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Abstract

Agricultural drought sensitivity (ADS) is highly diverse across regions, primarily
due to differences in climate, soil types, and farming practices. Agricultural drought
impacts depend on drought intensity, severity, duration and timing relative to crop
growth stages. Therefore, spatial and temporal pattern assessments of ADS and
its potential impact on economic crops in three scenarios via multicriteria decision-
making methods were conducted. As a result, the spatial distributions of the ADS
index and its classification at 3 m7, 3 m10 and 6 m10, covering the planting and
growing periods, displayed different patterns. The percentages of moderate,
high and very high severity levels at 3 m7, 3 m10 and 6 m10 covered 56.06%,
59.14%, and 56.02%, respectively, of the study area. These results suggest that
the study area is moderately sensitive to agricultural drought. A high and very
high severity level of ADS at the district and subdistrict levels persistently
occurred in three periods, with 8 districts and 72 subdistricts; these persistent
areas should be intensively monitored for agricultural drought by the Department
of Agricultural Extension (DOAE) and the Department of Disaster Prevention and
Mitigation (DDPM). In addition, the potential impact areas of ADS with moderate,
high, and very high severity levels indicated that ADS has a high potential impact
onrice and corn. Nevertheless, it has a moderate effect on cassava and sugarcane.
Hence, if drought occurs, rice and sugarcane areas should be prioritized with a
field survey on the impact of drought by DOAE and DDPM. This research
methodology can be used as a guideline for managing crops via the DOAE and
monitoring agricultural drought via the DDPM. The government should establish
early warning systems for droughts jointly by government agencies and
universities to prevent and mitigate the impact of drought in the future.
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Introduction

Agricultural drought links meteorological drought
characteristics to agricultural impacts, associating
precipitation shortages most immediately with relatively
high evapotranspiration levels and soil moisture deficits
[1]. Agricultural drought usually occurs at a critical time
during the growing season, directly reduces soil moisture,
and leads to crop failure [2]. Agricultural drought
sensitivity (ADS) highly varies across regions, primarily

due to differences in climate, soil types, and farming
practices. The impacts of drought on agriculture depend
on its intensity, severity, duration and timing relative to
crop growth stages. In addition, drought events with
similar intensities and durations could have different
impacts on agriculture depending on crop eco-physiology
and the system’s local adaptive capacity [3].

The Intergovernmental Panel on Climate Change
(IPCC) defined sensitivity as “the degree to which a

https://doi.org/10.35762/AER.2025009



App. Envi. Res. 47(1) (2025): 009

system is affected, either adversely or beneficially, by
climate-related stimuli” [4]. According to the IPCC report
on extreme events in 2012, the issue of quantifying loss
and damage from extreme climate events such as droughts
has become essential for policy implementation [5].

Thailand frequently suffers from droughts resulting
from a shortage of rainfall, reduced flow in surface and
subsurface rivers, and poor land management practices.
The entire country was affected by severe droughts in
1979, 1994, and 1999; the northeastern region, which
has the highest poverty rates, is particularly vulnerable
to drought [6]. Nakhon Ratchasima Province, which is
an important agricultural production area in the region,
is one of the most vulnerable areas where water
resources are limited because of little rain [7], with a
limited agricultural irrigation system [8].

Recently, monitoring and assessing drought conditions
have become a local priority and have led to early
warning systems or monitoring of agricultural drought
to improve strategies to mitigate drought-related impacts.
The use of advanced machine learning methods as
data-driven methods tends to become a central alternative
to conventional methods on the basis of statistical
analysis and/or domain expertise [9]. Sutanto et al. [10]
developed drought impact functions via machine learning
approaches (logistic regression and random forest) to
predict drought impacts with lead times of up to 7
months ahead on the basis of observed and forecasted
hydrometeorological drought hazards such as the
standardized precipitation index (SPI), standardized
precipitation evaporation index (SPEI), and standardized
runoff index (SRI) from the EU-funded Enhancing
Emergency Management and Response to Extreme
Weather and Climate Events. Mokhtari and Akhoondzade
[11] used a data fusion technique, the wavelet transform,
for combining multiple satellite datasets, including
MODIS vegetation index products, MODIS snow cover
(MOD10CM), MODIS land surface temperature, MODIS
evapotranspiration products, TRMM monthly precipita-
tion estimation, SMOS monthly soil moisture L3 products
and applied machine learning algorithms, including an
artificial neural network (ANN), support vector regression
(SVR), decision tree (DT), and random forest (RF), for
drought forecasting in Iran.

Drought research in Thailand and Southeast Asia
has extensively examined the increasing frequency and
severity of droughts, their impacts on agriculture and
water resources, and the development of monitoring
and mitigation strategies. For example, Tanguy et al.
[12] analyzed drought indicator-to-impact relationships
in Thailand via a combination of correlation analysis and
machine learning algorithms (RFs). In the correlation
analysis, they examined the relationships between
meteorological drought indicators (SPI and SPEI) and
vegetation indices (vegetation condition index (VCI)
and vegetation health index (VHI)) as proxies for crop

yield and forest growth impacts. The relationships between
meteorological drought indicators and vegetation indices
vary depending on land use, season, and region.

A review of drought studies from Earth observation
(EO) products in Southeast Asia between 2000 and
2021 by Ha et al. [13] revealed that drought research in
the region is increasing, with a majority (70%) of the
studies being undertaken in Vietnam, Thailand, Malaysia
and Indonesia. These countries also accounted for
nearly 97% of the economic losses due to drought
extremes. Vegetation indices from multispectral optical
remote sensors remain a primary source of data for
drought monitoring in the region. Many studies did not
provide an accuracy assessment of drought mapping
products, whereas precipitation was the primary data
source for validation. Approximately 81% of the research
focused on the local and national scales. They claimed
that the remaining challenges were large-area and
long-term-series drought measurements, the combined
drought approach, machine learning-based drought
prediction, and the integration of multisensor remote
sensing products.

To assess ADS, many researchers have focused on
factors and variables and applied selected factors to
predict ADS via geospatial modeling. The key factors
generally include climate [14—16], soil properties [17—
19], topography [20-22], land use and land cover [23],
hydrological factors [24—-30], socioeconomic factors
[31-32], and drought indices [33-34].

This study focused on the spatial and temporal
patterns of ADS and their impacts on economic crops
in Nakhon Ratchasima Province. Multiple factors and
variables associated with ADS, including in situ long-
term rainfall data, geographic information system (GIS)
and remote sensing data, detailed socioeconomic data
and crop statistics at the subdistrict level, are first
extracted and transformed into standard geospatial
data in raster format with a 30 m resolution in a geo-
graphic information system (GIS) environment and are
integrated for assessing ADS and its impact on crops
via well-known and frequently used multicriteria decision-
making (MCDM) methods [35-36], the analytic hierarchy
process (AHP) and weighted linear combination (WLC).
This study will generate three different scenarios of
ADS according to climate factors with dynamic vari-
ables in three periods (3m7: May—July, 3m10: August—
October, and 6m10: May—October), which cover the
planting and growing periods of crops. This approach
can provide detailed spatial and temporal patterns of
ADS and potential impacts on economic crops at the
district and subdistrict levels, which makes it different
from other studies. The results of this study can be
applied for managing crops and monitoring and
mitigating drought by relevant government agencies,
such as the Department of Agricultural Extension
(DOAE), Department of Disaster Prevention and
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Mitigation (DDPM), Royal Irrigation Department (RID),
Department of Water Resources (DWR), and Department
of Groundwater Resources (DGR).

The specific objectives of the study were (1) to
assess the spatial and temporal patterns of agricultural
drought sensitivity at the district and subdistrict levels
and (2) to evaluate the potential impact of agricultural
drought sensitivity on economic crops.

Materials and methods
1) Study area

The study area is Nakhon Ratchasima Province,
with 32 districts and 288 subdistricts, and covers an
area of approximately 20,729 km? (Figure 1).

2) Data

The input data for assessing ADS include (1) daily
rainfall records (2002—-2022) from 37 stations from the
Thai Meteorological Department (TMD), (2) the MOD31A-
NDVI product between 2002 and 2022 from the USGS
website (https://earthexplorer.usgs.gov), (3) the MOD11B-

LST product between 2002 and 2022 from the USGS
website (https://earthexplorer.usgs.gov), (4) land use data
from 2008, 2011, 2015, 2017, and 2019, and 2023 from
the Land Development Department (LDD), (5) the agri-
cultural irrigation area from the RID, (6) the soil series
of the LDD for soil drainage extraction, (7) the SRTM DEM
from the USGS website (https://earthexplorer.usgs.gov)
for landform and elevation extraction, (8) the waterbody
in 2023 for Euclidean distance extraction, (9) the river
network and subbasin boundaries from the DWR for
drainage density extraction, and (10) inventory crop data
concerning yield, production and harvested areas of in-
season rice, cassava, sugarcane.

3) Methods

The workflow of the research methodology for
assessing the spatial and temporal patterns of ADS
and its potential impact on economic crops is displayed
in Figure 2. Brief information on each significant step is
described separately in the following sections.

750000 800000 850000 900000 950000
1 1 1 1 1
S TTITAT T 7T IrSroT
¥ 7 MAHA SAK Administration boundaries
# 4 Y,
F ] Nakhon Ratchasima province
g > .S Chaiyaphum Fhon g p
2N { i . i a3
£ &
i 1 ! Khangsanamnang w
| Fa ¥ .B T/ “~
{ Ban Luam Buajvai
T HAYI L A ND
1 I TNy Muang Yang i L lm
e P8 IR~ - KhoagRRcen Dang .o 10 20 40 50 80
2 = e
= )4 Prathongkham Kham Sakae Saeng -8
L I < 4 =
R Theparak Lamtaman Chai
o~ 7 . g Phimai Chum Phuang
y \ asiieLng Legend
7, Dan Khun Thot § oo mai y g
; .N_pn [hai
i w: \ i :] Dislrict beuncary
Kham Thale So_/Nikhdn ! Huai Thalaeng Buriram
|_Ratchjsima T H
& Muang Nakhon Ratchasima =
g8 ] it = \ Chakrat | 8
8 - | Chaleomprakiet 8 -
i ] | AR 2 )
a0 Sung Noen RAITCHAYIMA {.\j VJ_.(%,,}
T s |l \ Chokchai | i
& “PakThonglnar\ e BURI RAM \;% () LA o Ko
0 Nong Bunmark_q‘» [ “\H,{“{Tr A :/r"a‘\';‘:\
g ~___Nang Rong \\ A ‘“TMJ
Pakthong Ch Q) e i Ao K
g Chai s = = 1 S S ! (Y7
Pak Chong ) r}z [ 28] ,{{d 4
& o Tre b
} £a.t)
g N g :1 o
g 4 ¢ -3 L
2 ( Wang Nﬁ“" Khieo ] @ L‘ & 3
“L{\ : o ) Kht::rflburl ’}f AN
‘ X -5 Soeng Sang f _(
e, =l ] ’ a7
KHON.NAYOK] 4 ey {5«4‘;
lakhon Nayok 0 2 A A/ )
" NG ‘ : et N RtSA
) / 2 TR Ty
Prachin Bur = . ) o
g 1 PRAGHIN BURI 2 N 8 I N
8 Kabin Buti " 0 o -

1 T 1
750000 800000 850000

1
900000 950000

Figure 1 Location and administrative boundaries of the study area.
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Figure 2 Workflow of the research methodology.

Step 1: Data collection and preparation

The selected factors for ADS assessment under
four conditions, i.e., vegetation, climate, physical and
socioeconomic conditions, are collected and prepared
in a GIS environment. The selected factors in vector
format, including land use data, agricultural irrigation
area, distance to water bodies, drainage density, soil
drainage, average rice harvested area, number of farmer
households, and population density, were converted
into raster format with a 30 m resolution. Moreover, the
other factors selected in raster format, which were initially
collected at different resolutions, e.g., the MOD31A-
NDVI product with a 120 m resolution, were resampled
to a 30 m resolution. The conversion and resampling
operations introduce errors [37], which could affect the
results of assessing the ADS and evaluating the spatial
and temporal patterns of the ADS and its potential
impact on crops. Brief information on the preparation of
each factor is described separately in the following
sections.

(1) Vegetation conditions Two indicators representing
vegetation conditions for the ADS are agricultural drought
frequency and intensity. This study identified agricul-
tural drought frequency on the basis of VCI computed
via the normalized difference vegetation index (NDVI)
from MOD31A-NDVI products over the phenological

period (May—October) of in-season rice via Equation
(1) with the spatial modeler module in ERDAS Imagine
software. A VCI value of 100% indicates healthy
vegetation conditions. In contrast, if VCI values are
nearly 0%, poor vegetation conditions are identified [38].

(NDVI;-NDVIyir)

VCI=100*
(NDVIpax-NDVIyin)

(Eg. 1)

where NDVIi is the filtered NDVI image in the
phenological period, NDVImax is the multiyear maximum
NDVI in the phenological period, and NDVImin is the
multiyear minimum NDVI in the phenological period.

As a representative of vegetation conditions, a VCI
equal to or less than 35% in the cropping season was
identified as agricultural drought. All VCI images were
reclassified with a threshold value of < 0.35 as 1, whereas
the other values were reclassified as 0. After that, all
reclassified images (1 and 0) were added together and
divided by the number of images (210 images from 21
years) with the Raster Calculator function under ESRI
ArcMap software and reclassified into five rating scores
by the natural break (NB) method with the reclassify
function under ESRI ArcMap software.
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Agricultural drought intensity was calculated on the
basis of average historical VCI values (0-100%) during
the phenological period. All VCI images were reclassified
with a threshold value of < 0.35, while the other values
were reclassified as 0. After that, all reclassified images
were added and divided by the number of years (21
years) with the Raster Calculator function in ESRI ArcMap
software. The extracted value was reclassified into five
rating scores via the NB method with the reclassify
function in ESRI ArcMap software.

(2) Climate condition Two factors that characterize
climate conditions for ADS are the average SPI and SPEI,
as suggested by previous reports [33-34, 39]. The SPI,
which represents meteorological drought exposure, was
calculated from rainfall data (2002—2022) from 37 stations
in three SPI periods via SPI generator software. The
calculated SPI value in each period was averaged, and
each average value was interpolated via the inverse
distance weighted (IDW) method via ESRI ArcMap
software. They were later reclassified into five rating
scores via the NB method with the reclassify function in
ESRI ArcMap software.

Moreover, the SPEI, which is a specific characteristic
of the climate of the region [40], was calculated on the
basis of monthly rainfall and temperature data (2002—
2022). Herein, monthly rainfall data, which were retrieved
from 37 stations, and monthly temperature data, which
were retrieved from MODIS LST data (MOD11C3
product), were applied to calculate the SPEI of three
periods via SPEI software. After that, they were averaged
and interpolated via the IDW method via ESRI ArcMap
software and reclassified into five rating scores via the
NB method with the reclassify function via ESRI
ArcMap software.

(3) Physical condition The seven factors that cha-
racterize the physical conditions of the ADS are land
use, agricultural irrigation area, soil drainage, slope,
elevation, distance to a waterbody and drainage density.

(3.1) Land use The land use data from 2008, 2011,
2015, 2017, 2019, and 2023 from LDD were first re-
classified into five rating scores according to land use
type and then averaged for five rating scores with the
raster calculation function in ESRI ArcMap software.
The very high level of land use sensitivity to drought is
paddy fields because they require more water than
other crops do. In contrast, water bodies and mis-
cellaneous land are less affected by drought.

(3.2) Agricultural irrigation area In accordance with
the ADS, the agricultural irrigation area was manually
assigned rating scores for irrigated and rain-fed agri-
cultural areas [41], with values of 5 and 1, respectively,
via the reclassify function in ESRI ArcMap software.

(3.3) Distance to the waterbody Areas closer to
water bodies are less vulnerable to water shortages than
are areas far from water bodies [41]. Euclidean distance
was applied to calculate the distance to water bodies

via Euclidean distance via ESRI ArcMap software and
was manually reclassified into five rating scores via the
NB method via the reclassify function in ESRI ArcMap
software.

(3.4) Drainage density The drainage density values,
which were calculated via the total length of stream
channels in a drainage basin divided by the surface
area of the basin [42], were reclassified into five rating
scores via the NB method via the reclassify function in
ESRI ArcMap software.

(3.5) Soil drainage The soil drainage properties of the
soil series from the LDD [43] were manually reclassified
into five rating scores by the reclassify function in ESRI
ArcMap software.

(3.6) Landform Landform classification was classified
on the basis of the percentage of slope [44] and manually
reclassified into five rating scores via the reclassify
function in ESRI ArcMap software.

(3.7) Elevation The elevation classification was extracted
from the SRTM DEM according to the standard of LDD
[44], and the data were manually reclassified into five
rating scores via the reclassify function in ESRI ArcMap
software.

(4) Socioeconomic conditions Socioeconomic
factors included average rice harvested area (2011-
2023), farmer households in 2023 and population density
in 2023 at the subdistrict level.

(4.1) Average rice harvested area The average rice
harvested areas between 2011 and 2023 at the sub-
district level, as suggested by Shahid and Behrawan
[45], were calculated and reclassified into five ADS levels
via the NB method via the reclassify function in ESRI
ArcMap software.

(4.2) Number of farmer households The number of
farmer households is sensitive to agricultural drought [46].
The areas will be more vulnerable when the proportion of
farmer households increases. The number of farmer
households in 2023 at the subdistrict level was extracted
and reclassified into five rating scores via the NB method
via the reclassify function in ESRI ArcMap software.

(4.3) Population density Shahid and Behrawan
[45] applied population density to assign ADS. The
population density in 2023 at the subdistrict level was
extracted and reclassified into five rating scores via the
NB method via the reclassify function in ESRI ArcMap
software.

Step 2: Rating score assignment and normalization

Since all the factors of the ADS have different units,
the rating scores of each factor, which were manually
assigned, were normalized into the same standard
with a standardized rank method [47] via Eq. 2 and
reclassified into five rating scores via the NB method
via the reclassify function under ESRI ArcMap.
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v=a+(b-a)* [ﬁ]

(Eq.2)

where v is the new rating value that is between the
a and b values, V is the original rating value that is
between the A and B values, A is the minimum of the
original rating values, B is the maximum of the original
rating values, a is the new minimum standardized rating
value of 1, and b is the new maximum standardized
rating value of 3.

Step 3: Weight calculation with the analytic hierarchy
process

The weight of each factor on the ADS was determined
via the AHP, a decision-making method used by
individuals and organizations to rank alternatives they
are considering on the basis of pairwise comparisons
[48]. This method helps obtain a single assessment
value on the basis of different indicators or criteria [49].

To calculate the weights of individual factors under
the AHP, a multicriteria evaluation with a linear combi-
nation weighting system (LCWS) was conducted via
IDRISI Selva software. In practice, the WEIGHT module
was first used to generate a pairwise comparison matrix
with a standard numeric scale from 1-9, which lies between
“equal importance” and “extreme importance”, to define
the pairwise importance of each of the two indicators
via a research group discussion based on the charac-
teristics of the factors. After that, the MCE module was
used to calculate the principal eigenvector of the
pairwise comparison matrix to produce the best-fit set
of weights [50-51].

Step 4: Agricultural drought sensitivity index calcu-
lation and classification.

The normalized rating score and weight of each
factor were first applied to calculate the ADS index for
three periods (3 m7, 3 m10 and 6 m10) with the WLC
method [52] via Eq. 3 with the raster calculator in ESRI
ArcMap software.

A= X wyaj; (Eq. 3)

where A is the total importance of the alternative
when all the criteria are considered simultaneously, w;
denotes the relative weight of importance of criterion C;,
and aj is the performance value of alternative Ai when
it is evaluated in terms of criterion C;.

After that, the ADS indices of the three periods were
reclassified into five levels—very low, low, moderate,
high and very high—for ADS classification via the NB
method with the reclassify function in ESRI ArcMap
software.

Step 5: Assessment of the spatial and temporal
patterns of ADS

Spatial and temporal patterns of ADS classification
at the district and subdistrict levels in the three periods
were assessed via zonal analysis, with the majority
operation performed via the Zonal Statistics function in
ESRI ArcMap software.

Step 6: Potential impact assessment of the ADS on
economic crops

The potential impact of ADS in three periods on
economic crops (rice, cassava, sugarcane and corn)
was assessed via overlay analysis on the basis of ADS
classification and LDD land use data from 2023 via the
GIS analysis module of ERDAS Imagine software.

In addition, Pearson bivariate correlation analysis
was applied to characterize the linear relationship
between the ADS index in the three periods and crop
statistics (yield, production, and harvested areas) at the
subdistrict level. In practice, the 288 centroid points of
subdistrict boundaries were first generated via the
feature-to-point function in ESRI ArcMap software, and
they were subsequently used to extract the ADS index
value of each period via the Extract Multi Values to
Points function in ESRI ArcMap software. After that, the
average yield, production, and harvested areas of each
crop between 2011 and 2023 were appended to the
288 centroid points via Join Field under ESRI ArcMap
software. Finally, the attribute data of 288 centroid
points with the ADS index of three periods and crop
statistical values were exported in MS Excel format for
Pearson bivariate correlation analysis via SPSS statis-
tical software.

Results and discussion
1) Factor maps for agricultural drought sensitivity
assessment

The spatial distributions of the selected factors for
ADS assessment, which are based on a literature
review, are displayed in Figure 3. These maps indicate
the potential ADS of each factor, which varies from very
low to very high. The dynamic factors, which include
the average SPI and SPEI in three periods (3m7,
3m10, and 6m10), play significant roles in generating
three scenarios of ADS in three periods, covering the
planting and growing of economic crops. A summary of
the normalized rating score of each factor for ADS index
calculation and classification is reported in Table 1.
Details of the potential ADS according to rating scores
are reported in Supplementary material (SM) 1-18. The
normalized rating scores of each factor are further
applied to calculate the ADS index via the WLC
method. High normalized rating scores increase the
ADS index value.
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Figure 3 Spatial distribution of the factors for the ADS assessment.
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Table 1 Normalized rating score of the factor for ADS index calculation and classification

No. Factor Normalized rating score
Very low Low Moderate High Very high
1 Agricultural drought frequency (FO1) 1 15 2 25 3
2 Agricultural drought intensity (F02) 1 1.5 2 25 3
3 Average SPEI: 3m7, 3m10, 6m10 (F03) 1 1.5 2 25 3
4 Average SPI: 3m7, 3m10, 6m10 (F04) 1 1.5 2 25 3
5 Land use (F05) 1 15 2 25 3
6 Agricultural irrigation area (F06) 1 Not apply Not apply Not apply 3
7 Distance to waterbody (FO07) 1 15 2 25 3
8 Drainage density (F08) 1 1.5 2 25 3
9 Soil drainage (F09) 1 1.5 2 25 3
10  Landform (F10) 1 1.5 2 25 3
11 Elevation (F11) 1 1.5 2 25 3
12 Average rice yield (F12) 1 15 2 25 3
13 Farmer household (F13) 1 15 2 25 3
14  Population density(F14) 1 1.5 2 25 3

2) Analytic hierarchy process and weighting

A pairwise comparison matrix among the influential
factors on the ADS is reported in Table 2. The pairwise
comparison among the selected factors is assigned
here on the basis of the characteristics of each factor
via a research group discussion. In this study, agricultural
drought frequency and intensity, which were extracted
from the VCI for representing vegetation conditions, were
assigned as the most important factors compared with
other factors. Likewise, the average SPEI in three periods
(83m7, 3m10, and 6m10), which were extracted from the
SPEI on the basis of rainfall and temperature for repre-
senting climate conditions, was also assigned as the
most important factor compared with the other factors.
In contrast, population density, which was extracted from
population density in 2023 at the subdistrict level to
represent socioeconomic conditions, was assigned as the
least important factor compared with other factors since
the population density in the study area experienced
marginal changes. The relatively important pairwise
comparison matrix among factors on the ADS dictates
their weights under the AHP [48].

The results of the weight of each factor under the
AHP are reported in Table 3, with a consistency ratio of
0.08. The result of the AHP is acceptable since the
consistency ratio is less than 0.1, as suggested by [48].
As a result of the AHP, the most important factors are
agricultural drought frequency and agricultural drought
intensity, with a weight value of 0.1749. In contrast, the
least important factor is population density, with a weight
value of 0.0089. In addition, the weights of the average
SPEI and SPI in the three periods are equal, with values
of 0.1555 and 0.1510, respectively. The normalized rating
and weight scores were further applied to calculate the
ADS index for three periods via the WLC method.

3) Agricultural drought sensitivity index calculation
and classification

The spatial distributions of the ADS index and
classification of the three periods are displayed in
Figure 4. The areas of the ADS classification in the
three periods are summarized in Table 4.

Table 2 Pairwise comparison matrix for AHP among factors of the ADS in three periods (3m7, 3m10 and 6m10)

No. Factors The important value between pairwise factors
FO1 F02 F03 F04 FO5 F06 FO7 FO8 F09 F10 F11 F12 F13 F14
1 Agricultural drought frequency (F01) 1 1 1 13 13 15 15 15 15 17 17 19 19 1/9
2 Agricultural drought intensity (FO1) 1 1 1 /3 13 15 15 15 /5 17 17 19 19 1/9
3 Average SPEI: 3m7, 3m10, 6m10 (F03) 1 1 1 1 13 15 15 15 /5 17 17 19 19 1/9
4 Average SPI: 3m7, 3m10, 6m10 (F04) 13 1/3 1 1 15 15 1/5 1/5 /5 147 17 19 19 1/9
5 Land use (FO05) 13 13 13 1/5 1 13 13 13 13 15 /5 17 17 A7
6 Agricultural irrigation area (FO6) 15 15 1/5 1/5 1/3 1 1 13 13 13 15 7 17T 7
7 Distance to waterbody (F07) 15 15 1/5 1/5 1/3 1 1 13 13 13 13 15 17 A7
8 Drainage density (FO8) 15 15 15 1/5 1/3 1/3 1/3 1 1 13 13 15 17 17
9 Soil drainage (F09) 15 15 15 1/5 13 13 1/3 1 1 13 13 15 A7 A7
10 Landform (F11) vr 7 17 17 15 13 13 13 13 1 1 15 1/5 1/5
11 Elevation (F12) V7 17 17 17 15 15 13 13 13 1 1 13 13 1/3
12 Average rice harvested area (F12) 7 19 19 19 17 17 15 1/5 15 1/5 1/3 1 1 1/3
13 Number of farmer households (F13) 19 19 19 19 17 A7 17 yyr 17 15 1/3 1 1 13
14 Population density (F14) 19 19 19 19 17 A7 17 yyr 17 15 13 13 13 1

Remark: A number of 1 is equally important, 1/3 is moderately less important, 1/5 is strongly less important, 1/7 is very strongly less important,

and 1/9 is extremely less important.
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Figure 4 Spatial distributions of the ADS index and classification:
(@) 3m7, (b) 3m10, (c) 6m10, (d) 3m7, () 3m10, and (f) 6m10.
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Table 3 Weights of each factor on the ADS in three periods (3 m7, 3 m10 and 6 m10)

No. Factors Weight
1 Agricultural drought frequency (FO1) 0.1749
2 Agricultural drought intensity (F02) 0.1749
3 Average SPEI: 3m7, 3m10, and 6m10 (F03) 0.1555
4 Average SPI: 3m7, 3m10, and 6m10 (F04) 0.1510
5 Land use (F05) 0.0820
6 Agricultural irrigation area (FO06) 0.0570
7 Distance to waterbody (FO7) 0.0530
8 Drainage density (FO8) 0.0385
9 Soil drainage (F09) 0.0385
10 Landform (F10) 0.0239
11 Elevation (F11) 0.0194
12 Average rice yield (F12) 0.0115
13 Farmer household (F13) 0.0110
14 Population density (F14) 0.0089

Remark: Consistency ratio = 0.08

Table 4 Area of ADS classification in three periods (3 m7,

3 m10 and 6 m10)

Severity level

Area of ADS (%)

3m7: May-July 3m10: August-October 6m10: May-October
(Planting period) (Growing period) (Planting and growing period)
Very low 20.11 13.20 18.60
Low 23.83 27.66 25.38
Moderate 23.07 23.83 23.85
High 20.82 21.30 21.10
Very high 1217 14.01 11.07
Total 100.00 100.00 100.00

Table 5 Correlation matrix of the ADS indices and their correlation coefficient values for the three periods

Correlation coefficient value

ADS index in 3m7

ADS index in 3m10 ADS index in 6m10

ADS index in 3m7 (Planting period)
ADS index in 3m10 (Growing period)
ADS index in 6m10 (Planting and growing period)

1 0.8249 0.9277
1 0.8783
1

Table 6 Correlation matrix of ADS classification and their correlation coefficient values for the three periods

Correlation coefficient value

ADS classification ADS classification ADS classification

in 3m7 in 3m0 in 6m10
ADS classification in 3m7 (Planting period) 1 0.7784 0.8787
ADS classification in 3m10 (Growing period) 1 0.8311

ADS classification in 6m10 (Planting and growing period)

1

As a result, the spatial distribution of the ADS index
in three different periods displays different patterns
according to the normalized rating and weighting scores
of each factor for calculating the ADS index via the
WLC method [50]. However, the results of the spatial
correlation analysis among the ADS indices in the three
periods (Figures 4 (a to c) via the spatial modeler module
in ERDAS Imagine software reveal a strong positive
linear relationship [53], as reported in Table 5. The corre-
lation coefficient (R) values vary from 0.8249 to 0.9277.
A high correlation coefficient value suggests substantial
redundancy in the information content among the ADS
indices in the three periods [54].

Moreover, the spatial distribution of the ADS classi-
fication, with high and very high levels at 3m7 in the
planting period of crops, was in the northwest and
northeast. The spatial distribution of high and very high

ADS levels within 3m10 during the growing period of
crops is located in northern. The spatial distri-bution
of high and very high ADS in the 6m10 area covering
the planting and growing periods of crops occurred
in the northwest and northeast regions. The spatial
patterns of ADS classification in the three periods
(Figures 4 (d to f) display different patterns according
to the ADS index. The R values among the ADS clas-
sifications in the three periods via the spatial modeler
module in the ERDAS Imagine software show a strong
positive linear relationship [53], as reported in Table 6.
The R values vary from 0.7784 to 0.8787. These findings
indicate substantial redundancy in the information con-
tent among ADS classifications in the three periods [54].
Furthermore, the percentage of severity levels of
the ADS, including moderate, high and very high, at
3m7, 3m10 and 6m10, as shown in Table 4, covers
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56.06%, 59.14%, and 56.02% of the study area, respec-
tively. These results revealed moderate sensitivity to

agricultural drought during the three periods in the
study area.
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Figure 5 Spatial and temporal patterns of majority ADS severity at the district and subdistricts
in (@) 3m7, (b) 3m10, (c) 6m10, and (d) 3m7, (e) 3m10, and (f) 6m10, respectively.
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4) The severity of agricultural drought sensitivity in
districts and subdistricts

The severity levels of the ADS at the district and
subdistrict levels in the three periods are displayed in
Figure 5. The numbers of districts and subdistricts with
severity levels of ADSs in the three periods are reported
in Table 7.

By comparing the combined number of districts and
subdistricts at high and very high severity levels of ADS,
an ADS of 3m10, covering a growing period of crops,
shows the most sensitive drought period, with 16 districts
and 132 districts. ADS at a high severity level at the district
level that occurred in three periods persisted in 6 districts:
Khong, Pratay, Noen Dang, Muang Yang, Bua Lai and
Sida. Similarly, the ADS at a very high severity level
repeatedly occurred in three periods in 2 districts, i.e.,
Noen Thai and Noen Sung. Moreover, at the subdistrict
level, ADS at high and very high severity levels constantly
occurs in three periods in 38 and 34 subdistricts,

respectively. Thus, the persistence of high and very high
severity levels of ADS in these districts and subdistricts,
as shown in Figure 6, should be focused on monitoring
and preventing agricultural drought in the future by
relevant government agencies, including the DOAE and
the DDPM.

In addition, the primary land use types in 2023 over the
persistence of high and very high severity levels of ADS
in the three periods were explored via overlay analysis
with GIS Analysis module in ERDAS Imagine software, as
reported in Tables 8 to 9. As a result, the dominant land
use type associated with the persistence of high and very
high severity levels of ADS in the three periods is rice
fields, with a high percentage compared with other land
use types. These findings suggest that if agricultural
drought occurs in the study area, rice fields should be
intensively managed to minimize drought impacts by
farmers with support from government agencies,
including the DOAE, RID, DWR, and DGR.

Table 7 Number of districts and subdistricts with different severity levels of ADS in the three periods.

ADS severity

Number of districts and subdistricts

3m7 (May-July)

3m10 (August-October)

6m10 (May-October)

District Subdistrict District Subdistrict District Subdistrict
Very low 7 58 2 28 5 53
Low 5 57 9 79 7 66
Moderate 6 48 5 49 7 52
High 11 75 13 75 9 69
Very high 3 50 3 57 4 48
Total 32 288 32 288 32 288

Persistence of high and very high severity levels of ADS at district
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07 Buavai .
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Figure 6 Spatial distributions of the persistence of high- and very high-severity ADS
in three periods at the (a) district and (b) subdistrict levels.
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Table 8 Overlay analysis between the persistent severity level of ADS in three periods in districts and land use types in
2023 from LDD

Land use type

Percent of land use types in each persistent severity level in a specific district

Very low Low Moderate High Very high
Urban and built-up areas 0% 36.07% 4.20% 6.92% 9.41%
Rice 0% 24.60% 34.39% 70.56% 66.53%
Cassava 0% 16.82% 23.25% 4.84% 6.74%
Sugarcane 0% 2.27% 26.33% 3.93% 2.88%
Corn 0% 1.43% 0.05% 0.01% 3.51%
Other agricultural uses 0% 7.30% 4.37% 3.91% 2.36%
Forestland 0% 0.37% 1.10% 2.15% 0.45%
Waterbody 0% 2.55% 3.85% 3.84% 3.27%
Miscellaneous land 0% 8.60% 2.45% 3.84% 4.85%
Total 100.00% 100.00% 100.00% 100.00%

Table 9 Overlay analysis of the persistent severity level of ADS in three periods in subdistricts and land use types in 2023

from LDD

Land use type

Percent of land use types in each persistent severity level in specific subdistrict

Very low Low Moderate High Very high
Urban and built-up areas 8.25% 17.98% 4.63% 6.88% 8.33%
Rice 21.73% 15.36% 31.73% 63.99% 59.11%
Cassava 29.63% 19.73% 24.29% 8.77% 12.47%
Sugarcane 7.02% 11.53% 25.26% 4.72% 3.82%
Corn 0.21% 6.57% 1.77% 1.80% 4.83%
Other agricultural uses 9.76% 9.56% 5.85% 3.98% 2.14%
Forestland 18.31% 9.33% 1.83% 1.97% 0.91%
Waterbody 2.02% 2.94% 2.94% 3.87% 3.24%
Miscellaneous land 3.08% 6.98% 1.69% 4.02% 5.15%
Total 100.00% 100.00% 100.00% 100.00% 100.00%

Furthermore, significant factors in ADS classification
were explored to describe the relationships between
ADS classification in three periods and their factors via
spatial correlation analysis with the spatial modeler module
under ERDAS Imagine software, as summarized in SM
19-21.

For the ADS classification at 3m7 (the planting period),
the agricultural drought frequency, agricultural drought
intensity and average SPEI had strong positive linear
relationships with the ADS. In contrast, the average SPI
and land use had a moderate positive linear relationship
with the ADS.

Moreover, for the ADS classification at 3m10 (growing
period), the agricultural drought frequency and agri-
cultural drought intensity exhibited strong positive
linear relationships with the ADS. In contrast, land use
and average rice harvested areas had a moderate positive
linear relationship with the ADS, but elevation had a
moderate negative linear relationship with the ADS.

Moreover, for the ADS classification at 6m10 (the
planting and growing period), the agricultural drought
frequency and agricultural drought intensity had strong
positive linear relationships with the ADS. In contrast, the
average SPEI, average SPI and land use had moderate
positive linear relationships with the ADS.

These findings confirm the influence of various factors
on ADS, as suggested by researchers, particularly climate
[14—-16], topography [20-22], land use and land cover
[23], socioeconomic factors [31-32] and drought indices
[33-34].

5) Potential impact area of agricultural drought sensi-
tivity on economic crops

The potential impact areas of the ADS in the three
periods on the existing area of each economic crop
(rice, cassava, sugarcane and corn) in 2023 from the
LDD are reported in Table 10.

As a result, the potential impact areas of ADS with
combined moderate, high and very high severity levels on
rice in 2023 in the 3m7 (planting period), 3m10 (growing
period) and 6m10 (planting and growing periods)
periods cover areas of 82.72%, 85.76% and 80.38% of
the total area (6,092.73 km?2). The high percentage of
potential impact areas on rice implies that ADS has a
high impact on rice since rice requires high amounts of
water during the planting and growing periods. In practice,
paddy rice is usually grown in level basins that are flooded
with water throughout most of the growing season [55].
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Table 10 Potential impact area of ADS on economic crops in 2023

Economic Severity level of ADS Area in each period (%)
crop 3m?7: May-July 3m10: August-October 6m10: May-October
Planting period Growing period Planting and growing

Rice Very low 5.82 3.15 5.84
Low 11.47 11.08 13.78

Moderate 23.60 20.52 24.59

High 34.90 34.96 34.69

Very high 24.22 30.28 21.10
Total 100.00 100.00 100.00

Cassava Very low 28.28 9.79 19.59
Low 19.98 28.46 30.48

Moderate 22.20 33.01 22.03

High 18.50 19.82 18.50

Very high 11.04 8.90 9.40
Total 100.00 100.00 100.00

Sugarcane Very low 22.08 8.09 16.73
Low 28.23 33.50 33.33

Moderate 28.85 33.25 27.53

High 15.34 18.68 17.32

Very high 5.50 6.47 5.09
Total 100.00 100.00 100.00

Corn Very low 2.85 6.74 4.72
Low 24.19 32.15 20.97

Moderate 29.07 26.29 30.86

High 25.35 21.69 26.47

Very high 18.54 13.13 16.99
Total 100.00 100.00 100.00

In contrast, the potential impact areas of ADS with
combined moderate, high and very high severity levels
on cassava in 2023 at 3m7, 3m10 and 6m10 covered
areas of 51.74%, 61.73% and 49.93%, respectively, of the
total area (3,853.65 km?). The moderate percentage of
the potential impact area on cassava suggested that ADS
has a moderate impact on cassava since cassava requires
less water than does rice during the planting and growing
periods. Owing to its hot and dry conditions, a favorable
climate is suitable for cassava production [56].

Like cassava, the potential impact areas of ADS with
combined moderate, high and very high severity levels
on sugarcane in 2023 at 3m7, 3m10 and 6m10 covered
49.69%, 58.40% and 49.94% of its total area (2,048.75
km?2). The moderate percentage of the potential impact
area on sugarcane suggested that ADS has a moderate
impact on sugarcane. Sugarcane requires less water
than does rice during the planting and growing periods.
In practice, after the sugarcane from the original plant
is harvested, a portion of the stalk of the sugarcane is
left underground, resulting in the successful growth of
the sugarcane for approximately 2—3 years [57].

Like rice, the potential impact areas of ADS with
combined moderate, high and very high severity levels
on cornin 2023 at 3m7, 3m10 and 6m10 covered areas
of 72.96%, 61.11% and 74.32%, respectively, of its total
area (783.10 km?). The high percentage of potential
impact areas on corn indicates that ADS has a high
impact on corn since corn requires high amounts of
water during the planting and growing periods [58].

These findings suggest that if drought occurs in the
study area, rice and sugarcane areas should be the priority
areas with a field survey by DOAE and DDPM to
mitigate the impact of ADS.

6) Relationship between agricultural drought sensi-
tivity and economic crop statistics

Table 11 reports a Pearson bivariate correlation analysis
between the ADS index in 3 periods and the normalized
average yield (kg per 1,600 m?), average production (kg)
and average harvested areas (1,600 m?) between 2011
and 2023 for in-season rice, cassava, sugarcane and
corn at the subdistrict level, with 288 samples.

For the crop yield data, the ADS indices at 3m7 and
3m10 exhibited significant negative linear relationships
with the average cassava yield, with R values of -0.136
and -0.119, respectively. Similarly, the ADS indices at
3m7, 3m10 and 6m10 were significantly negatively
correlated with the average sugarcane yield, with R
values of -0.159, -0.119 and -0.140, respectively. In
contrast, the ADS index at 6 m10 shows a significant
positive linear relationship with the average corn vyield,
with an R value of 0.140, which is an unexpected result.
Nevertheless, the ADS indices at 3m7 and 3m10 show
an insignificant linear relationship with the average corn
yield, which is an unexpected result. Additionally, the
ADS index in the three periods shows an insignificant
negative linear relationship with the average in-season
rice yield, as expected.




App. Envi. Res. 47(1) (2025): 009

Table 11 Bivariate correlation analysis between the ADS and economic crop statistics in the 3 periods

Economic crop statistics

Correlation coefficient in each period

3m7 3m10 6m10
(Planting period) (Growing period) (Planting and growing period)

Average yield of in-season rice -0.073 -0.019 -0.032
Average yield of cassava -0.136" -0.119° -0.043
Average yield of sugarcane -0.159™ -0.119" -0.140"
Average yield of corn 0.100 -0.042 0.140*
Average production of in-season rice 0.220** 0.239* 0.148*
Average production of cassava -0.113 -0.109 -0.086
Average production of sugarcane -0.106 -0.066 -0.084
Average production of corn 0.138* -0.062 0.106
Average harvested area of in-season rice 0.271** 0.284** 0.180**
Average harvested area of cassava -0.264* -0.230** -0.227*
Average harvested area of sugarcane -0.1043 -0.0848 -0.1028
Average harvested area of corn 0.140* -0.0742 0.1044

Remark: ** The correlation is significant at the 0.01 level (2-tailed), and *. The correlation is significant at the 0.05 level (2-tailed).

For the crop production data, the ADS indices at 3m7,
3m10, and 6m10 were significantly positively linearly
related to the average in-season rice production, with
R values of 0.220, 0.239, and 0.148, respectively, which
was an unexpected result. Similarly, the ADS index at
3m7 showed a significant positive linear relationship
with average corn production, with an R value of 0.138,
which was an unexpected result. In addition, the ADS
index in the three periods shows an insignificant negative
linear relationship with average cassava and sugarcane
production, as expected.

For the crop harvested area data, the ADS index in
the three periods had a significant negative linear rela-
tionship with the average cassava harvested area, with
R values of -0.264, -0.230, and -0.227, as expected. In
contrast, the ADS index in the three periods had a signi-
ficant positive linear relationship with the average in-
season rice harvested area, with R values of 0.271, 0.284,
and 0.180, which was an unexpected result. Similarly,
the ADS index at 3m7 showed a significant positive linear
relationship with the average corn harvested area, with
an R value of 0.140, which was an unexpected result.
In addition, the ADS in the three periods shows an insigni-
ficant negative linear relationship with the average harvested
area of sugarcane, as expected.

As a result, the ADS index in different periods can
be adequately applied to describe the relationship with
the survey data of average yield, production, and harvested
areas of cassava and sugarcane as the expected results,
even though the ADS in three periods covering the
planting and growing periods of cassava and sugarcane
vary from place to place and from time to time.

In contrast, the ADS index in different periods cannot
be adequately applied to describe the relationship with
the average yield, production, and harvested areas of
corn as expected. Likewise, the ADS index in different
periods cannot be applied appropriately to describe the

relationship between average production and harvested
areas of in-season rice.

These findings are comparable to those of a previous
study by Tanguy et al. [12], who reported that crops suffer
some negative impacts from meteorological drought
(positive correlations), even during the wet season. The
relationships between drought indicators and crop yield
depend on land use, season, and region.

Conclusion

An assessment of the spatial and temporal patterns of
ADS and its impact on economic crops was successfully
conducted on the basis of the integration of multiple
factors on ADS with the AHP and WLC methods. As a
result, the spatial distributions of the ADSs at 3m7, m10
and 6 m10 displayed different patterns. Areas with severe
levels of ADS, including moderate, high and very high
levels, at 3m7, m10 and 6 m10 covered 56.06%, 59.14%,
and 56.02% of the study area, respectively. These results
suggested that the three periods in the study area
were moderately sensitive to agricultural drought. The
persistent high and very high severity levels of the ADS
classification in the three periods at the district and
subdistrict levels included 8 districts and 72 subdistricts.
Therefore, these districts and subdistricts should focus
on monitoring and preventing agricultural drought via
the DOAE and DDPM. Additionally, the persistence of
high and very high severity levels of ADS in those districts
and subdistricts primarily occurred in rice fields. Thus,
if agricultural drought occurs in the study area, rice fields
should be intensively managed to minimize drought
impacts by farmers with support from the DOAE, RID,
DWR, and DGR. Furthermore, the potential impact areas
of ADS in the three periods based on land use in 2023
revealed high impacts of ADS on rice and corn, with
values of more than 80% and 60%, respectively, but
moderate impacts of ADS on cassava and sugarcane,
with values of less than 50% and 50%, respectively.
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Accordingly, if drought occurs in the study area, rice
and sugarcane areas should be the priority areas with
a field survey by DOAE and DDPM to mitigate drought
impact.

In conclusion, the research workflow can be used
as a guideline for managing crops via the DOAE and
monitoring agricultural drought via the DDPM. The
government should establish early warning systems for
droughts jointly by government agencies and universities
to prevent and mitigate the impact of drought. Furthermore,
advanced machine learning algorithms such as ANNs
and RFs should be examined to predict agricultural drought
impacts.
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