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Abstract ARTICLE HISTORY
Thailand has been facing air pollution, e.g., PM2s, and impacts from climate Received: 27 Oct. 2024
phenomena, e.g., the El Nifo—Southern Oscillation (ENSO). Both air pollution Accepted: 26 Feb. 2025
and climate interact with each other. Changes in the planetary boundary layer Published: 26 Mar. 2025
height (PBLH) can affect PMz.s, represented by the aerosol optical depth (AOD),
and are influenced by ENSO related to changes in the PBLH. The relationships
among the PBLH, ENSO, and AOD were investigated via an empirical orthogonal
function (EOF), which decomposes the spatiotemporal data of the PBLH into PBLH;
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spatial patterns and corresponding time series. Correlation analysis was used to ENSO;
determine the relationships between the PBL variability time series and the AOD;
ENSO and AOD variations in terms of interannual variability. The analysis focuses Climate;

on December—February from 1991-2020 to identify dominant PBLH variability Thailand
modes and their statistical relationships with ENSO and AOD. EOF analysis
reveals three interesting principal components (DecPC2, JanPC3, and FebPC2)
that account for 11.3-23.5% of the total PBLH variance and that exhibit spatial
correlation patterns resembling ENSO-induced patterns. These modes show
patterns that are consistent with the ENSO-driven influence on PBLH variations.
However, the spatial correlations between the PBLH and AOD vary across
Thailand. This finding indicates that AOD changes are not driven solely by
ENSO. Some regions show strong PBLH-AOD correlations, whereas others
exhibit weaker relationships. For example, the PBLH increases (decreases) over
the northeastern region (west side) of Thailand, which is correlated with a reduction
(increase) in AOD in February during the positive phase year. These findings
highlight that the PBLH and ENSO alone do not fully determine the AOD changes
in Thailand. Factors, such as fire emissions, monsoonal influences, and regional
transport processes, play significant roles. Further studies are needed for a better
understanding of the mechanism affecting air pollution to address the impacts of
both air pollution and climate.

Introduction atmosphere, the planetary boundary layer (PBL), plays

Climate change and air pollution are important an important role in climate [4], weather [5], and air quality
issues for global, national, and local communities. Their [6]. Southeast Asia, including Thailand, faces issues
interactions in the atmosphere are interrelated and related to climate change and air quality caused by
influence each other [1-3]. The lowest part of the meteorological and emission influences [7]. High
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concentrations of particulate matter less than 2.5
microns (PM2.) are crucial air pollutants in Thailand [8].
The concentration is a proportion of the mass to the air
volume, which is related to the area and height. Many
studies in Thailand have focused on emissions, whereas
fewer have assessed climate change and climate
variability [9-15]. Changes in height affect air volume,
which influences the concentration of PM2s in the
atmosphere. Therefore, observing the variability in
planetary boundary layer height (PBLH) is important for
understanding its influence on suspended particles
in the atmosphere and its connection to climatic
phenomena.

The PBLH is directly influenced by surface conditions
and extends from the ground up to a few kilometers
high. The height varies with time, weather conditions,
and geographic location. Turbulent mixing within this
layer plays a crucial role in the redistribution of heat,
moisture, and pollutants [16]. A higher PBL enhances
vertical mixing, which results in the dilution of surface-
level pollutants, e.g., lowering PM2s levels. A deeper
layer allows for better horizontal dispersion. A shallower
PBLH can trap PM2s, resulting in elevated concentrations.
PM2s and the aerosol optical depth (AOD) are closely
related. The AOD quantifies the extent to which aerosols
prevent sunlight from passing through the atmosphere
via remote sensing techniques. PMzs refers to particulate
matter less than 2.5 micrometers in size suspended
in ambient air that can be measured by quantifying the
mass of particles per unit of air volume. The AOD serves
as an input for estimating PM2s concentrations in the
atmosphere. Higher concentrations of PM2.5 typically
correlate with increased AOD, which implies that more
particles in the air contribute to greater light scattering
and absorption [17-19]. Therefore, PBLH is essential
for understanding air quality [20].

The height of the planetary boundary layer is
intricately connected to climate change and rising
temperatures. The dynamics of the PBL are modified,
resulting in changes in the PBLH due to variations in
surface heating and atmospheric stability. Warmer
conditions may increase the frequency and intensity of
temperature inversions, which can lead to stagnant air
conditions [4, 21]. Studies in eastern China have shown
that changing sea surface temperature (SST) during El
Nifio events can further reduce the PBLH by varying
atmospheric circulation patterns and enhancing the
occurrence of inversion temperatures. Conversely, La
Nifia conditions typically result in higher PBLHs due to
increased mixing. The interplay between the SST and
PBLH can influence precipitation patterns and contribute
to extreme weather events such as haze [22-23].
Nevertheless, understanding the associations among

atmospheric pollution, atmospheric variability, and oceanic
phenomena, e.g., ENSO, is necessary. Thus, the PBLH
may serve as a critical factor linking atmospheric
processes with climatic phenomena. As the climate
continues to warm, the relationships among the PBLH,
AOD, and ENSO become crucial for improving our
understanding of climate change impacts.

Thailand is significantly affected by PM2s [24] and
the ENSO phenomenon [25-26]. The impacts of both
may be related to the variability in the PBLH. This study
aims to address the gaps in knowledge regarding these
interactions in the context of Thailand. By investigating
the relationships between the PBLH, AOD, and ENSO,
we hope to enhance our understanding of how these
factors influence air quality and climate. This research
seeks to provide scientific information that can inform
policymakers and the public in understanding climatic
factors, such as ENSO, that affect air quality management.

Materials and methods
1) Study area

Thailand is located in the Indochina peninsula, and
the neighboring countries are Myanmar, Laos, Cambodia,
and Malaysia. An area from 5°N to 21°N and 97°E to
106°E (Figure 1) was selected as the domain representing
Thailand for this study. In addition to the emission sources
and transboundary pollution, we design a study domain
in which our primary aim is to explore the PBLH
variability across Thailand. The domain of this study
was intentionally limited to Thailand, with the grid
coordinates chosen to capture the variability of PBLH
within the country. Using a larger domain, the EOF
analysis would likely introduce signals from outside the
country. The months of December, January, and February
were selected to represent the winter season. During
this time, stable atmospheric conditions, including tempe-
rature inversions, commonly dominate the region and
contribute to elevated air pollution levels. This stability
is related to a shallower planetary boundary layer and
more confined vertical mixing, which results in more
pollutant accumulation near the surface than in other
seasons [27-28]. Wind circulation over the Indochina
Peninsula during the winter season is influenced by
the East Asian Winter Monsoon. The EAWM splits into
two branches, one turning northward and the other
penetrating the Indochina Peninsula. At low levels,
northeast winds are dominant and blow through Vietnam,
Laos, and Cambodia through Thailand [29]. Pollutants in
the atmosphere are carried by winds and transported
across borders from neighboring countries to the
country [7]. Moreover, the variability of wind during the
winter over the Indochina Peninsula is related to
changes in ENSO phases [29].
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Figure 1 A study domain (red rectangle) for PBLH variability analysis over Thailand.

2) Data and methods

The data used in this study are monthly ERAS
reanalysis data and VIIRS-AOD data with 0.25° * 0.25°
grid resolutions provided by the Copernicus Climate
Change Service and the National Oceanic and Atmos-
pheric Administration (NOAA), respectively. The ERA5
dataset combines observational and simulated data to
provide a consistent reconstruction of past atmospheric
conditions with verification of the observed data [30-31].
This makes it highly effective for analyzing historical
variability. The time series of ENSO (Nifio 3.4 and SOI)
indices used to monitor El Nifio and La Nifia events in
the Pacific Ocean and the DMI index used for the Indian
Ocean Dipole phenomenon are also provided by
NOAA. We obtained the ERA5 data from https://cds.
climate.copernicus.eu/datasets. The ENSO indices
and DMI indices are available at https://www.ncei.noaa.
gov/access/monitoring/enso/sst and https://psl.noaa.gov/
gcos_wgsp/Timeseries/DMI/, respectively. The VIIRS
aerosol optical depth data are available at https://
noaa-jpss.s3.amazonaws.com/index.htmi#SNPP/VIIRS/
SNPP_VIIRS_Aerosol_Optical_Depth_Gridded Repro
cessed/. The analysis period of 1991-2020 was chosen
according to the reference period suggested by the World
Meteorological Organization (WMO). Notably, the AOD
data have a shorter time span (2012-2020) than the
other datasets do, which is a limitation of the available
AQOD data and our study.

The monthly PBLHs of ERA5 were separated into
three space-time datasets for December, January, and
February, whose anomalies were calculated before
analysis via the empirical orthogonal function (EOF) to
distinguish modes of variability for each month. Monthly
data from several datasets, including ERA5, have been

utilized for climate analysis and EOF analysis to illustrate
variability [32—-35]. The EOF technique has been used
to decompose a continuous space-time dataset, e.g.,
climate data, into special modes and associated time
series. The space-time data matrix X(t,s), where t denotes
time and where s denotes spatial location. Decomposition
can be performed via the following concept:
X(t,s) = Xy e (O ar(s) (Ea. 1)
where ¢k () and ak (s) are an expansion function of
time and a set of functions of space. Before decompo-
sition, the anomaly data matrix is prepared by calculating
the difference between the data and climatology (mean).
Next, the covariance matrix of the data, which contains
p locations, is determined as follows:
S=—-X"x (Eq. 2)
To obtain spatial patterns and associated time series,
we compute
Sug =AU, k=1,..,p. (Eq. 3)
where A is the eigenvalue of the k% mode and
where ux is the k" eigenvector or the ki EOF mode.
The principal component (PC) time series can be revealed
by projecting the original data on the eigenvectors as
follows:
ak = Xuk (Eq 4)
The k" PC time series given by projection is associated
with the k" EOF mode exhibiting a spatial pattern and
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can account for the variance of the k mode by using
Ak as the eigenvalue [26, 36-37].

To investigate the relationships of variability represented
by the PCs to ENSO and AOD, we determine the
correlation between the PCs and the corresponding
indices to present which mode is related to ENSO and
AOD changes. Nin03.4 is based on SST variations over
the area of 5°N-5°S, 120°-170°W in the Pacific Ocean
[38]. The index showed a negative relationship with the
SOI [39]. Both indices have been used to characterize
El Nino and La Nina events in the Pacific Ocean [38],
whereas the dipole mode index (DMI), which represents
the Indian Ocean Dipole (IOD) phenomenon, has been
used to present the interannual climate variability in
terms of the sea surface temperature (SST) in the Indian
Ocean [40]. The ENSO, 10D, and AOD data were used
to observe their correlations with the variabilities in the
PBLH (PCs).

The correlation coefficients of 0, <0.2,0.2-0.4, 0.4-0.7,
0.7-0.9, 0.9-1.0, and 1 imply no relationship, almost
negligible relationship, small relationship, substantial rela-
tionship, marked relationship, very dependable relationship,
and perfect relationship, respectively, and refer to both
positive and negative directions [41]. The correlations
of PCs with ENSO and IOD, which are strongly related
or greater than that relationship, are then used to
interpret the correlation map of PC with AOD. In brief,
the analysis can be summarized as follows: 1) Conduct
EOF analysis to obtain spatial patterns (EOF modes) and
the PC time series (representing variability). 2) Determine
the correlation between the PC time series and the
Nino3.4 and DMI indices to identify possible relation-
ships. 3) ldentify the PCs that correlate significantly with
the indices and present their spatial patterns along with
their corresponding PCs. 4) Compute the correlation
coefficients between the selected PCs and the SST for
each ocean grid cell, leading to a correlation map
showing the relationship between the PBLH variability
(PCs) and the SST. 5) Perform a similar analysis to
step 4 but use AOD data instead of SST data, which
aims to reveal the relationship between PBLH variability
(PCs) and AOD. This will present the association of
PBLH variability related to SST phenomena and AOD.
The challenge of this study is the use of EOF analysis
in view of climate and air quality to identify interesting
spatial and temporal modes of PBLH. However, these
limitations may not fully capture localized air quality or
specific emission sources.

Results and discussion
1) PBL variability and correlations with ENSO

For December, the first, second, and third modes
explain 37.7%, 23.5%, and 7.1% of the total variance,
respectively. The contributions of the first, second, and

third modes for January are 29.8%, 19.0%, and 11.3%,
respectively, and the eigenvalues for February are 30%,
17.4%, and 13.7% for the first, second, and third modes,
respectively (as shown in the supplementary material).
Both the PCs and climatic indices (SOI, Nino3.4, and
DMI) were calculated to determine their correlation
coefficients, as shown in Figure 2. The PC2 variation
during the December (DecPC2) period was significantly
correlated with the SOI, Nino3.4, and DMI, with values
of 0.5, —0.59, and -0.46, respectively. However, a
statistically significant relationship between DecPC1
and DecPC3 and the indices did not appear. In addition
to December, significant correlations of JanPC3 with
the SOI, Nino3.4, and DMI for January were observed:
0.55, —0.54, and no significant correlations, respectively.
Finally, we observed significant correlations between
the FebPC1 and ENSO indices for the February period,
with values of —0.5 and 0.47, and the correlations between
the FebPC2 and ENSO indices were 0.36 and —0.48,
respectively. The relationships between the three FebPCs
and the DMI were not significantly correlated. There is
no correlation between FebPC1 and FebPC2 because
of the orthogonal property given by EOF analysis. These
significant relationships are therefore interesting for
exploring and exhibiting spatial correlations with SST
only in the Pacific Ocean and with AOD over Thailand.

Before elaborating on the relationships between the
variabilities in SST and AOD, we explain the charac-
teristics of the significant modes. In December, EOF2
(DecEOF2) has a negative loading over southern
Thailand, a light negative loading over northern Thailand,
and a positive loading over northeastern Thailand. This
implies a rise in DecPC2, resulting in a decrease (increase)
in the PBLH in southern (northeastern) Thailand, and
vice versa for a decrease in the DecPC2 amplitude.
However, in the northern and central parts of Thailand,
the EOF loading is quite neutral, which means that the
change in the PBLH is small across these areas. The
EOF3 of January (JanEOF3) is quite similar to that of
DecEOF2, but the positive loading area expands from
northeastern to some central and northern parts of
Thailand. In February, EOF1 (FEbEOF1) has a mostly
positive loading over Thailand, except for the area above
18°N, which has a light negative loading. The 2" mode
(FEbEOF2) is comparable to the patterns of DecEOF2
and JanEOF3. The negative loading over southern
Thailand in FebEOF2 is greater than that in JanEOF3
and expands to cover western and northern Thailand
(Figure 3 (d)). The resemblance between these three
modes (DecEOF2, JanEOF3, and FebEOF2) could
result from the same factor, whereas FebEOF1 would
differ from the others.
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Figure 3 Interesting EOFs of PBL variability and corresponding PCs.
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Figure 4 Correlation maps of PCs to the SST.

Four PCs were used to determine the spatial correlation
pattern of sea surface temperature anomalies. The
correlation maps of PCs with respect to SST, with the
exception of PC1 in February, reveal that the spatial
patterns are quite similar. They (Figures 4 (a), (b), and
(d) show a substantial negative relationship over the
Central East Pacific Ocean and a cold tongue-like
appearance, whereas PC1 in February (FebPC1) shows

the opposite pattern. Figure 4c shows a positive sub-
stantial correlation, which is comparable to the warm
phase in the central Pacific Ocean. These findings are
consistent with the substantial relationships between
the PCs and ENSO indices mentioned previously.
This result revealed the teleconnection of PBLH
variability with ENSO. In addition to the influence of
ENSO on precipitation, temperature, and wind circulation
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in Thailand [26, 29], it can also influence the change in
PBLH, as reported by another study [42].

2) Correlation with AOD

The relationship between PBLH variability and AOD
was observed to present a magnitude response that
can imply a change in PMzs related to PBLH variability.
In December, Figure 5 (a) reveals substantial negative
relationships over the North, West, and Central parts of
Thailand, whereas a small negative relationship occurs
in the Northeast Region. A negative correlation means
that increasing the PC amplitude is related to reducing
the AOD. However, in this southern region, the corre-
lations between DecPC2 and AOD have a positive
relationship with a substantial relationship. The DecPC2-
AOD relationship is opposite to that in other areas.
Therefore, the deepening and shallowing of the PBLH
during the positive phase year over the northeastern
part and southern part was related to a small reduction
and increase in the AOD, respectively. The next pattern
in January, the northeastern region, showed substantial
negative relationships with the JanPC3 and AOD
(Figure 5 (b)), that is, when JanPC3 increases, it cooccurs
with the reduction in AOD. As mentioned previously,
JanEOF3 (Figure 3 (b)) shows positive loading over the
northeastern region during positive phase (positive
JanPC3) years, which implies that the height increases
over this region during this period, and vice versa for
negative phase years. The area on the west side (< 100°E)
shows a positive correlation (Figure 3 (b)), which is the
opposite characteristic of the northeastern region. The
increase in AOD at the western site is related to the
increase in JanPC3, which corresponds to a negligible
change in the PBLH in the western part of Thailand
and a substantial PBLH reduction in the southern
part of Thailand. During February, the correlation of
FebPC1 with AOD shows almost no relationship and
an almost negligible relationship (Figure 5 (c)), and
Figure 5 (d) shows a similar pattern in January. Therefore,
the relationship and behavior of the PBLH during
February affect the AOD, similar to the interrelationship
between the PBLH and AOD in January. These results
agree with those of a previous study that revealed that
the PBLH in winter is shallower than that in other seasons
and is positively related to surface temperature [43].
Importantly, the relationship is not always statistically
significant and does not consistently follow a negative
relationship. The AOD and PMzs concentrations are
affected by multiple factors beyond the PBLH, such as
emissions, wind, synoptic-scale weather, and atmospheric

stability. In cases where strong winds prevail and
aerosol concentrations are low, the PBLH may not be
the primary driver of pollution variability, resulting in
weak or negligible correlations [44]. A reduction in the
PBLH cooccurs with a decrease in the wind speed,
resulting in a decrease in the atmospheric ventilation
capacity [43]. Therefore, both a reduction in the PBLH
and a decrease in the wind speed result in a decrease
in the ventilation coefficient, which enhances pollution
trapping within the PBL. Moreover, wind circulation over
Thailand is different and depends on the geographical
features of each region. The magnitude of the wind speed
over Thailand is also related to the strength of the winter
monsoon, which is related to the ENSO [29]. Pollution
trapping in the atmosphere over Thailand during the
winter season is related to variabilities in the PBLH
and wind speed, resulting in changes in ventilation
capacity, which are influenced by large-scale pheno-
mena, such as the winter monsoon and ENSO.

These results indicate that there are interesting
variabilities related to variations in ENSO and AOD during
December, January, and February, which are DecPC2,
JanPC3, and FebPC2, respectively. They account for
23.5%, 11.3%, and 17.4% of the variance for December,
January, and February, respectively. The corresponding
EOF reveals the spatial pattern of the loading of PBLH
changes for Thailand in various areas. The correlations
between the three PCs and the Nino3.4 index show
substantial relationships, and the correlation maps of
PCs to SST are similar to those of the ENSO pattern.
For example, in February, the PBLH increases (decreases)
over the northeastern region (west side) of Thailand
during positive phase years, which cooccurs with SST
cooling in the central Pacific Ocean (La Nina like). On
the other hand, this characteristic of interrelationships
exhibited opposite patterns in the negative phase
years, which would correlate with El Nino. The variation
in PC during February also correlates with spatial AOD
changes in different patterns. PBLH increases (decreases)
over the northeastern region (west side) of Thailand,
which is correlated with a reduction (increase) in AOD
during positive phase years. Notably, the variation
accounts for approximately 20% of the variance. Thus,
PBLH variability, ENSO, and AOD variation are inter-
related, which may result in PM2s changes caused by
the influence of PBLH variability of approximately 20%.
However, more analyses and studies are needed to
understand and explain the complex mechanism by
which climatic factors affect changes in PMa2s in
Thailand.
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Figure 5 Correlation maps of PCs to AOD.
Conclusions e.g., PMzs. This study investigates the linkages among
Understanding the relationships among atmospheric PBLH variability, AOD, and ENSO, highlighting how PBLH
processes, climate variability, and air pollution is crucial variability is related to ENSO and AOD, which represent

for addressing Thailand’s severe air pollution problems, PMzs. Our EOF analysis identifies three significant PBLH
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variability modes, consisting of the EOF spatial pattern
and PC time series, during winter (December, January,
and February). We found interesting temporal variation
across a variety of PC time series. DecPC2, JanPC3,
and FebPC2 explained 23.5%, 11.3%, and 17.4% of the
variance, respectively. These modes exhibit significant
correlations with ENSO and AOD. These findings
indicate that large-scale climate phenomena are
associated with changes in the PBLH and affect
aerosol loading over Thailand. However, other PBLH
modes show no significant correlation with ENSO. Our
findings imply that only 11.3%-23.5% of PBLH varia-
bility can be directly attributed to ENSO-related factors
and influences on PM2s, as represented by the AOD.
The results reveal statistically significant relationships
between the PBLH and the ENSO and AOD. However,
not all PBLH modes are ENSO-driven and suggest that
the PBLH and ENSO are not the sole drivers of PM2s
variability over Thailand.

The spatial patterns of the PBLH-AQOD relationships
vary across different regions of Thailand in association
with ENSO. Therefore, multiple factors regulate air
pollution beyond ENSO phenomena. While some areas
exhibit stronger correlations between PBLH and AOD,
others show weaker associations, possibly due to weather
conditions, emissions from sources, and atmospheric
transport mechanisms. This study has limitations that
should be addressed in future research. First, our
analysis does not explicitly account for the role of
biomass burning and fire hotspots, which are perhaps
related to the leading EOF mode during the dry season.
The inclusion of fire hotspot data would help distinguish
between ENSO-induced variability and direct emissions
from anthropogenic or natural sources. Second, the study
does not assess the impact of large-scale atmospheric
circulation patterns, such as the Asian winter monsoon.
This may modulate the PBLH and pollutant dispersion
at a broader scale. Investigating these mechanisms
would enhance our understanding of how regional
climate variability influences air quality.

In summary, our study demonstrates that ENSO has
a measurable impact on PBLH variability over Thailand
and influences AOD, which represents PM2.5 concen-
trations. However, the influence of ENSO is not absolute,
as only a portion of the total variance in PBLH variability
is related to AOD. The findings emphasize the need for
continued research incorporating additional climate
variability, atmospheric processes, emission source
activity, and inter- and intra-annual variation analyses
to better understand and mitigate air pollution in
Thailand.
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