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Abstract 
Agricultural drought sensitivity (ADS) is highly diverse across regions, primarily 

due to differences in climate, soil types, and farming practices. Agricultural drought 
impacts depend on drought intensity, severity, duration and timing relative to crop 
growth stages. Therefore, spatial and temporal pattern assessments of ADS and 
its potential impact on economic crops in three scenarios via multicriteria decision-
making methods were conducted. As a result, the spatial distributions of the ADS 
index and its classification at 3 m7, 3 m10 and 6 m10, covering the planting and 
growing periods, displayed different patterns. The percentages of moderate, 
high and very high severity levels at 3 m7, 3 m10 and 6 m10 covered 56.06%, 
59.14%, and 56.02%, respectively, of the study area. These results suggest that 
the study area is moderately sensitive to agricultural drought. A high and very 
high severity level of ADS at the district and subdistrict levels persistently 
occurred in three periods, with 8 districts and 72 subdistricts; these persistent 
areas should be intensively monitored for agricultural drought by the Department 
of Agricultural Extension (DOAE) and the Department of Disaster Prevention and 
Mitigation (DDPM). In addition, the potential impact areas of ADS with moderate, 
high, and very high severity levels indicated that ADS has a high potential impact 
on rice and corn. Nevertheless, it has a moderate effect on cassava and sugarcane. 
Hence, if drought occurs, rice and sugarcane areas should be prioritized with a 
field survey on the impact of drought by DOAE and DDPM. This research 
methodology can be used as a guideline for managing crops via the DOAE and 
monitoring agricultural drought via the DDPM. The government should establish 
early warning systems for droughts jointly by government agencies and 
universities to prevent and mitigate the impact of drought in the future. 
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Introduction 
 Agricultural drought links meteorological drought 
characteristics to agricultural impacts, associating 
precipitation shortages most immediately with relatively 
high evapotranspiration levels and soil moisture deficits 
[1]. Agricultural drought usually occurs at a critical time 
during the growing season, directly reduces soil moisture, 
and leads to crop failure [2]. Agricultural drought 
sensitivity (ADS) highly varies across regions, primarily 

due to differences in climate, soil types, and farming 
practices. The impacts of drought on agriculture depend 
on its intensity, severity, duration and timing relative to 
crop growth stages. In addition, drought events with 
similar intensities and durations could have different 
impacts on agriculture depending on crop eco-physiology 
and the system’s local adaptive capacity [3]. 
 The Intergovernmental Panel on Climate Change 
(IPCC) defined sensitivity as “the degree to which a 
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system is affected, either adversely or beneficially, by 
climate-related stimuli” [4]. According to the IPCC report 
on extreme events in 2012, the issue of quantifying loss 
and damage from extreme climate events such as droughts 
has become essential for policy implementation [5]. 
 Thailand frequently suffers from droughts resulting 
from a shortage of rainfall, reduced flow in surface and 
subsurface rivers, and poor land management practices. 
The entire country was affected by severe droughts in 
1979, 1994, and 1999; the northeastern region, which 
has the highest poverty rates, is particularly vulnerable 
to drought [6]. Nakhon Ratchasima Province, which is 
an important agricultural production area in the region, 
is one of the most vulnerable areas where water 
resources are limited because of little rain [7], with a 
limited agricultural irrigation system [8]. 
 Recently, monitoring and assessing drought conditions 
have become a local priority and have led to early 
warning systems or monitoring of agricultural drought 
to improve strategies to mitigate drought-related impacts. 
The use of advanced machine learning methods as 
data-driven methods tends to become a central alternative 
to conventional methods on the basis of statistical 
analysis and/or domain expertise [9]. Sutanto et al. [10] 
developed drought impact functions via machine learning 
approaches (logistic regression and random forest) to 
predict drought impacts with lead times of up to 7 
months ahead on the basis of observed and forecasted 
hydrometeorological drought hazards such as the 
standardized precipitation index (SPI), standardized 
precipitation evaporation index (SPEI), and standardized 
runoff index (SRI) from the EU-funded Enhancing 
Emergency Management and Response to Extreme 
Weather and Climate Events. Mokhtari and Akhoondzade 
[11] used a data fusion technique, the wavelet transform, 
for combining multiple satellite datasets, including 
MODIS vegetation index products, MODIS snow cover 
(MOD10CM), MODIS land surface temperature, MODIS 
evapotranspiration products, TRMM monthly precipita-
tion estimation, SMOS monthly soil moisture L3 products 
and applied machine learning algorithms, including an 
artificial neural network (ANN), support vector regression 
(SVR), decision tree (DT), and random forest (RF), for 
drought forecasting in Iran. 
 Drought research in Thailand and Southeast Asia 
has extensively examined the increasing frequency and 
severity of droughts, their impacts on agriculture and 
water resources, and the development of monitoring 
and mitigation strategies. For example, Tanguy et al. 
[12] analyzed drought indicator-to-impact relationships 
in Thailand via a combination of correlation analysis and 
machine learning algorithms (RFs). In the correlation 
analysis, they examined the relationships between 
meteorological drought indicators (SPI and SPEI) and 
vegetation indices (vegetation condition index (VCI) 
and vegetation health index (VHI)) as proxies for crop 

yield and forest growth impacts. The relationships between 
meteorological drought indicators and vegetation indices 
vary depending on land use, season, and region. 
 A review of drought studies from Earth observation 
(EO) products in Southeast Asia between 2000 and 
2021 by Ha et al. [13] revealed that drought research in 
the region is increasing, with a majority (70%) of the 
studies being undertaken in Vietnam, Thailand, Malaysia 
and Indonesia. These countries also accounted for 
nearly 97% of the economic losses due to drought 
extremes. Vegetation indices from multispectral optical 
remote sensors remain a primary source of data for 
drought monitoring in the region. Many studies did not 
provide an accuracy assessment of drought mapping 
products, whereas precipitation was the primary data 
source for validation. Approximately 81% of the research 
focused on the local and national scales. They claimed 
that the remaining challenges were large-area and 
long-term-series drought measurements, the combined 
drought approach, machine learning-based drought 
prediction, and the integration of multisensor remote 
sensing products. 
 To assess ADS, many researchers have focused on 
factors and variables and applied selected factors to 
predict ADS via geospatial modeling. The key factors 
generally include climate [14–16], soil properties [17–
19], topography [20–22], land use and land cover [23], 
hydrological factors [24–30], socioeconomic factors 
[31–32], and drought indices [33–34]. 
 This study focused on the spatial and temporal 
patterns of ADS and their impacts on economic crops 
in Nakhon Ratchasima Province. Multiple factors and 
variables associated with ADS, including in situ long-
term rainfall data, geographic information system (GIS) 
and remote sensing data, detailed socioeconomic data 
and crop statistics at the subdistrict level, are first 
extracted and transformed into standard geospatial 
data in raster format with a 30 m resolution in a geo-
graphic information system (GIS) environment and are 
integrated for assessing ADS and its impact on crops 
via well-known and frequently used multicriteria decision-
making (MCDM) methods [35-36], the analytic hierarchy 
process (AHP) and weighted linear combination (WLC). 
This study will generate three different scenarios of 
ADS according to climate factors with dynamic vari-
ables in three periods (3m7: May–July, 3m10: August–
October, and 6m10: May–October), which cover the 
planting and growing periods of crops. This approach 
can provide detailed spatial and temporal patterns of 
ADS and potential impacts on economic crops at the 
district and subdistrict levels, which makes it different 
from other studies. The results of this study can be 
applied for managing crops and monitoring and 
mitigating drought by relevant government agencies, 
such as the Department of Agricultural Extension 
(DOAE), Department of Disaster Prevention and 
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Mitigation (DDPM), Royal Irrigation Department (RID), 
Department of Water Resources (DWR), and Department 
of Groundwater Resources (DGR). 
 The specific objectives of the study were (1) to 
assess the spatial and temporal patterns of agricultural 
drought sensitivity at the district and subdistrict levels 
and (2) to evaluate the potential impact of agricultural 
drought sensitivity on economic crops. 
 
Materials and methods 
1) Study area 
 The study area is Nakhon Ratchasima Province, 
with 32 districts and 288 subdistricts, and covers an 
area of approximately 20,729 km2 (Figure 1). 
 
2) Data 
 The input data for assessing ADS include (1) daily 
rainfall records (2002–2022) from 37 stations from the 
Thai Meteorological Department (TMD), (2) the MOD31A-
NDVI product between 2002 and 2022 from the USGS 
website (https://earthexplorer.usgs.gov), (3) the MOD11B-

LST product between 2002 and 2022 from the USGS 
website (https://earthexplorer.usgs.gov), (4) land use data 
from 2008, 2011, 2015, 2017, and 2019, and 2023 from 
the Land Development Department (LDD), (5) the agri-
cultural irrigation area from the RID, (6) the soil series 
of the LDD for soil drainage extraction, (7) the SRTM DEM 
from the USGS website (https://earthexplorer.usgs.gov) 
for landform and elevation extraction, (8) the waterbody 
in 2023 for Euclidean distance extraction, (9) the river 
network and subbasin boundaries from the DWR for 
drainage density extraction, and (10) inventory crop data 
concerning yield, production and harvested areas of in-
season rice, cassava, sugarcane. 
 
3) Methods 
 The workflow of the research methodology for 
assessing the spatial and temporal patterns of ADS 
and its potential impact on economic crops is displayed 
in Figure 2. Brief information on each significant step is 
described separately in the following sections.

 

 
Figure 1 Location and administrative boundaries of the study area. 
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Figure 2 Workflow of the research methodology. 

 
Step 1: Data collection and preparation 
 The selected factors for ADS assessment under 
four conditions, i.e., vegetation, climate, physical and 
socioeconomic conditions, are collected and prepared 
in a GIS environment. The selected factors in vector 
format, including land use data, agricultural irrigation 
area, distance to water bodies, drainage density, soil 
drainage, average rice harvested area, number of farmer 
households, and population density, were converted 
into raster format with a 30 m resolution. Moreover, the 
other factors selected in raster format, which were initially 
collected at different resolutions, e.g., the MOD31A-
NDVI product with a 120 m resolution, were resampled 
to a 30 m resolution. The conversion and resampling 
operations introduce errors [37], which could affect the 
results of assessing the ADS and evaluating the spatial 
and temporal patterns of the ADS and its potential 
impact on crops. Brief information on the preparation of 
each factor is described separately in the following 
sections. 
 (1) Vegetation conditions Two indicators representing 
vegetation conditions for the ADS are agricultural drought 
frequency and intensity. This study identified agricul-
tural drought frequency on the basis of VCI computed 
via the normalized difference vegetation index (NDVI) 
from MOD31A-NDVI products over the phenological 

period (May–October) of in-season rice via Equation 
(1) with the spatial modeler module in ERDAS Imagine 
software. A VCI value of 100% indicates healthy 
vegetation conditions. In contrast, if VCI values are 
nearly 0%, poor vegetation conditions are identified [38]. 
 
    VCI=100* (NDVIi-NDVImin)

(NDVImax-NDVImin)
                   (Eq. 1) 

 
 where NDVIi is the filtered NDVI image in the 
phenological period, NDVImax is the multiyear maximum 
NDVI in the phenological period, and NDVImin is the 
multiyear minimum NDVI in the phenological period. 
 
 As a representative of vegetation conditions, a VCI 
equal to or less than 35% in the cropping season was 
identified as agricultural drought. All VCI images were 
reclassified with a threshold value of ≤ 0.35 as 1, whereas 
the other values were reclassified as 0. After that, all 
reclassified images (1 and 0) were added together and 
divided by the number of images (210 images from 21 
years) with the Raster Calculator function under ESRI 
ArcMap software and reclassified into five rating scores 
by the natural break (NB) method with the reclassify 
function under ESRI ArcMap software. 

Vegetation condition Climate condition Physical condition Socioeconomic condition 

• Agricultural drought 
frequency 

• Agricultural drought 
intensity 

• Average SPI 3-periods  
(3m7, 3m10, and 6m10) 

• Average SPEI 3-periods  
(3m7, 3m10, and 6m10) 

• Land use 
• Agricultural irrigation area 
• Distance to waterbody 
• Drainage density 
• Soil drainage 
• Landform 
• Elevation 

• Average rice harvested area 
• Number of farmer household 
• Population density 

Weight calculation with analytic hierarchy process (AHP) 

Rating score assignment and normalization 

Agricultural drought sensitivity index calculation with WLC method 
and ADS classification using natural break method 

Spatial and temporal patterns of ADS and its potential impacts on crops 

Spatial and temporal patterns assessment of ADS and 
its impact on economic crops under GIS environment 

(Zonal analysis. Overlay analysis, and Statistics) 

ADS in 3m7 period ADS in 3m10 period ADS in 6m10 period 

Land use 2023 Crops statistics 

Data collection and preparation 
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Agricultural drought intensity was calculated on the 
basis of average historical VCI values (0–100%) during 
the phenological period. All VCI images were reclassified 
with a threshold value of ≤ 0.35, while the other values 
were reclassified as 0. After that, all reclassified images 
were added and divided by the number of years (21 
years) with the Raster Calculator function in ESRI ArcMap 
software. The extracted value was reclassified into five 
rating scores via the NB method with the reclassify 
function in ESRI ArcMap software. 
 (2) Climate condition Two factors that characterize 
climate conditions for ADS are the average SPI and SPEI, 
as suggested by previous reports [33–34, 39]. The SPI, 
which represents meteorological drought exposure, was 
calculated from rainfall data (2002–2022) from 37 stations 
in three SPI periods via SPI generator software. The 
calculated SPI value in each period was averaged, and 
each average value was interpolated via the inverse 
distance weighted (IDW) method via ESRI ArcMap 
software. They were later reclassified into five rating 
scores via the NB method with the reclassify function in 
ESRI ArcMap software. 
 Moreover, the SPEI, which is a specific characteristic 
of the climate of the region [40], was calculated on the 
basis of monthly rainfall and temperature data (2002–
2022). Herein, monthly rainfall data, which were retrieved 
from 37 stations, and monthly temperature data, which 
were retrieved from MODIS LST data (MOD11C3 
product), were applied to calculate the SPEI of three 
periods via SPEI software. After that, they were averaged 
and interpolated via the IDW method via ESRI ArcMap 
software and reclassified into five rating scores via the 
NB method with the reclassify function via ESRI 
ArcMap software. 
 (3) Physical condition The seven factors that cha-
racterize the physical conditions of the ADS are land 
use, agricultural irrigation area, soil drainage, slope, 
elevation, distance to a waterbody and drainage density. 
 (3.1) Land use The land use data from 2008, 2011, 
2015, 2017, 2019, and 2023 from LDD were first re-
classified into five rating scores according to land use 
type and then averaged for five rating scores with the 
raster calculation function in ESRI ArcMap software. 
The very high level of land use sensitivity to drought is 
paddy fields because they require more water than 
other crops do. In contrast, water bodies and mis-
cellaneous land are less affected by drought. 
 (3.2) Agricultural irrigation area In accordance with 
the ADS, the agricultural irrigation area was manually 
assigned rating scores for irrigated and rain-fed agri-
cultural areas [41], with values of 5 and 1, respectively, 
via the reclassify function in ESRI ArcMap software. 
 (3.3) Distance to the waterbody Areas closer to 
water bodies are less vulnerable to water shortages than 
are areas far from water bodies [41]. Euclidean distance 
was applied to calculate the distance to water bodies 

via Euclidean distance via ESRI ArcMap software and 
was manually reclassified into five rating scores via the 
NB method via the reclassify function in ESRI ArcMap 
software. 
 (3.4) Drainage density The drainage density values, 
which were calculated via the total length of stream 
channels in a drainage basin divided by the surface 
area of the basin [42], were reclassified into five rating 
scores via the NB method via the reclassify function in 
ESRI ArcMap software. 
 (3.5) Soil drainage The soil drainage properties of the 
soil series from the LDD [43] were manually reclassified 
into five rating scores by the reclassify function in ESRI 
ArcMap software. 
 (3.6) Landform Landform classification was classified 
on the basis of the percentage of slope [44] and manually 
reclassified into five rating scores via the reclassify 
function in ESRI ArcMap software. 
 (3.7) Elevation The elevation classification was extracted 
from the SRTM DEM according to the standard of LDD 
[44], and the data were manually reclassified into five 
rating scores via the reclassify function in ESRI ArcMap 
software. 
 (4) Socioeconomic conditions Socioeconomic 
factors included average rice harvested area (2011–
2023), farmer households in 2023 and population density 
in 2023 at the subdistrict level. 
 (4.1) Average rice harvested area The average rice 
harvested areas between 2011 and 2023 at the sub-
district level, as suggested by Shahid and Behrawan 
[45], were calculated and reclassified into five ADS levels 
via the NB method via the reclassify function in ESRI 
ArcMap software. 
 (4.2) Number of farmer households The number of 
farmer households is sensitive to agricultural drought [46]. 
The areas will be more vulnerable when the proportion of 
farmer households increases. The number of farmer 
households in 2023 at the subdistrict level was extracted 
and reclassified into five rating scores via the NB method 
via the reclassify function in ESRI ArcMap software. 
 (4.3) Population density Shahid and Behrawan 
[45] applied population density to assign ADS. The 
population density in 2023 at the subdistrict level was 
extracted and reclassified into five rating scores via the 
NB method via the reclassify function in ESRI ArcMap 
software. 
 
Step 2: Rating score assignment and normalization 
 Since all the factors of the ADS have different units, 
the rating scores of each factor, which were manually 
assigned, were normalized into the same standard 
with a standardized rank method [47] via Eq. 2 and 
reclassified into five rating scores via the NB method 
via the reclassify function under ESRI ArcMap. 
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   v=a+(b-a)* �V-A
B-A
�                  (Eq. 2) 

 
 where v is the new rating value that is between the 
a and b values, V is the original rating value that is 
between the A and B values, A is the minimum of the 
original rating values, B is the maximum of the original 
rating values, a is the new minimum standardized rating 
value of 1, and b is the new maximum standardized 
rating value of 3. 
 
Step 3: Weight calculation with the analytic hierarchy 
process 
 The weight of each factor on the ADS was determined 
via the AHP, a decision-making method used by 
individuals and organizations to rank alternatives they 
are considering on the basis of pairwise comparisons 
[48]. This method helps obtain a single assessment 
value on the basis of different indicators or criteria [49]. 
 To calculate the weights of individual factors under 
the AHP, a multicriteria evaluation with a linear combi-
nation weighting system (LCWS) was conducted via 
IDRISI Selva software. In practice, the WEIGHT module 
was first used to generate a pairwise comparison matrix 
with a standard numeric scale from 1–9, which lies between 
“equal importance” and “extreme importance”, to define 
the pairwise importance of each of the two indicators 
via a research group discussion based on the charac-
teristics of the factors. After that, the MCE module was 
used to calculate the principal eigenvector of the 
pairwise comparison matrix to produce the best-fit set 
of weights [50–51]. 
 
Step 4: Agricultural drought sensitivity index calcu-
lation and classification. 
 The normalized rating score and weight of each 
factor were first applied to calculate the ADS index for 
three periods (3 m7, 3 m10 and 6 m10) with the WLC 
method [52] via Eq. 3 with the raster calculator in ESRI 
ArcMap software. 
 
   Ai=∑ wj∙aij

n
j=1                       (Eq. 3) 

 
 where Ai is the total importance of the alternative 
when all the criteria are considered simultaneously, wj  
denotes the relative weight of importance of criterion Cj, 
and aij is the performance value of alternative Ai  when 
it is evaluated in terms of criterion Cj. 
 
 After that, the ADS indices of the three periods were 
reclassified into five levels—very low, low, moderate, 
high and very high—for ADS classification via the NB 
method with the reclassify function in ESRI ArcMap 
software. 

Step 5: Assessment of the spatial and temporal 
patterns of ADS 
 Spatial and temporal patterns of ADS classification 
at the district and subdistrict levels in the three periods 
were assessed via zonal analysis, with the majority 
operation performed via the Zonal Statistics function in 
ESRI ArcMap software. 
 
Step 6: Potential impact assessment of the ADS on 
economic crops  
 The potential impact of ADS in three periods on 
economic crops (rice, cassava, sugarcane and corn) 
was assessed via overlay analysis on the basis of ADS 
classification and LDD land use data from 2023 via the 
GIS analysis module of ERDAS Imagine software. 
 In addition, Pearson bivariate correlation analysis 
was applied to characterize the linear relationship 
between the ADS index in the three periods and crop 
statistics (yield, production, and harvested areas) at the 
subdistrict level. In practice, the 288 centroid points of 
subdistrict boundaries were first generated via the 
feature-to-point function in ESRI ArcMap software, and 
they were subsequently used to extract the ADS index 
value of each period via the Extract Multi Values to 
Points function in ESRI ArcMap software. After that, the 
average yield, production, and harvested areas of each 
crop between 2011 and 2023 were appended to the 
288 centroid points via Join Field under ESRI ArcMap 
software. Finally, the attribute data of 288 centroid 
points with the ADS index of three periods and crop 
statistical values were exported in MS Excel format for 
Pearson bivariate correlation analysis via SPSS statis-
tical software. 
 
Results and discussion 
1) Factor maps for agricultural drought sensitivity 
assessment 
 The spatial distributions of the selected factors for 
ADS assessment, which are based on a literature 
review, are displayed in Figure 3. These maps indicate 
the potential ADS of each factor, which varies from very 
low to very high. The dynamic factors, which include 
the average SPI and SPEI in three periods (3m7, 
3m10, and 6m10), play significant roles in generating 
three scenarios of ADS in three periods, covering the 
planting and growing of economic crops. A summary of 
the normalized rating score of each factor for ADS index 
calculation and classification is reported in Table 1. 
Details of the potential ADS according to rating scores 
are reported in Supplementary material (SM) 1–18. The 
normalized rating scores of each factor are further 
applied to calculate the ADS index via the WLC 
method. High normalized rating scores increase the 
ADS index value.
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Figure 3 Spatial distribution of the factors for the ADS assessment. 
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Figure 3 Spatial distribution of the factors for the ADS assessment (continued). 
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Figure 3 Spatial distribution of the factors for the ADS assessment (continued). 
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Table 1 Normalized rating score  of the factor for ADS index calculation and classification 
No. Factor Normalized rating score 

Very low Low Moderate High Very high 
1 Agricultural drought frequency (F01) 1 1.5 2 2.5 3 
2 Agricultural drought intensity (F02) 1 1.5 2 2.5 3 
3 Average SPEI: 3m7, 3m10, 6m10 (F03) 1 1.5 2 2.5 3 
4 Average SPI: 3m7, 3m10, 6m10 (F04) 1 1.5 2 2.5 3 
5 Land use (F05) 1 1.5 2 2.5 3 
6 Agricultural irrigation area (F06) 1 Not apply Not apply Not apply 3 
7 Distance to waterbody (F07) 1 1.5 2 2.5 3 
8 Drainage density (F08) 1 1.5 2 2.5 3 
9 Soil drainage (F09) 1 1.5 2 2.5 3 

10 Landform (F10) 1 1.5 2 2.5 3 
11 Elevation (F11) 1 1.5 2 2.5 3 
12 Average rice yield (F12) 1 1.5 2 2.5 3 
13 Farmer household (F13) 1 1.5 2 2.5 3 
14 Population density(F14) 1 1.5 2 2.5 3 

 
2) Analytic hierarchy process and weighting 
 A pairwise comparison matrix among the influential 
factors on the ADS is reported in Table 2. The pairwise 
comparison among the selected factors is assigned 
here on the basis of the characteristics of each factor 
via a research group discussion. In this study, agricultural 
drought frequency and intensity, which were extracted 
from the VCI for representing vegetation conditions, were 
assigned as the most important factors compared with 
other factors. Likewise, the average SPEI in three periods 
(3m7, 3m10, and 6m10), which were extracted from the 
SPEI on the basis of rainfall and temperature for repre-
senting climate conditions, was also assigned as the 
most important factor compared with the other factors. 
In contrast, population density, which was extracted from 
population density in 2023 at the subdistrict level to 
represent socioeconomic conditions, was assigned as the 
least important factor compared with other factors since 
the population density in the study area experienced 
marginal changes. The relatively important pairwise 
comparison matrix among factors on the ADS dictates 
their weights under the AHP [48]. 

 The results of the weight of each factor under the 
AHP are reported in Table 3, with a consistency ratio of 
0.08. The result of the AHP is acceptable since the 
consistency ratio is less than 0.1, as suggested by [48]. 
As a result of the AHP, the most important factors are 
agricultural drought frequency and agricultural drought 
intensity, with a weight value of 0.1749. In contrast, the 
least important factor is population density, with a weight 
value of 0.0089. In addition, the weights of the average 
SPEI and SPI in the three periods are equal, with values 
of 0.1555 and 0.1510, respectively. The normalized rating 
and weight scores were further applied to calculate the 
ADS index for three periods via the WLC method. 
 
3) Agricultural drought sensitivity index calculation 
and classification 
 The spatial distributions of the ADS index and 
classification of the three periods are displayed in 
Figure 4. The areas of the ADS classification in the 
three periods are summarized in Table 4.

 
Table 2 Pairwise comparison matrix for AHP among factors of the ADS in three periods (3m7, 3m10 and 6m10) 
No. Factors The important value between pairwise factors 

F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 F13 F14 
1 Agricultural drought frequency (F01) 1 1 1 1/3 1/3 1/5 1/5 1/5 1/5 1/7 1/7 1/9 1/9 1/9 
2 Agricultural drought intensity (F01) 1 1 1 1/3 1/3 1/5 1/5 1/5 1/5 1/7 1/7 1/9 1/9 1/9 
3 Average SPEI: 3m7, 3m10, 6m10 (F03) 1 1 1 1 1/3 1/5 1/5 1/5 1/5 1/7 1/7 1/9 1/9 1/9 
4 Average SPI: 3m7, 3m10, 6m10 (F04) 1/3 1/3 1 1 1/5 1/5 1/5 1/5 1/5 1/7 1/7 1/9 1/9 1/9 
5 Land use (F05) 1/3 1/3 1/3 1/5 1 1/3 1/3 1/3 1/3 1/5 1/5 1/7 1/7 1/7 
6 Agricultural irrigation area (F06) 1/5 1/5 1/5 1/5 1/3 1 1 1/3 1/3 1/3 1/5 1/7 1/7 1/7 
7 Distance to waterbody (F07) 1/5 1/5 1/5 1/5 1/3 1 1 1/3 1/3 1/3 1/3 1/5 1/7 1/7 
8 Drainage density (F08) 1/5 1/5 1/5 1/5 1/3 1/3 1/3 1 1 1/3 1/3 1/5 1/7 1/7 
9 Soil drainage (F09) 1/5 1/5 1/5 1/5 1/3 1/3 1/3 1 1 1/3 1/3 1/5 1/7 1/7 
10 Landform (F11) 1/7 1/7 1/7 1/7 1/5 1/3 1/3 1/3 1/3 1 1 1/5 1/5 1/5 
11 Elevation (F12) 1/7 1/7 1/7 1/7 1/5 1/5 1/3 1/3 1/3 1 1 1/3 1/3 1/3 
12 Average rice harvested area (F12) 1/9 1/9 1/9 1/9 1/7 1/7 1/5 1/5 1/5 1/5 1/3 1 1 1/3 
13 Number of farmer households (F13) 1/9 1/9 1/9 1/9 1/7 1/7 1/7 1/7 1/7 1/5 1/3 1 1 1/3 
14 Population density (F14) 1/9 1/9 1/9 1/9 1/7 1/7 1/7 1/7 1/7 1/5 1/3 1/3 1/3 1 

Remark: A number of 1 is equally important, 1/3 is moderately less important, 1/5 is strongly less important, 1/7 is very strongly less important,  
               and 1/9 is extremely less important. 
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Figure 4 Spatial distributions of the ADS index and classification:  
(a) 3m7, (b) 3m10, (c) 6m10, (d) 3m7, (e) 3m10, and (f) 6m10. 
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Table 3 Weights of each factor on the ADS in three periods (3 m7, 3 m10 and 6 m10) 
No. Factors Weight 
1 Agricultural drought frequency (F01) 0.1749 
2 Agricultural drought intensity (F02) 0.1749 
3 Average SPEI: 3m7, 3m10, and 6m10 (F03) 0.1555 
4 Average SPI: 3m7, 3m10, and 6m10 (F04) 0.1510 
5 Land use (F05) 0.0820 
6 Agricultural irrigation area (F06) 0.0570 
7 Distance to waterbody (F07) 0.0530 
8 Drainage density (F08) 0.0385 
9 Soil drainage (F09) 0.0385 

10 Landform (F10) 0.0239 
11 Elevation (F11) 0.0194 
12 Average rice yield (F12) 0.0115 
13 Farmer household (F13) 0.0110 
14 Population density (F14) 0.0089 

Remark: Consistency ratio = 0.08 
 
Table 4 Area of ADS classification in three periods (3 m7, 3 m10 and 6 m10) 

Severity level Area of ADS (%) 
3m7: May-July 

(Planting period) 
3m10: August-October 

(Growing period) 
6m10: May-October 

(Planting and growing period) 
Very low 20.11 13.20 18.60 
Low 23.83 27.66 25.38 
Moderate 23.07 23.83 23.85 
High 20.82 21.30 21.10 
Very high 12.17 14.01 11.07 

Total 100.00 100.00 100.00 
 
Table 5 Correlation matrix of the ADS indices and their correlation coefficient values for the three periods 

 
Correlation coefficient value 

ADS index in 3m7 ADS index in 3m10 ADS index in 6m10 
ADS index in 3m7 (Planting period) 1 0.8249 0.9277 
ADS index in 3m10 (Growing period)  1 0.8783 
ADS index in 6m10 (Planting and growing period)   1 

 
Table 6 Correlation matrix of ADS classification and their correlation coefficient values for the three periods 

 
Correlation coefficient value 

ADS classification 
 in 3m7 

ADS classification 
in 3m0 

ADS classification 
in 6m10 

ADS classification in 3m7 (Planting period) 1 0.7784 0.8787 
ADS classification in 3m10 (Growing period)  1 0.8311 
ADS classification in 6m10 (Planting and growing period)   1 

 
 As a result, the spatial distribution of the ADS index 
in three different periods displays different patterns 
according to the normalized rating and weighting scores 
of each factor for calculating the ADS index via the 
WLC method [50]. However, the results of the spatial 
correlation analysis among the ADS indices in the three 
periods (Figures 4 (a to c) via the spatial modeler module 
in ERDAS Imagine software reveal a strong positive 
linear relationship [53], as reported in Table 5. The corre-
lation coefficient (R) values vary from 0.8249 to 0.9277. 
A high correlation coefficient value suggests substantial 
redundancy in the information content among the ADS 
indices in the three periods [54]. 
 Moreover, the spatial distribution of the ADS classi-
fication, with high and very high levels at 3m7 in the 
planting period of crops, was in the northwest and 
northeast. The spatial distribution of high and very high 

ADS levels within 3m10 during the growing period of 
crops is located in northern. The spatial distri-bution 
of high and very high ADS in the 6m10 area covering 
the planting and growing periods of crops occurred 
in the northwest and northeast regions. The spatial 
patterns of ADS classification in the three periods 
(Figures 4 (d to f) display different patterns according 
to the ADS index. The R values among the ADS clas-
sifications in the three periods via the spatial modeler 
module in the ERDAS Imagine software show a strong 
positive linear relationship [53], as reported in Table 6. 
The R values vary from 0.7784 to 0.8787. These findings 
indicate substantial redundancy in the information con-
tent among ADS classifications in the three periods [54]. 
 Furthermore, the percentage of severity levels of 
the ADS, including moderate, high and very high, at 
3m7, 3m10 and 6m10, as shown in Table 4, covers 
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56.06%, 59.14%, and 56.02% of the study area, respec-
tively. These results revealed moderate sensitivity to 

agricultural drought during the three periods in the 
study area. 
 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

 

Figure 5 Spatial and temporal patterns of majority ADS severity at the district and subdistricts  
in (a) 3m7, (b) 3m10, (c) 6m10, and (d) 3m7, (e) 3m10, and (f) 6m10, respectively. 
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4) The severity of agricultural drought sensitivity in 
districts and subdistricts 
 The severity levels of the ADS at the district and 
subdistrict levels in the three periods are displayed in 
Figure 5. The numbers of districts and subdistricts with 
severity levels of ADSs in the three periods are reported 
in Table 7.  
 By comparing the combined number of districts and 
subdistricts at high and very high severity levels of ADS, 
an ADS of 3m10, covering a growing period of crops, 
shows the most sensitive drought period, with 16 districts 
and 132 districts. ADS at a high severity level at the district 
level that occurred in three periods persisted in 6 districts: 
Khong, Pratay, Noen Dang, Muang Yang, Bua Lai and 
Sida. Similarly, the ADS at a very high severity level 
repeatedly occurred in three periods in 2 districts, i.e., 
Noen Thai and Noen Sung. Moreover, at the subdistrict 
level, ADS at high and very high severity levels constantly 
occurs in three periods in 38 and 34 subdistricts, 

respectively. Thus, the persistence of high and very high 
severity levels of ADS in these districts and subdistricts, 
as shown in Figure 6, should be focused on monitoring 
and preventing agricultural drought in the future by 
relevant government agencies, including the DOAE and 
the DDPM. 
 In addition, the primary land use types in 2023 over the 
persistence of high and very high severity levels of ADS 
in the three periods were explored via overlay analysis 
with GIS Analysis module in ERDAS Imagine software, as 
reported in Tables 8 to 9. As a result, the dominant land 
use type associated with the persistence of high and very 
high severity levels of ADS in the three periods is rice 
fields, with a high percentage compared with other land 
use types. These findings suggest that if agricultural 
drought occurs in the study area, rice fields should be 
intensively managed to minimize drought impacts by 
farmers with support from government agencies, 
including the DOAE, RID, DWR, and DGR.

 
Table 7 Number of districts and subdistricts with different severity levels of ADS in the three periods. 

ADS severity Number of districts and subdistricts 
3m7 (May-July) 3m10 (August-October) 6m10 (May-October) 

District Subdistrict District Subdistrict District Subdistrict 
Very low 7 58 2 28 5 53 
Low 5 57 9 79 7 66 
Moderate 6 48 5 49 7 52 
High 11 75 13 75 9 69 
Very high 3 50 3 57 4 48 
Total 32 288 32 288 32 288 

 

  
(a) (b) 

 
Figure 6 Spatial distributions of the persistence of high- and very high-severity ADS  

in three periods at the (a) district and (b) subdistrict levels. 
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Table 8 Overlay analysis between the persistent severity level of ADS in three periods in districts and land use types in 
2023 from LDD 

Land use type Percent of land use types in each persistent severity level in a specific district 
Very low Low Moderate High Very high 

Urban and built-up areas 0% 36.07% 4.20% 6.92% 9.41% 
Rice 0% 24.60% 34.39% 70.56% 66.53% 
Cassava 0% 16.82% 23.25% 4.84% 6.74% 
Sugarcane 0% 2.27% 26.33% 3.93% 2.88% 
Corn 0% 1.43% 0.05% 0.01% 3.51% 
Other agricultural uses 0% 7.30% 4.37% 3.91% 2.36% 
Forestland 0% 0.37% 1.10% 2.15% 0.45% 
Waterbody 0% 2.55% 3.85% 3.84% 3.27% 
Miscellaneous land 0% 8.60% 2.45% 3.84% 4.85% 
Total  100.00% 100.00% 100.00% 100.00% 

 
Table 9 Overlay analysis of the persistent severity level of ADS in three periods in subdistricts and land use types in 2023 
from LDD 

Land use type Percent of land use types in each persistent severity level in specific subdistrict 
Very low Low Moderate High Very high 

Urban and built-up areas 8.25% 17.98% 4.63% 6.88% 8.33% 
Rice 21.73% 15.36% 31.73% 63.99% 59.11% 
Cassava 29.63% 19.73% 24.29% 8.77% 12.47% 
Sugarcane 7.02% 11.53% 25.26% 4.72% 3.82% 
Corn 0.21% 6.57% 1.77% 1.80% 4.83% 
Other agricultural uses 9.76% 9.56% 5.85% 3.98% 2.14% 
Forestland 18.31% 9.33% 1.83% 1.97% 0.91% 
Waterbody 2.02% 2.94% 2.94% 3.87% 3.24% 
Miscellaneous land 3.08% 6.98% 1.69% 4.02% 5.15% 
Total 100.00% 100.00% 100.00% 100.00% 100.00% 

 
 Furthermore, significant factors in ADS classification 
were explored to describe the relationships between 
ADS classification in three periods and their factors via 
spatial correlation analysis with the spatial modeler module 
under ERDAS Imagine software, as summarized in SM 
19–21. 
 For the ADS classification at 3m7 (the planting period), 
the agricultural drought frequency, agricultural drought 
intensity and average SPEI had strong positive linear 
relationships with the ADS. In contrast, the average SPI 
and land use had a moderate positive linear relationship 
with the ADS. 
 Moreover, for the ADS classification at 3m10 (growing 
period), the agricultural drought frequency and agri-
cultural drought intensity exhibited strong positive 
linear relationships with the ADS. In contrast, land use 
and average rice harvested areas had a moderate positive 
linear relationship with the ADS, but elevation had a 
moderate negative linear relationship with the ADS. 
 Moreover, for the ADS classification at 6m10 (the 
planting and growing period), the agricultural drought 
frequency and agricultural drought intensity had strong 
positive linear relationships with the ADS. In contrast, the 
average SPEI, average SPI and land use had moderate 
positive linear relationships with the ADS. 

 These findings confirm the influence of various factors 
on ADS, as suggested by researchers, particularly climate 
[14–16], topography [20–22], land use and land cover 
[23], socioeconomic factors [31–32] and drought indices 
[33–34]. 
 
5)  Potential impact area of agricultural drought sensi-
tivity on economic crops 
 The potential impact areas of the ADS in the three 
periods on the existing area of each economic crop 
(rice, cassava, sugarcane and corn) in 2023 from the 
LDD are reported in Table 10. 
 As a result, the potential impact areas of ADS with 
combined moderate, high and very high severity levels on 
rice in 2023 in the 3m7 (planting period), 3m10 (growing 
period) and 6m10 (planting and growing periods) 
periods cover areas of 82.72%, 85.76% and 80.38% of 
the total area (6,092.73 km2). The high percentage of 
potential impact areas on rice implies that ADS has a 
high impact on rice since rice requires high amounts of 
water during the planting and growing periods. In practice, 
paddy rice is usually grown in level basins that are flooded 
with water throughout most of the growing season [55]. 
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Table 10 Potential impact area of ADS on economic crops in 2023 
Economic 

crop 
Severity level of ADS Area in each period (%) 

3m7: May-July 
Planting period 

3m10: August-October 
Growing period 

6m10: May-October 
Planting and growing 

Rice Very low 5.82 3.15 5.84 
Low 11.47 11.08 13.78 

Moderate 23.60 20.52 24.59 
High 34.90 34.96 34.69 

Very high 24.22 30.28 21.10 
Total 100.00 100.00 100.00 

Cassava Very low 28.28 9.79 19.59 
Low 19.98 28.46 30.48 

Moderate 22.20 33.01 22.03 
High 18.50 19.82 18.50 

Very high 11.04 8.90 9.40 
Total 100.00 100.00 100.00 

Sugarcane Very low 22.08 8.09 16.73 
Low 28.23 33.50 33.33 

Moderate 28.85 33.25 27.53 
High 15.34 18.68 17.32 

Very high 5.50 6.47 5.09 
Total 100.00 100.00 100.00 

Corn Very low 2.85 6.74 4.72 
Low 24.19 32.15 20.97 

Moderate 29.07 26.29 30.86 
High 25.35 21.69 26.47 

Very high 18.54 13.13 16.99 
Total 100.00 100.00 100.00 

 
 In contrast, the potential impact areas of ADS with 
combined moderate, high and very high severity levels 
on cassava in 2023 at 3m7, 3m10 and 6m10 covered 
areas of 51.74%, 61.73% and 49.93%, respectively, of the 
total area (3,853.65 km2). The moderate percentage of 
the potential impact area on cassava suggested that ADS 
has a moderate impact on cassava since cassava requires 
less water than does rice during the planting and growing 
periods. Owing to its hot and dry conditions, a favorable 
climate is suitable for cassava production [56]. 
 Like cassava, the potential impact areas of ADS with 
combined moderate, high and very high severity levels 
on sugarcane in 2023 at 3m7, 3m10 and 6m10 covered 
49.69%, 58.40% and 49.94% of its total area (2,048.75 
km2). The moderate percentage of the potential impact 
area on sugarcane suggested that ADS has a moderate 
impact on sugarcane. Sugarcane requires less water 
than does rice during the planting and growing periods. 
In practice, after the sugarcane from the original plant 
is harvested, a portion of the stalk of the sugarcane is 
left underground, resulting in the successful growth of 
the sugarcane for approximately 2–3 years [57]. 
 Like rice, the potential impact areas of ADS with 
combined moderate, high and very high severity levels 
on corn in 2023 at 3m7, 3m10 and 6m10 covered areas 
of 72.96%, 61.11% and 74.32%, respectively, of its total 
area (783.10 km2). The high percentage of potential 
impact areas on corn indicates that ADS has a high 
impact on corn since corn requires high amounts of 
water during the planting and growing periods [58]. 

 These findings suggest that if drought occurs in the 
study area, rice and sugarcane areas should be the priority 
areas with a field survey by DOAE and DDPM to 
mitigate the impact of ADS. 
 
6) Relationship between agricultural drought sensi-
tivity and economic crop statistics 
 Table 11 reports a Pearson bivariate correlation analysis 
between the ADS index in 3 periods and the normalized 
average yield (kg per 1,600 m2), average production (kg) 
and average harvested areas (1,600 m2) between 2011 
and 2023 for in-season rice, cassava, sugarcane and 
corn at the subdistrict level, with 288 samples. 
 For the crop yield data, the ADS indices at 3m7 and 
3m10 exhibited significant negative linear relationships 
with the average cassava yield, with R values of -0.136 
and -0.119, respectively. Similarly, the ADS indices at 
3m7, 3m10 and 6m10 were significantly negatively 
correlated with the average sugarcane yield, with R 
values of -0.159, -0.119 and -0.140, respectively. In 
contrast, the ADS index at 6 m10 shows a significant 
positive linear relationship with the average corn yield, 
with an R value of 0.140, which is an unexpected result. 
Nevertheless, the ADS indices at 3m7 and 3m10 show 
an insignificant linear relationship with the average corn 
yield, which is an unexpected result. Additionally, the 
ADS index in the three periods shows an insignificant 
negative linear relationship with the average in-season 
rice yield, as expected. 
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Table 11 Bivariate correlation analysis between the ADS and economic crop statistics in the 3 periods 
Economic crop statistics Correlation coefficient in each period 

3m7 
(Planting period) 

3m10 
(Growing period) 

6m10 
(Planting and growing period) 

Average yield of in-season rice -0.073 -0.019 -0.032 
Average yield of cassava -0.136* -0.119* -0.043 
Average yield of sugarcane -0.159** -0.119* -0.140* 
Average yield of corn 0.100 -0.042 0.140* 
Average production of in-season rice 0.220** 0.239** 0.148* 
Average production of cassava -0.113 -0.109 -0.086 
Average production of sugarcane -0.106 -0.066 -0.084 
Average production of corn 0.138* -0.062 0.106 
Average harvested area of in-season rice 0.271** 0.284** 0.180** 
Average harvested area of cassava -0.264** -0.230** -0.227** 
Average harvested area of sugarcane -0.1043 -0.0848 -0.1028 
Average harvested area of corn 0.140* -0.0742 0.1044 

Remark: ** The correlation is significant at the 0.01 level (2-tailed), and *. The correlation is significant at the 0.05 level (2-tailed). 
 
 For the crop production data, the ADS indices at 3m7, 
3m10, and 6m10 were significantly positively linearly 
related to the average in-season rice production, with 
R values of 0.220, 0.239, and 0.148, respectively, which 
was an unexpected result. Similarly, the ADS index at 
3m7 showed a significant positive linear relationship 
with average corn production, with an R value of 0.138, 
which was an unexpected result. In addition, the ADS 
index in the three periods shows an insignificant negative 
linear relationship with average cassava and sugarcane 
production, as expected. 
 For the crop harvested area data, the ADS index in 
the three periods had a significant negative linear rela-
tionship with the average cassava harvested area, with 
R values of -0.264, -0.230, and -0.227, as expected. In 
contrast, the ADS index in the three periods had a signi-
ficant positive linear relationship with the average in-
season rice harvested area, with R values of 0.271, 0.284, 
and 0.180, which was an unexpected result. Similarly, 
the ADS index at 3m7 showed a significant positive linear 
relationship with the average corn harvested area, with 
an R value of 0.140, which was an unexpected result. 
In addition, the ADS in the three periods shows an insigni-
ficant negative linear relationship with the average harvested 
area of sugarcane, as expected.  
 As a result, the ADS index in different periods can 
be adequately applied to describe the relationship with 
the survey data of average yield, production, and harvested 
areas of cassava and sugarcane as the expected results, 
even though the ADS in three periods covering the 
planting and growing periods of cassava and sugarcane 
vary from place to place and from time to time. 
 In contrast, the ADS index in different periods cannot 
be adequately applied to describe the relationship with 
the average yield, production, and harvested areas of 
corn as expected. Likewise, the ADS index in different 
periods cannot be applied appropriately to describe the 

relationship between average production and harvested 
areas of in-season rice. 
 These findings are comparable to those of a previous 
study by Tanguy et al. [12], who reported that crops suffer 
some negative impacts from meteorological drought 
(positive correlations), even during the wet season. The 
relationships between drought indicators and crop yield 
depend on land use, season, and region. 
 
Conclusion 
 An assessment of the spatial and temporal patterns of 
ADS and its impact on economic crops was successfully 
conducted on the basis of the integration of multiple 
factors on ADS with the AHP and WLC methods. As a 
result, the spatial distributions of the ADSs at 3m7, m10 
and 6 m10 displayed different patterns. Areas with severe 
levels of ADS, including moderate, high and very high 
levels, at 3m7, m10 and 6 m10 covered 56.06%, 59.14%, 
and 56.02% of the study area, respectively. These results 
suggested that the three periods in the study area 
were moderately sensitive to agricultural drought. The 
persistent high and very high severity levels of the ADS 
classification in the three periods at the district and 
subdistrict levels included 8 districts and 72 subdistricts. 
Therefore, these districts and subdistricts should focus 
on monitoring and preventing agricultural drought via 
the DOAE and DDPM. Additionally, the persistence of 
high and very high severity levels of ADS in those districts 
and subdistricts primarily occurred in rice fields. Thus, 
if agricultural drought occurs in the study area, rice fields 
should be intensively managed to minimize drought 
impacts by farmers with support from the DOAE, RID, 
DWR, and DGR. Furthermore, the potential impact areas 
of ADS in the three periods based on land use in 2023 
revealed high impacts of ADS on rice and corn, with 
values of more than 80% and 60%, respectively, but 
moderate impacts of ADS on cassava and sugarcane, 
with values of less than 50% and 50%, respectively. 
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Accordingly, if drought occurs in the study area, rice 
and sugarcane areas should be the priority areas with 
a field survey by DOAE and DDPM to mitigate drought 
impact. 
 In conclusion, the research workflow can be used 
as a guideline for managing crops via the DOAE and 
monitoring agricultural drought via the DDPM. The 
government should establish early warning systems for 
droughts jointly by government agencies and universities 
to prevent and mitigate the impact of drought. Furthermore, 
advanced machine learning algorithms such as ANNs 
and RFs should be examined to predict agricultural drought 
impacts. 
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