higher 

overall accuracy of 91% and a kappa coefficient of 

0.92. Using an RF classifier, Hayes  et al. [34] created a 

high-resolution (1 m) land cover map of Wyoming, 

achieving a kappa coefficient of 0.79 and an overall 

accuracy of 81%. The RF classification method has also 

been used in recent studies to generate flood inundation 

maps [35–36]. 

 

3.2) Support vector machine (SVM) model 

The concept of the SVM was introduced in 1979 by 

Vapnik [37]. SVM is a powerful tool for multidimensional, 

linear, and nonlinear data. SVMs are typically chosen 

for classification and regression analysis because of 

their high degree of customization. However, the critical 

parameter search procedure is more complicated than 

that of the RF. SVM is based on the principle of per-

forming a "hyperplane" that divides layers into two 

separate parts [38–39]. In reference to kernel functions, 

there are numerous varieties, including sigmoid, linear, 

polynomial, and radial basis functions (RBFs). The 

most effective and often utilized method for image 

classification via remote sensing is the radial basis 

function [40]. Therefore, two parameters (Cost-C) and 

gamma ({ꝩ), which are essential for regulating the 

SVM's performance in the radial basis function, were 

used in this study. SVMs are capable of classifying data 

linearly or nonlinearly. Nonlinear data are handled by 

the kernel function. Compared with previous studies 

[13, 41–42]. Relatively accurate classification can be 

achieved with SVM. Foody confirmed that accurate clas-

sifications may be obtained via a single multiclassifi-

cation SVM [13]. They evaluated several classification 

techniques, such as SVM, feed-forward neural networks, 

decision trees, and discriminant analysis, and discovered 

that SVM had the highest accuracy. These results are 

consistent with those of a study by Shi and Yang [42], 

which indicated that the SVM outperforms the MLC in 

terms of quantitative accuracy. Additionally, Candale 

and Dixon [41] reported that the SVM outperforms other 

classification methods. Figure 2 shows a summary of 

the land cover classification results of the RF and SVM 

methods. All calculations and imaging in the study were 

performed in R version 4.1.2 [43]. 

 

4) Model variation  

 The best RF and VSM models are determined with 

test data during the model's internal accuracy validation. 

The factors that must be applied to evaluate the accu-

racy of the classification model include the error matrix, 

overall accuracy (OA), manufacturer accuracy (PA), 

user accuracy (UA) and the kappa coefficient [44]. The 

confusion matrix quantifies the similarity be-tween the 

model-classified samples and the reference data. The 

OA is the number of samples that are efficiently labeled, 

which is consistent with the pattern that enters the 

category. However, the OA tends to overestimate the 

overall performance. The kappa coefficient is used to 

assess the overall performance of the model. The PA 

is the percentage of efficiently labeled samples of a 

particular category. Moreover, the UA is the percentage 

of efficiently labeled samples, and the entire wide 

variety of samples are labeled into that category [45]. 

 For algorithm comparison, we also applied the OA, 

UA, PA and kappa coefficient to determine the classi-

fication method that achieves better accuracy [11, 40–

46]. Figure 2 shows the process of land-use classifi-

cation applied in this study. 

 

 

 
Figure 2 Diagram of the classification process of the land-use layer. 
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Results 

1) Engineering features 

 Figure 3 (a-d) shows similar trends for all classifi-

cation classes in bands 2-4. In detail, the value in bands 

2-4 for barren land is the highest (ranging from 0.05-

0.5), followed by urban (0.03-0.16), agricultural (0.02--

0.15), water bodies (0.02-0.1), rubber (0.02-0.08) and 

forestland (0.02-0.1). The values of brands 5-9 are the 

lowest for the water surface, whereas the values of 10 

and 11 are the lowest for barren land. 

 

2) Adjustment parameter 

 In repeated cross-evaluation with Kfold = 10 and 

number of repetitions of 3, the initial reference sample 

is randomly divided into 10 groups to build each decision 

tree during the training process. The training samples 

are predicted from the model to evaluate the classifi-

cation accuracy, and the out of bag error (OBB) is the 

lowest. The number of decision trees that need to be 

optimally constructed (ntree = 1,000) and the number 

of variables at each decision tree node split (mtry = 6) 

create the highest accuracy in the RF model (Figure 4). 

On the other hand, the parameters determining the 

optimal SVM model include Cost = 10 and gamma = 1. 

3) Classification results 

 Table 3 shows the overall accuracy and kappa value 

generated by the land-use type classification via the RF 

and SVM models. In addition, errors are also presented 

for all classified layers. In general, the classification accu-

racy of both models is approximately 90%. The optimal 

SVM algorithm achieved overall accuracy (OA = 0.89), 

and the kappa value (0.87) was 2% lower than that of 

the RF algorithm (Table 3). Therefore, the two models 

create slightly different land cover maps (Figure 5). Further-

more, the map generated by the SVM seemed less 

accurate because of the misclassification between 

layers, a common phenomenon in interpreting satellite 

images, which is represented by the confusion matrix 

below. The reason may be that the multiclassifier 

combination process in the RF algorithm plays a crucial 

role. The combination of multiclass classification for 

decision making can be more accurate than single-

class classification. The SVM model does not have this 

mechanism; as a result, the RF can solve the problem 

of multilayer classification. 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 3 Variation of waveband in land-use types with band 2 (a), band 3 (b), band 4 (c), and band 5 (d)   

(see other band in the Supplementary Figure 1). 
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(a) (b) 

Figure 4 Number of variables at each node (mtry) (a) number of trees and  

(b) variables randomly divided at each node of RF (ntree). 

  
(a) (b) 

Figure 5 Land cover generated by the best RF model (a) and the best SVM model (b). 

 

Table 3 Number of samples used in training and testing for each soil classification 

Confusion matrix in the RF model 

 Vacant Urban Agricultural Forest Rubber Water Total UA 

Vacant 27 2 1 0 0 0 30 90 

Urban 2 36 3 0 0 0 41 87.8 

Agricultural 1 0 25 1 0 1 28 89.3 

Forest 0 0 1 24 1 0 26 92.3 

Rubber 0 0 0 2 34 0 36 94.4 

Water 0 0 0 1 0 35 36 97.2 

Total 30 38 30 28 35 36 197 NA 

PA 90 94.7 87.1 85.7 100 94.4 NA 91.9 

Kappa 0.89        

Confusion matrix in the SVM model 

 Vacant Urban Agricultural Forest Rubber Water Total UA 

Vacant 26 3 1 0 0 0 30 86.7 

Urban 4 33 1 0 0 0 38 86.8 

Agricultural 0 2 27 1 0 1 31 87.1 

Forest 0 0 1 23 1 2 27 85.2 

Rubber 0 0 0 3 34 0 37 91.9 

Water 0 0 0 1 0 33 34 97.1 

Total 30 38 30 28 35 36 197 NA 

PA 86.7 86.8 90 82.1 97.1 91.7 NA 89.3 

Kappa 0.87        
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Furthermore, Du et al. [47] applied SVM and RF 

algorithms to divide airborne visible/infrared imaging 

spectrometer (AVIRIS) images into nine land-use groups. 

The results show that the general classification accu-

racy and kappa coefficient of the RF and SVM algo-

rithms are 95.1%, 94.3%, 0.94, and 0.93, respectively. 

Li et al. [48] used the Landsat thematic mapper dataset 

in Guangzhou city, China, to test 13 supervised and 

two unsupervised classification techniques, including 

the SVM and RF algorithms. With an accuracy of 0.917 

for RF and an SVM of 0.891, the final results demonstrate 

that the RF algorithm has higher classification accuracy. 

On the basis of Lidar data, Qin et al. [49] classified the 

land cover of Zhangye city via the maximum likelihood 

classification (MLC), SVM, and RF algorithms. The results 

revealed that the RF model yielded the highest accu-

racy, with an overall classification accuracy of 91.82% 

and a kappa coefficient of 0.88, whereas those of the 

SVM model were 88.48% and 0.83, respectively. Compared 

with other machine learning methods, RF models are 

insensitive to overfitting, can model nonlinear rela-

tionships, and have high predictive performance. RF 

classification has been used in many previous studies 

because of its high accuracy in land cover mapping. 

Faeehem et al. [50] applied RF with an overall accuracy 

of 0.99 to determine LCLU changes over the past three 

decades (1990–2020) in an arid ecosystem in Pakistan. 

Svoboda et al. (2022) focused on the development of 

Sentinel-2 data and RF classification according to the 

LULUCF requirements on the cloud-based platform 

Google Earth Engine (GEE). The results obtained an 

accuracy classification with an overall accuracy = 

89.1% and Cohen’s kappa = 0.84. Kasahun and Legesse 

[51] compared three machine learning algorithms—

ANN, SVM, and RF—for LULC classification via Google 

Earth images from the years 2006, 2014, and 2022 in 

Dilla town, Ethiopia. The results showed that the RF 

algorithm outperformed both the SVM and ANN algo-

rithms, with an average OA of 0.97, a kappa of 0.98, a 

PA of 0.99, and a UA of 0.97. Rodriguez-Galiano et al. 

[21] initially evaluated the performance of the RF for 

classifying land cover in Spain and achieved a higher 

overall accuracy of 91% and a kappa coefficient of 

0.92. Hayes et al. [22] prepared a high-resolution (1 m) 

land cover map in Wyoming via an RF classifier and 

obtained an overall accuracy of 81% and a kappa 

coefficient of 0.79. The RF classification method has 

also been used in recent studies to generate flood 

inundation maps [23–24]. 

Through the previous comparison, we determined 

that with the improvement in the resolution of the image 

data, the accuracy of RF and SVM classification also 

gradually improved. Under the same image resolution 

conditions, the accuracy of the RF model is better than 

that of the SVM model. There are other factors that 

affect the classification accuracy, such as the selection 

of the right parameters or the number of samples for 

each class in the training data. Some environmental and 

geographical variables, such as topographic features, 

elevation, slope, texture, the vegetable index, and soil 

properties, were omitted from our models [52–56]; 

therefore, our classification for this area may be biased. 

We chose the RF model with more accurate classifi-

cation to classify land-use types for Phu Giao in 2023. 

The results of the study revealed that the total area of 

land-use types in Phu Giao is 536.74 km2, of which the 

forest cover area is 11.5%, which is equivalent to 61.52 

km2, and the area of rubber plantations is 55.5%, which 

is equivalent to 297.69 km2. In the LULC group without 

forest, cropland occupied the largest area (16.7% of the 

total area), equivalent to 89.61 km2 (Figure 6). 

 

4) Model limitations 

Owing to the limited sample numbers for training, 

the sampling sites were spatially unevenly distributed, 

and some areas of Phu Giao lacked sampling sites, 

leading to an inadequate representation in the study 

region [57], particularly when classifying multitemporal 

satellite imagery from dates mismatched with field 

surveys. In agricultural land, for example, crop develop-

ment throughout the year can alter spectral signatures 

[58]. Second, other input variables, such as the normalized 

difference vegetation index (NDVI), normalized difference 

water index (NDWI), and normalized difference built-up 

index (NDBI), were omitted from our model; this issue 

is likely to be a general issue in statistical models. 

 

 
(a) 

 
(b) 

Figure 6 Area (a) and percentage (b) of  

land-use types in the Phu Giao district in 2023. 
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Conclusions 

 RF and SVM were applied to classify land use in the 

Phu Giao district, Binh Duong Province, Vietnam. The 

results of the study indicate that the SVM model has 

2% lower accuracy than the RF model for mapping the 

studied area. In addition, the values of the image 

brands are necessary to add other variables, such as 

terrain (elevation and slope), the NDVI, NDWI, NDBI, 

etc. These factors can increase the performance of the 

models. Further studies should consider the use of 

these variables to investigate improvements in model 

performance. 
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