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Abstract 
Thailand has been facing air pollution, e.g., PM2.5, and impacts from climate 

phenomena, e.g., the El Niño‒Southern Oscillation (ENSO). Both air pollution 
and climate interact with each other. Changes in the planetary boundary layer 
height (PBLH) can affect PM2.5, represented by the aerosol optical depth (AOD), 
and are influenced by ENSO related to changes in the PBLH. The relationships 
among the PBLH, ENSO, and AOD were investigated via an empirical orthogonal 
function (EOF), which decomposes the spatiotemporal data of the PBLH into 
spatial patterns and corresponding time series. Correlation analysis was used to 
determine the relationships between the PBL variability time series and the 
ENSO and AOD variations in terms of interannual variability. The analysis focuses 
on December–February from 1991–2020 to identify dominant PBLH variability 
modes and their statistical relationships with ENSO and AOD. EOF analysis 
reveals three interesting principal components (DecPC2, JanPC3, and FebPC2) 
that account for 11.3–23.5% of the total PBLH variance and that exhibit spatial 
correlation patterns resembling ENSO-induced patterns. These modes show 
patterns that are consistent with the ENSO-driven influence on PBLH variations. 
However, the spatial correlations between the PBLH and AOD vary across 
Thailand. This finding indicates that AOD changes are not driven solely by 
ENSO. Some regions show strong PBLH-AOD correlations, whereas others 
exhibit weaker relationships. For example, the PBLH increases (decreases) over 
the northeastern region (west side) of Thailand, which is correlated with a reduction 
(increase) in AOD in February during the positive phase year. These findings 
highlight that the PBLH and ENSO alone do not fully determine the AOD changes 
in Thailand. Factors, such as fire emissions, monsoonal influences, and regional 
transport processes, play significant roles. Further studies are needed for a better 
understanding of the mechanism affecting air pollution to address the impacts of 
both air pollution and climate. 
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Introduction 
 Climate change and air pollution are important 
issues for global, national, and local communities. Their 
interactions in the atmosphere are interrelated and 
influence each other [1–3]. The lowest part of the 

atmosphere, the planetary boundary layer (PBL), plays 
an important role in climate [4], weather [5], and air quality 
[6]. Southeast Asia, including Thailand, faces issues 
related to climate change and air quality caused by 
meteorological and emission influences [7]. High 
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concentrations of particulate matter less than 2.5 
microns (PM2.5) are crucial air pollutants in Thailand [8]. 
The concentration is a proportion of the mass to the air 
volume, which is related to the area and height. Many 
studies in Thailand have focused on emissions, whereas 
fewer have assessed climate change and climate 
variability [9–15]. Changes in height affect air volume, 
which influences the concentration of PM2.5 in the 
atmosphere. Therefore, observing the variability in 
planetary boundary layer height (PBLH) is important for 
understanding its influence on suspended particles  
in the atmosphere and its connection to climatic 
phenomena. 
 The PBLH is directly influenced by surface conditions 
and extends from the ground up to a few kilometers 
high. The height varies with time, weather conditions, 
and geographic location. Turbulent mixing within this 
layer plays a crucial role in the redistribution of heat, 
moisture, and pollutants [16]. A higher PBL enhances 
vertical mixing, which results in the dilution of surface-
level pollutants, e.g., lowering PM2.5 levels. A deeper 
layer allows for better horizontal dispersion. A shallower 
PBLH can trap PM2.5, resulting in elevated concentrations. 
PM2.5 and the aerosol optical depth (AOD) are closely 
related. The AOD quantifies the extent to which aerosols 
prevent sunlight from passing through the atmosphere 
via remote sensing techniques. PM2.5 refers to particulate 
matter less than 2.5 micrometers in size suspended 
in ambient air that can be measured by quantifying the 
mass of particles per unit of air volume. The AOD serves 
as an input for estimating PM2.5 concentrations in the 
atmosphere. Higher concentrations of PM2.5 typically 
correlate with increased AOD, which implies that more 
particles in the air contribute to greater light scattering 
and absorption [17–19]. Therefore, PBLH is essential 
for understanding air quality [20]. 
 The height of the planetary boundary layer is 
intricately connected to climate change and rising 
temperatures. The dynamics of the PBL are modified, 
resulting in changes in the PBLH due to variations in 
surface heating and atmospheric stability. Warmer 
conditions may increase the frequency and intensity of 
temperature inversions, which can lead to stagnant air 
conditions [4, 21]. Studies in eastern China have shown 
that changing sea surface temperature (SST) during El 
Niño events can further reduce the PBLH by varying 
atmospheric circulation patterns and enhancing the 
occurrence of inversion temperatures. Conversely, La 
Niña conditions typically result in higher PBLHs due to 
increased mixing. The interplay between the SST and 
PBLH can influence precipitation patterns and contribute 
to extreme weather events such as haze [22–23]. 
Nevertheless, understanding the associations among 

atmospheric pollution, atmospheric variability, and oceanic 
phenomena, e.g., ENSO, is necessary. Thus, the PBLH 
may serve as a critical factor linking atmospheric 
processes with climatic phenomena. As the climate 
continues to warm, the relationships among the PBLH, 
AOD, and ENSO become crucial for improving our 
understanding of climate change impacts. 
 Thailand is significantly affected by PM2.5 [24] and 
the ENSO phenomenon [25–26]. The impacts of both 
may be related to the variability in the PBLH. This study 
aims to address the gaps in knowledge regarding these 
interactions in the context of Thailand. By investigating 
the relationships between the PBLH, AOD, and ENSO, 
we hope to enhance our understanding of how these 
factors influence air quality and climate. This research 
seeks to provide scientific information that can inform 
policymakers and the public in understanding climatic 
factors, such as ENSO, that affect air quality management. 
 
Materials and methods 
1) Study area 
 Thailand is located in the Indochina peninsula, and 
the neighboring countries are Myanmar, Laos, Cambodia, 
and Malaysia. An area from 5°N to 21°N and 97°E to 
106°E (Figure 1) was selected as the domain representing 
Thailand for this study. In addition to the emission sources 
and transboundary pollution, we design a study domain 
in which our primary aim is to explore the PBLH 
variability across Thailand. The domain of this study 
was intentionally limited to Thailand, with the grid 
coordinates chosen to capture the variability of PBLH 
within the country. Using a larger domain, the EOF 
analysis would likely introduce signals from outside the 
country. The months of December, January, and February 
were selected to represent the winter season. During 
this time, stable atmospheric conditions, including tempe-
rature inversions, commonly dominate the region and 
contribute to elevated air pollution levels. This stability 
is related to a shallower planetary boundary layer and 
more confined vertical mixing, which results in more 
pollutant accumulation near the surface than in other 
seasons [27–28]. Wind circulation over the Indochina 
Peninsula during the winter season is influenced by 
the East Asian Winter Monsoon. The EAWM splits into 
two branches, one turning northward and the other 
penetrating the Indochina Peninsula. At low levels, 
northeast winds are dominant and blow through Vietnam, 
Laos, and Cambodia through Thailand [29]. Pollutants in 
the atmosphere are carried by winds and transported 
across borders from neighboring countries to the 
country [7]. Moreover, the variability of wind during the 
winter over the Indochina Peninsula is related to 
changes in ENSO phases [29].
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Figure 1 A study domain (red rectangle) for PBLH variability analysis over Thailand. 

 
2) Data and methods 
 The data used in this study are monthly ERA5 
reanalysis data and VIIRS-AOD data with 0.25° ˟ 0.25° 
grid resolutions provided by the Copernicus Climate 
Change Service and the National Oceanic and Atmos-
pheric Administration (NOAA), respectively. The ERA5 
dataset combines observational and simulated data to 
provide a consistent reconstruction of past atmospheric 
conditions with verification of the observed data [30–31]. 
This makes it highly effective for analyzing historical 
variability. The time series of ENSO (Niño 3.4 and SOI) 
indices used to monitor El Niño and La Niña events in 
the Pacific Ocean and the DMI index used for the Indian 
Ocean Dipole phenomenon are also provided by 
NOAA. We obtained the ERA5 data from https://cds. 
climate.copernicus.eu/datasets. The ENSO indices 
and DMI indices are available at https://www.ncei.noaa. 
gov/access/monitoring/enso/sst and https://psl.noaa.gov/ 
gcos_wgsp/Timeseries/DMI/, respectively. The VIIRS 
aerosol optical depth data are available at https:// 
noaa-jpss.s3.amazonaws.com/index.html#SNPP/VIIRS/ 
SNPP_VIIRS_Aerosol_Optical_Depth_Gridded_Repro
cessed/. The analysis period of 1991–2020 was chosen 
according to the reference period suggested by the World 
Meteorological Organization (WMO). Notably, the AOD 
data have a shorter time span (2012–2020) than the 
other datasets do, which is a limitation of the available 
AOD data and our study. 
 The monthly PBLHs of ERA5 were separated into 
three space-time datasets for December, January, and 
February, whose anomalies were calculated before 
analysis via the empirical orthogonal function (EOF) to 
distinguish modes of variability for each month. Monthly 
data from several datasets, including ERA5, have been 

utilized for climate analysis and EOF analysis to illustrate 
variability [32–35]. The EOF technique has been used 
to decompose a continuous space-time dataset, e.g., 
climate data, into special modes and associated time 
series. The space-time data matrix X(t,s), where t denotes 
time and where s denotes spatial location. Decomposition 
can be performed via the following concept: 
 
  𝑋𝑋(𝑡𝑡, 𝑠𝑠) = ∑ 𝑐𝑐𝑘𝑘(𝑡𝑡)𝑎𝑎𝑘𝑘(𝑠𝑠)𝑀𝑀

𝑘𝑘=1                          (Eq. 1) 
 
 where ck (t) and ak (s) are an expansion function of 
time and a set of functions of space. Before decompo-
sition, the anomaly data matrix is prepared by calculating 
the difference between the data and climatology (mean). 
Next, the covariance matrix of the data, which contains 
p locations, is determined as follows: 
 
   𝑆𝑆 = 1

𝑛𝑛
𝑋𝑋𝑇𝑇𝑋𝑋              (Eq. 2) 

 
 To obtain spatial patterns and associated time series, 
we compute 
 
             𝑆𝑆uk = 𝜆𝜆𝑘𝑘uk, 𝑘𝑘 = 1, … , 𝑝𝑝.                          (Eq. 3) 
 
 where λk is the eigenvalue of the kth mode and 
where uk is the kth eigenvector or the kth EOF mode. 
The principal component (PC) time series can be revealed 
by projecting the original data on the eigenvectors as 
follows: 
 
             𝑎𝑎𝑘𝑘 = 𝑋𝑋𝑢𝑢𝑘𝑘                                     (Eq. 4) 
 
 The kth PC time series given by projection is associated 
with the kth EOF mode exhibiting a spatial pattern and 

https://cds/
https://www.ncei.noaa/
https://psl.noaa.gov/
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can account for the variance of the kth mode by using 
λk as the eigenvalue [26, 36–37]. 
 To investigate the relationships of variability represented 
by the PCs to ENSO and AOD, we determine the 
correlation between the PCs and the corresponding 
indices to present which mode is related to ENSO and 
AOD changes. Nino3.4 is based on SST variations over 
the area of 5°N–5°S, 120°-170°W in the Pacific Ocean 
[38]. The index showed a negative relationship with the 
SOI [39]. Both indices have been used to characterize 
El Nino and La Nina events in the Pacific Ocean [38], 
whereas the dipole mode index (DMI), which represents 
the Indian Ocean Dipole (IOD) phenomenon, has been 
used to present the interannual climate variability in 
terms of the sea surface temperature (SST) in the Indian 
Ocean [40]. The ENSO, IOD, and AOD data were used 
to observe their correlations with the variabilities in the 
PBLH (PCs). 
 The correlation coefficients of 0, < 0.2, 0.2-0.4, 0.4-0.7, 
0.7-0.9, 0.9-1.0, and 1 imply no relationship, almost 
negligible relationship, small relationship, substantial rela-
tionship, marked relationship, very dependable relationship, 
and perfect relationship, respectively, and refer to both 
positive and negative directions [41]. The correlations 
of PCs with ENSO and IOD, which are strongly related 
or greater than that relationship, are then used to 
interpret the correlation map of PC with AOD. In brief, 
the analysis can be summarized as follows: 1) Conduct 
EOF analysis to obtain spatial patterns (EOF modes) and 
the PC time series (representing variability). 2) Determine 
the correlation between the PC time series and the 
Nino3.4 and DMI indices to identify possible relation-
ships. 3) Identify the PCs that correlate significantly with 
the indices and present their spatial patterns along with 
their corresponding PCs. 4) Compute the correlation 
coefficients between the selected PCs and the SST for 
each ocean grid cell, leading to a correlation map 
showing the relationship between the PBLH variability 
(PCs) and the SST. 5) Perform a similar analysis to 
step 4 but use AOD data instead of SST data, which 
aims to reveal the relationship between PBLH variability 
(PCs) and AOD. This will present the association of 
PBLH variability related to SST phenomena and AOD. 
The challenge of this study is the use of EOF analysis 
in view of climate and air quality to identify interesting 
spatial and temporal modes of PBLH. However, these 
limitations may not fully capture localized air quality or 
specific emission sources. 
 
Results and discussion 
1) PBL variability and correlations with ENSO 
 For December, the first, second, and third modes 
explain 37.7%, 23.5%, and 7.1% of the total variance, 
respectively. The contributions of the first, second, and 

third modes for January are 29.8%, 19.0%, and 11.3%, 
respectively, and the eigenvalues for February are 30%, 
17.4%, and 13.7% for the first, second, and third modes, 
respectively (as shown in the supplementary material). 
Both the PCs and climatic indices (SOI, Nino3.4, and 
DMI) were calculated to determine their correlation 
coefficients, as shown in Figure 2. The PC2 variation 
during the December (DecPC2) period was significantly 
correlated with the SOI, Nino3.4, and DMI, with values 
of 0.5, –0.59, and –0.46, respectively. However, a 
statistically significant relationship between DecPC1 
and DecPC3 and the indices did not appear. In addition 
to December, significant correlations of JanPC3 with 
the SOI, Nino3.4, and DMI for January were observed: 
0.55, –0.54, and no significant correlations, respectively. 
Finally, we observed significant correlations between 
the FebPC1 and ENSO indices for the February period, 
with values of –0.5 and 0.47, and the correlations between 
the FebPC2 and ENSO indices were 0.36 and –0.48, 
respectively. The relationships between the three FebPCs 
and the DMI were not significantly correlated. There is 
no correlation between FebPC1 and FebPC2 because 
of the orthogonal property given by EOF analysis. These 
significant relationships are therefore interesting for 
exploring and exhibiting spatial correlations with SST 
only in the Pacific Ocean and with AOD over Thailand. 
 Before elaborating on the relationships between the 
variabilities in SST and AOD, we explain the charac-
teristics of the significant modes. In December, EOF2 
(DecEOF2) has a negative loading over southern 
Thailand, a light negative loading over northern Thailand, 
and a positive loading over northeastern Thailand. This 
implies a rise in DecPC2, resulting in a decrease (increase) 
in the PBLH in southern (northeastern) Thailand, and 
vice versa for a decrease in the DecPC2 amplitude. 
However, in the northern and central parts of Thailand, 
the EOF loading is quite neutral, which means that the 
change in the PBLH is small across these areas. The 
EOF3 of January (JanEOF3) is quite similar to that of 
DecEOF2, but the positive loading area expands from 
northeastern to some central and northern parts of 
Thailand. In February, EOF1 (FebEOF1) has a mostly 
positive loading over Thailand, except for the area above 
18°N, which has a light negative loading. The 2nd mode 
(FebEOF2) is comparable to the patterns of DecEOF2 
and JanEOF3. The negative loading over southern 
Thailand in FebEOF2 is greater than that in JanEOF3 
and expands to cover western and northern Thailand 
(Figure 3 (d)). The resemblance between these three 
modes (DecEOF2, JanEOF3, and FebEOF2) could 
result from the same factor, whereas FebEOF1 would 
differ from the others. 
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Figure 2 Significant correlations between PCs and indices (p < 0.05). 

 
  

  

Figure 3 Interesting EOFs of PBL variability and corresponding PCs. 
(a) (b) 
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Figure 3 Interesting EOFs of PBL variability and corresponding PCs (continued). 
 

  

  

Figure 4 Correlation maps of PCs to the SST. 
  

 Four PCs were used to determine the spatial correlation 
pattern of sea surface temperature anomalies. The 
correlation maps of PCs with respect to SST, with the 
exception of PC1 in February, reveal that the spatial 
patterns are quite similar. They (Figures 4 (a), (b), and 
(d) show a substantial negative relationship over the 
Central East Pacific Ocean and a cold tongue-like 
appearance, whereas PC1 in February (FebPC1) shows 

the opposite pattern. Figure 4c shows a positive sub-
stantial correlation, which is comparable to the warm 
phase in the central Pacific Ocean. These findings are 
consistent with the substantial relationships between 
the PCs and ENSO indices mentioned previously. 
 This result revealed the teleconnection of PBLH 
variability with ENSO. In addition to the influence of 
ENSO on precipitation, temperature, and wind circulation 

(c) (d) 

(a) (b) 

(c) (d) 
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in Thailand [26, 29], it can also influence the change in 
PBLH, as reported by another study [42]. 
 
2) Correlation with AOD 
 The relationship between PBLH variability and AOD 
was observed to present a magnitude response that 
can imply a change in PM2.5 related to PBLH variability. 
In December, Figure 5 (a) reveals substantial negative 
relationships over the North, West, and Central parts of 
Thailand, whereas a small negative relationship occurs 
in the Northeast Region. A negative correlation means 
that increasing the PC amplitude is related to reducing 
the AOD. However, in this southern region, the corre-
lations between DecPC2 and AOD have a positive 
relationship with a substantial relationship. The DecPC2-
AOD relationship is opposite to that in other areas. 
Therefore, the deepening and shallowing of the PBLH 
during the positive phase year over the northeastern 
part and southern part was related to a small reduction 
and increase in the AOD, respectively. The next pattern 
in January, the northeastern region, showed substantial 
negative relationships with the JanPC3 and AOD 
(Figure 5 (b)), that is, when JanPC3 increases, it cooccurs 
with the reduction in AOD. As mentioned previously, 
JanEOF3 (Figure 3 (b)) shows positive loading over the 
northeastern region during positive phase (positive 
JanPC3) years, which implies that the height increases 
over this region during this period, and vice versa for 
negative phase years. The area on the west side (< 100°E) 
shows a positive correlation (Figure 3 (b)), which is the 
opposite characteristic of the northeastern region. The 
increase in AOD at the western site is related to the 
increase in JanPC3, which corresponds to a negligible 
change in the PBLH in the western part of Thailand 
and a substantial PBLH reduction in the southern 
part of Thailand. During February, the correlation of 
FebPC1 with AOD shows almost no relationship and 
an almost negligible relationship (Figure 5 (c)), and 
Figure 5 (d) shows a similar pattern in January. Therefore, 
the relationship and behavior of the PBLH during 
February affect the AOD, similar to the interrelationship 
between the PBLH and AOD in January. These results 
agree with those of a previous study that revealed that 
the PBLH in winter is shallower than that in other seasons 
and is positively related to surface temperature [43]. 
Importantly, the relationship is not always statistically 
significant and does not consistently follow a negative 
relationship. The AOD and PM2.5 concentrations are 
affected by multiple factors beyond the PBLH, such as 
emissions, wind, synoptic-scale weather, and atmospheric 

stability. In cases where strong winds prevail and 
aerosol concentrations are low, the PBLH may not be 
the primary driver of pollution variability, resulting in 
weak or negligible correlations [44]. A reduction in the 
PBLH cooccurs with a decrease in the wind speed, 
resulting in a decrease in the atmospheric ventilation 
capacity [43]. Therefore, both a reduction in the PBLH 
and a decrease in the wind speed result in a decrease 
in the ventilation coefficient, which enhances pollution 
trapping within the PBL. Moreover, wind circulation over 
Thailand is different and depends on the geographical 
features of each region. The magnitude of the wind speed 
over Thailand is also related to the strength of the winter 
monsoon, which is related to the ENSO [29]. Pollution 
trapping in the atmosphere over Thailand during the 
winter season is related to variabilities in the PBLH 
and wind speed, resulting in changes in ventilation 
capacity, which are influenced by large-scale pheno-
mena, such as the winter monsoon and ENSO. 
 These results indicate that there are interesting 
variabilities related to variations in ENSO and AOD during 
December, January, and February, which are DecPC2, 
JanPC3, and FebPC2, respectively. They account for 
23.5%, 11.3%, and 17.4% of the variance for December, 
January, and February, respectively. The corresponding 
EOF reveals the spatial pattern of the loading of PBLH 
changes for Thailand in various areas. The correlations 
between the three PCs and the Nino3.4 index show 
substantial relationships, and the correlation maps of 
PCs to SST are similar to those of the ENSO pattern. 
For example, in February, the PBLH increases (decreases) 
over the northeastern region (west side) of Thailand 
during positive phase years, which cooccurs with SST 
cooling in the central Pacific Ocean (La Nina like). On 
the other hand, this characteristic of interrelationships 
exhibited opposite patterns in the negative phase 
years, which would correlate with El Nino. The variation 
in PC during February also correlates with spatial AOD 
changes in different patterns. PBLH increases (decreases) 
over the northeastern region (west side) of Thailand, 
which is correlated with a reduction (increase) in AOD 
during positive phase years. Notably, the variation 
accounts for approximately 20% of the variance. Thus, 
PBLH variability, ENSO, and AOD variation are inter-
related, which may result in PM2.5 changes caused by 
the influence of PBLH variability of approximately 20%. 
However, more analyses and studies are needed to 
understand and explain the complex mechanism by 
which climatic factors affect changes in PM2.5 in 
Thailand. 
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Figure 5 Correlation maps of PCs to AOD. 
 

Conclusions 
Understanding the relationships among atmospheric 

processes, climate variability, and air pollution is crucial 
for addressing Thailand’s severe air pollution problems, 

e.g., PM2.5. This study investigates the linkages among 
PBLH variability, AOD, and ENSO, highlighting how PBLH 
variability is related to ENSO and AOD, which represent 
PM2.5. Our EOF analysis identifies three significant PBLH 

(a) (b) 

(c) (d) 
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variability modes, consisting of the EOF spatial pattern 
and PC time series, during winter (December, January, 
and February). We found interesting temporal variation 
across a variety of PC time series. DecPC2, JanPC3, 
and FebPC2 explained 23.5%, 11.3%, and 17.4% of the 
variance, respectively. These modes exhibit significant 
correlations with ENSO and AOD. These findings 
indicate that large-scale climate phenomena are 
associated with changes in the PBLH and affect 
aerosol loading over Thailand. However, other PBLH 
modes show no significant correlation with ENSO. Our 
findings imply that only 11.3%–23.5% of PBLH varia-
bility can be directly attributed to ENSO-related factors 
and influences on PM2.5, as represented by the AOD. 
The results reveal statistically significant relationships 
between the PBLH and the ENSO and AOD. However, 
not all PBLH modes are ENSO-driven and suggest that 
the PBLH and ENSO are not the sole drivers of PM2.5 
variability over Thailand. 

The spatial patterns of the PBLH-AOD relationships 
vary across different regions of Thailand in association 
with ENSO. Therefore, multiple factors regulate air 
pollution beyond ENSO phenomena. While some areas 
exhibit stronger correlations between PBLH and AOD, 
others show weaker associations, possibly due to weather 
conditions, emissions from sources, and atmospheric 
transport mechanisms. This study has limitations that 
should be addressed in future research. First, our 
analysis does not explicitly account for the role of 
biomass burning and fire hotspots, which are perhaps 
related to the leading EOF mode during the dry season. 
The inclusion of fire hotspot data would help distinguish 
between ENSO-induced variability and direct emissions 
from anthropogenic or natural sources. Second, the study 
does not assess the impact of large-scale atmospheric 
circulation patterns, such as the Asian winter monsoon. 
This may modulate the PBLH and pollutant dispersion 
at a broader scale. Investigating these mechanisms 
would enhance our understanding of how regional 
climate variability influences air quality. 

In summary, our study demonstrates that ENSO has 
a measurable impact on PBLH variability over Thailand 
and influences AOD, which represents PM2.5 concen-
trations. However, the influence of ENSO is not absolute, 
as only a portion of the total variance in PBLH variability 
is related to AOD. The findings emphasize the need for 
continued research incorporating additional climate 
variability, atmospheric processes, emission source 
activity, and inter- and intra-annual variation analyses 
to better understand and mitigate air pollution in 
Thailand. 
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