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Abstract 
Nutrient pollution, also known as eutrophication, is a severe environmental 

problem that leads to harmful algal blooms in water bodies and affects water 
supplies for human use. This study aims to determine the trophic state of the 
reservoir based on the trophic state index (TSI) calculated from ground monitoring 
data of Secchi depth (SD), total phosphorus (TP), and chlorophyll-a (Chl-a) 
obtained from 35 points in 2 survey periods during the late rainy season to early 
dry season 2012–2013 and May 2023. In addition, we combined remote sensing 
data to spatially estimate the eutrophication situation across the reservoir 
through correlation analysis and determine the best regression models. The 
results of correlation analysis between ground monitoring values and spectral 
values from remote sensing algorithms showed that the two parameters, SD and 
TP, correlated best with the NIR/BLUE algorithm. In contrast, the Chl-a 
parameter correlated best with the NIR/RED algorithm. From there, we mapped 
the spatial distribution of parameters and trophic state according to TSI in the 
entire Dau Tieng Reservoir based on the spectral values from remote sensing 
algorithms and regression models. Analysis results showed that, as of May 
2023, the Dau Tieng Reservoir showed signs of eutrophication in most areas; 
some areas also showed signs of hyper-eutrophication, causing the risk of 
harmful algal blooms. The results achieved in this study will be a valuable source 
of consultation, supporting environmental management to minimize nutrient 
pollution in the Dau Tieng Reservoir water source. 
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Introduction 
 In recent decades, the world's population explosion 
has led to the rapid development of urban areas, 
combined with the trend of industrialization, increased 
production, and global economic growth, causing many 
negative impacts on the environment. One of the most 
significant impacts of industrialization and urbanization 
trends is the discharge of pollutants into the environment. 
Nutrient pollution, also known as eutrophication, occurs 
when water sources become overloaded with minerals 
and nutrients, particularly nitrogen and phosphorus [1]. 
In addition, this phenomenon is defined as an increase 
in the productivity of phytoplankton mediated by 
nutrients [2]. Nutrients from water sources promote the 

growth and development of phytoplankton species, 
mainly algae. One of the most frequent negative effects 
of nutrient pollution is algal blooms. They severely reduce 
the amount of dissolved oxygen in water, thereby causing 
aquatic organisms to suffocate due to a lack of oxygen 
[3]. Some algal species are also capable of generating 
toxins that can poison organisms and cause death [4]. 
The serious harmful effects caused by eutrophication 
have created an urgent need to monitor and supervise 
this phenomenon to provide quick and timely warnings. 
Nonetheless, monitoring eutrophication levels covering 
a large region via traditional measurement methods is 
difficult and costly. Furthermore, assessing the level of 
nutrient pollution depends on many water environment 
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parameters. Therefore, monitoring via traditional methods 
on a large spatial scale over a long period requires 
much effort. Remote sensing methods have outstanding 
advantages in the spatial and temporal monitoring of 
large research areas on the basis of satellite image 
data. In combination with ground monitoring data, 
remote sensing methods can estimate the quantitative 
value of objects (such as area and concentration). This 
makes tracking and monitoring research subjects more 
accessible and convenient. 
 Globally, the application of remote sensing technology 
in assessing the nutritional status of water bodies on 
the basis of the TSI has only been widely applied in the 
last two decades. Some prominent studies can be 
mentioned as follows: In 2007, Duan et al. used the 
NIR/RED band ratio, which is commonly used in algal 
bloom monitoring studies [5–7], from Landsat-5 satellite 
imagery to construct a regression model to estimate the 
Chl-a concentration and evaluate the trophic state of 
Chagan Lake, China. The results indicate that the 
regression model can effectively determine the Chl-a 
concentration and evaluate the trophic state of a lake 
[8]. In 2014, Papoutsa et al. [9] studied four seas in the 
Mediterranean, Cyprus and Greece to find the best 
satellite image band ratio to estimate the SD value, one 
of three commonly used parameters to evaluate the 
trophic state. The results showed that the exponential 
regression model from the GREEN/RED band ratio 
best estimates the SD value. In 2016, Membrillo et al. 
[10] used the RED band and the NIR/RED band ratio 
of satellite imagery to estimate turbidity and Chl-a 
concentrations in the Chapala Reservoir, Mexico. The 
estimated turbidity and Chl-a values from the best 
linear regression models have errors of 11% and 27%, 
respectively. In 2019, Shi et al. [11] conducted a large-
scale study in which remote sensing methods were 
used to estimate the trophic state of Qiandaohu Lake, 
China. The regression model in this study was built 
from 812 water monitoring samples collected from 27 
lakes in China from 2004-2018. The results of the 
estimation of the TSI value at Qiandaohu Lake indicate 
a good correlation between the 440 nm wavelength 
absorption and the SD, total nitrogen (TN), total 
phosphorus (TP), and Chl-a parameters. In 2022, Lyu 
et al. [12] conducted another study to estimate the 
trophic state of seven lakes in Northeast China via 
remote sensing methods. The dataset used in the study 
included SD, TP, and Chl-a data from water samples 
collected in October 2010. They calculated the TSI 
value according to the formula proposed by Carlson in 
1977. The TSI estimation results from the present study 
are relatively good, with a high level of correlation 
between ground monitoring data and reflectance values 
obtained from a handheld spectrometer and errors 
between the quantification results from remote sensing 

methods and ground monitoring data being relatively 
low [13]. 
 In Vietnam, TSI has been applied in several studies 
to assess the trophic state of water bodies in recent 
years. In 2017, Nguyen et al. [14] used Landsat-8 
satellite image data to evaluate the current trophic state 
of Linh Dam Lake, Hanoi, via remote sensing methods. 
The study proposed assessing the trophic state on the 
basis of the TSI value of Chl-a. The results of the study 
indicated that the BLUE/GREEN ratio band had the 
best correlation with the TSI value calculated from 
ground Chl-a data and could be used to estimate the 
TSI value for the entire lake area. Additionally, in 2017, 
studies by Tuan et al. at Blue Reservoir, Haiphong city, 
and Ngoc et al. at some urban lakes in Hanoi assessed 
the trophic state according to the TSI. Both of the above 
studies were conducted via a representative sampling 
method, with SD, TP, and Chl-a. Then, the TSI value 
was calculated via Carlson's proposed formula [15–16]. 
In 2020, Thuan et al. [17] presented an overview of the 
recent eutrophication situation in Hanoi lakes from 
previous studies and evaluated the case of Cu Chinh 
Lake. This study used the TSI calculated from the 
parameters TN, TP, and Chl-a as proposed by Carlson 
& Simpson in 1996 [18] to evaluate the eutrophication 
of the lake instead of the TSI proposed by Carlson in 
1977 [12]. However, these studies are limited in their 
use of monitoring points to assess the trophic state of 
the lake. In 2021, Thao et al. conducted research on 
monitoring changes in the eutrophication of Hoan Kiem 
Lake on the basis of Chl-a concentrations calculated 
from Sentinel-2A satellite images collected from 
September 2019 to August 2020. The survey results 
from 50 monitoring points at Hoan Kiem Lake at 5 
different times of the year show that the Chl-a con-
centration is highly correlated with the reflectance value 
of the NIR/RED band ratio. Research has indicated that 
this ratio band and exponential regression equation can 
be applied to calculate the Chl-a concentration in water 
bodies [19]. In general, studies using the TSI index to 
assess the trophic state of water bodies in Vietnam are 
carried out via two methods: (i) assessment on the 
basis of several representative monitoring points, which 
represents only the nutrient status at those points 
instead of assessing the entire research area; and (ii) 
assessment of the entire study area via remote sensing 
methods but is only based on the Chl-a parameter. 
 The research area is the Dau Tieng Reservoir, 
located upstream of the Saigon River, in the territory of 
three provinces: Tay Ninh, Binh Phuoc, and Binh 
Duong (Figure 1). The reservoir started construction in 
1985 and is Vietnam's largest artificial irrigation reservoir. 
The Dau Tieng Reservoir plays a significant role in 
regulating flow, preventing floods, repelling salinity, 
and providing water for daily life and agricultural 
production in the region and downstream of the Saigon 
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River. In recent years, the water quality at Dau Tieng 
Reservoir has been declining and has shown signs of 
eutrophication due to impacts from sand mining activities, 
aquaculture, and agricultural cultivation in alluvial areas 
[20]. These activities contribute a large amount of nutrients 
to the water environment, causing eutrophication, and 
are among the leading causes of algae growth in 
reservoirs [21]. Therefore, to investigate the potential of 
remote sensing in monitoring and assessing nutrient 
pollution by integrating multiple parameters, we initiated 
this study to evaluate the feasibility of the technique. In 
the case of positive results, this study could lead to the 
application of remote sensing to assist management 
agencies in managing and protecting the water envi-
ronment of Dau Tieng Reservoir and other reservoirs. 
This approach could offer practical benefits and result 
in significant cost and time savings compared with the 
current traditional water sample collection methods 
used in Vietnam. 
 
Data and methods 
1) Data collection 
1.1) Ground monitoring data 
 The ground monitoring data included the SD (m), 
TP (mg L-1), and Chl-a (μg L-1) data (Table 1), which 
were collected in two phases. Phase 1 is the late rainy 
season to the early dry season from 2012–2013. Data 
on parameters during this period were collected at five 
monitoring points—October 22, 2012; November 27, 
2012; December 22, 2012; January 26, 2013; and 
February 27, 2013—from the studies of Pham et al. [21] 
in 2017 and Thong et al. [20] in 2023. In phase 2, at the 
beginning of the rainy season in May 2023, data were 
collected at ten monitoring points on May 6, 2023. The 
locations of the monitoring points in both phases are 
shown in Figure 1. 
 The SD parameter is measured via a Secchi disk 
with a diameter of 20 cm, which is attached to a 3 m 
long wire with marked points, each 10 cm apart, to read 
the measurement results. The Secchi disk is slowly 

lowered into the water, and the first depth value is read 
when the disk is no longer visible. Then, it is lowered to 
another 0.5 m depth, lifted slowly, and the depth value 
is read a second time when the disc is visible. The 
average depth value of the two readings is the SD 
value. The samples analyzed for TP and Chl-a were 
collected 0.5 m below the water surface and stored 
refrigerated at 4°C. The TP concentrations were analyzed 
according to the Standard Methods for the Examination 
of Water and Wastewater (SMEWW) 4500-P of the 
American Public Health Association (APHA) through 
two steps: con-version of the phosphorus form of 
interest to dissolved orthophosphate and colorimetric 
determination of dissolved orthophosphate [22]. The 
Chl-a concentration was analyzed according to the 
SMEWW 10200-PLANKTON of APHA by measuring 
the absorbance of the phytoplankton extract in 90% 
acetone solution before and after standardization with 
the solution at wavelengths of 665 and 750 nm [23]. 
 

 
Figure 1 Study area and locations of ground 

monitoring points. 

 
Table 1 Ground monitoring data of SD, TP, and Chl-a 
Monitoring points SD (m) TP (mg L-1) Chl-a (μg L-1) Monitoring points SD (m) TP (mg L-1) Chl-a (μg L-1) 

DT1-Oct-2012 1 0.06 6.49 DT4-Jan-2013 1.5 0.06 4.15 
DT2-Oct-2012 1 0.07 10.93 DT5-Jan-2013 1.1 0.06 2.96 
DT3-Oct-2012 0.9 0.08 16.68 DT1-Feb-2013 1.8 0.05 0.46 
DT4-Oct-2012 0.7 0.08 11.63 DT2-Feb-2013 1.5 0.05 2.53 
DT5-Oct-2012 0.6 0.10 13.88 DT3-Feb-2013 1.4 0.06 5.94 
DT1-Nov-2012 1.7 0.06 1.00 DT4-Feb-2013 1.7 0.05 4.24 
DT2-Nov-2012 1.9 0.05 2.94 DT5-Feb-2013 1.3 0.05 5.23 
DT3-Nov-2012 1.8 0.07 2.98 DT6-May-2023 0.7 0.08 7.67 
DT4-Nov-2012 1.6 0.05 3.10 DT7-May-2023 0.8 0.06 7.32 
DT5-Nov-2012 1.3 0.07 9.57 DT8-May-2023 0.6 0.07 8.24 
DT1-Dec-2012 1.4 0.04 1.49 DT9-May-2023 0.4 0.08 9.15 
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Table 1 Ground monitoring data of SD, TP, and Chl-a (continued) 
Monitoring points SD (m) TP (mg L-1) Chl-a (μg L-1) Monitoring points SD (m) TP (mg L-1) Chl-a (μg L-1) 

DT2-Dec-2012 1.4 0.05 4.75 DT10-May-2023 0.4 0.08 9.61 
DT3-Dec-2012 1.1 0.06 8.98 DT11-May-2023 0.4 0.06 10.76 
DT4-Dec-2012 1.5 0.04 2.44 DT12-May-2023 0.7 0.08 9.27 
DT5-Dec-2012 1.3 0.05 4.60 DT13-May-2023 0.5 0.08 9.50 
DT1-Jan-2013 2 0.04 2.84 DT14-May-2023 0.5 0.09 13.65 
DT2-Jan-2013 1.4 0.05 1.31 DT15-May-2023 0.9 0.05 6.64 
DT3-Jan-2013 1.4 0.05 1.61     

 
1.2) Satellite data 
 The satellite image data used in the study include 
Landsat-7 images acquired during the late rainy season 
to early dry season from 2012–2013 (October 22, 2012; 
November 27, 2012; December 22, 201; January 26, 
2013; February 27, 2013) and Landsat-8 images acquired 
on May 6, 2023, with the same spatial resolution of 30 m 
space. The path/row of the satellite images is 125/052. 
The time at which satellite image data are collected 
coincides with the time at which field samples are 
collected for analyzing parameters. 
 
2) Method to evaluate the trophic state 
 In this study, the trophic state of the Dau Tieng 
Reservoir was evaluated according to the TSI value 
calculated via Eq. 1. The TSI, proposed by Carlson in 
1977, is a popular index used to assess the trophic 
status of water bodies. Carlson's TSI can be calculated 
on the basis of independent values of one of three 
parameters, namely, the SD value (m), TP concentration 
(mg L-1), and Chl-a concentration (μg L-1), according to 
Eqs. 2–4 or a combination of all three parameters 
according to Eq. 1 [12]. The trophic state of Dau Tieng 
Reservoir is classified into four levels, namely, oligo-
trophic, meso-trophic, eutrophic, and hypertrophic, on 
the basis of the threshold values presented in Table 2. 
 

    Carlson’s TSI = TSI (SD)+TSI (TP)+TSI (Chl-a) 
3

        (Eq. 1) 
 

In which: 
 
                 TSI (SD) = 60 – 14.41ln(SD)                    (Eq. 2) 
 
                  TSI (TP) = 14.42ln(1000TP) + 4.15        (Eq. 3) 
 
              TSI (Chl-a) = 9.81ln(Chl-a) + 30.6             (Eq. 4) 
 
3) Remote sensing methods 
 Remote sensing methods can identify and monitor 
objects or environmental conditions from a distance by 
analyzing their reflection and radiation with electromagnetic 
wavelengths without requiring direct contact. To extract 
and correctly identify information about objects, it is 
necessary to determine their spectral reflectance 

characteristics with electromagnetic wavelengths. The 
research objects of this study are nutritional parameters, 
including SD, TP, and Chl-a. Therefore, determining 
the spectral reflectance characteristics of these para-
meters is the foundation for choosing appropriate 
satellite image bands in remote sensing algorithms to 
monitor the trophic state. The spectral reflectance 
characteristics of Chl-a are most evident at wavelengths 
in the visible and near-infrared (NIR) spectra [24–25]. 
Chl-a absorbs most of the light radiation in the blue and 
red bands, with absorption peaks at wavelengths of 
approximately 433 and 686 nm, respectively [25]. In the 
green and NIR bands, Chl-a reflects most light radiation 
with reflection peaks at wavelengths of approximately 
550 and 715 nm [24], creating the green color of Chl-a. 
This color is related to high light scattering and low light 
absorption in the green and near-infrared regions of 
phytoplankton cell walls [24, 26]. Unlike Chl-a, few studies 
have focused on the spectral reflectance characteristics 
of the TP. However, it is possible to use the spectral 
reflectance characteristics of colored dissolved organic 
matter (CDOM) in water, which is created from the 
decomposition of organic matter, to identify TP [27–28]. 
CDOM most strongly absorbs light with short wave-
lengths ranging from blue to ultraviolet, whereas pure 
water absorbs red light with longer wavelengths [29]. 
Therefore, water with a low CDOM concentration is blue, 
and vice versa. Both the CDOM and Chl-a components 
in water absorb light in the same blue spectral range, 
which can lead to errors in identifying these two com-
ponents in aquatic environments [6, 29]. Consequently, 
the use of the blue band to quantify the Chl-a content 
in water is often ineffective [6]. For the SD parameter, 
many factors can affect the SD value, such as suspended 
sediments, phytoplankton, and CDOM. All of these 
factors can reduce light transmission in water, thereby 
reducing the SD value. Because many components 
affect the SD, it is difficult to determine specific spectral 
reflectance characteristics for this parameter. However, 
the identification of SDs can be based on the spectral 
reflectance characteristics of CDOM or Chl-a because 
these components directly affect SDs. Generally, the 
spectral characteristics of the three parameters SD, 
TP, and Chl-a are shown in the visible region and part 
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of the NIR spectral range. Therefore, the BLUE, GREEN, 
RED, and NIR bands of satellite images are used in the 
remote sensing algorithms for parameters. The remote 
sensing algorithms used in the study are presented in 
Table 3.  
 
4) Statistical methods 
4.1) Correlation analysis 
 Correlation analysis is a method of evaluating and 
measuring the correlation between two or more variables. 
This study uses correlation analysis to measure the 
correlation between two variables: spectral values 
extracted from remote sensing algorithms (x) and 
ground monitoring values (y). Many types of correlation 
coefficients are used in statistics and data analysis; 
however, in this study, we focus only on the Pearson 
correlation coefficient (R) to test the linear relationship 
between the independent and dependent variables. R 
is calculated according to Eq. 5. The value of R ranges 
from -1 to +1. The closer the absolute value of R is to 
1, the greater the linear correlation between the variables. 
Twenty-five ground monitoring samples in phase 1 of 
each para-meter are used to analyze their correlation 
with the spectral values extracted from the remote 
sensing algorithms. 
 
                            R = ∑(xi - x�)�yi - y��

�∑(xi - x�)2∑�yi - y��
2
                       (Eq. 5) 

 
 where x� and y� are the mean values of x and y, 
respectively. 
 
 To assess whether the correlation between two 
variables, x and y, is statistically significant or random, we 
use SPSS software to calculate the p value. The null 
hypothesis (H0) is set up as follows: there is no statistical 
significance between the variables, there is no linear 
correlation, and the observed correlation is random. 
Suppose the p value is lower than the significance level 
(typically < 5%). In that case, there is enough evidence 

to reject H0 and confirm that the linear relationship 
between the two variables is statistically significant. In 
contrast, a high p value indicates insufficient evidence 
to reject H0, meaning that the relationship between the 
variables is not strong enough to be confirmed as 
statistically significant. 
 
4.2) Regression model 
 The algorithms that best correlated with the ground 
monitoring values of each parameter based on R and 
had a p value < 5% were used to construct linear 
regression models to calculate the values of the 
parameters in the water based on the spectral values 
extracted from the remote sensing algorithms. To 
evaluate the appropriateness and rigour of the regression 
model, we used the coefficient of determination (R2), 
which is calculated by the square of R. This index 
indicates the percentage of variation in the dependent 
variable that the model explains. The value of R2 
ranges from 0 to 1; the closer it is to 1, the more the 
regression model explains the entire variation in the 
dependent variable. In other words, the more rigorous 
and appropriate the regression model is. 
 
4.3) Validation 
 The forecast values of the parameters calculated 
from regression models must be validated for accuracy. 
The accuracy assessment method used is forecast 
error, which is calculated as the difference between the 
actual value (ground monitoring) and the forecast value 
(regression model). A lower forecast error indicates that 
the model is more accurate in its predictions, whereas 
a higher forecast error indicates that the model may 
need to be adjusted or improved. The mean absolute 
error (MAE) (Eq. 6), mean absolute percentage error 
(MAPE) (Eq. 7), and root mean squared error (RMSE) 
(Eq. 8) are forecast errors used to evaluate the accuracy 
of the forecast values calculated from the regression 
model in this study.

 
Table 2 Relationships between SD, TP, Chl-a, and TSI values and trophic level [18] 

TSI SD (m) TP (mg L-1) Chl-a (μg L-1) Trophic state 
0–40 4–8 0–0.012 0–2.6 Oligotrophic 

40–50 2–4 0.012–0.024 2.6–7.3 Mesotrophic 
50–70 0.5–2 0.024–0.096 7.3–56 Eutrophic 
> 70 < 0.5 > 0.096 > 56 Hypertrophic 

 
Table 3 Remote sensing algorithms used in this study 

Algorithm Abbreviati
 

Equation Reference 
Blue band BLUE BLUE  

Green band GREEN GREEN  
Red band RED RED  

Near infrared band NIR NIR  
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Table 3 Remote sensing algorithms used in this study (continued) 
Algorithm Abbreviatio

 
Equation Reference 

Band Ratio 1 BR1 GREEN/BLUE  
Band Ratio 2 BR2 RED/BLUE  
Band Ratio 3 BR3 NIR/BLUE  
Band Ratio 4 BR4 RED/GREEN  
Band Ratio 4 BR5 NIR/GREEN  

Ratio vegetation index RVI NIR/RED [30] 
Normalized difference vegetation index NDVI (NIR – RED)/(NIR + RED) [31] 

Normalized difference water index NDWI (GREEN – NIR)/(GREEN + NIR) [32] 
Normalized difference turbidity index NDTI (RED – GREEN)/(RED + GREEN) [33] 

Normalized difference suspended sediment 
index NDSSI (BLUE – NIR)/(BLUE + NIR) [34] 

 Ten ground monitoring samples in phase 2 are used 
to assess the accuracy of the forecast values of the 
parameters from the regression model. If the forecast 
values calculated from the regression models meet the 
accuracy validation requirements, we use the regression 
models to map the spatial distributions of the SD, TP, 
and Chl-a parameters. These parameters are then 
applied to Eqs. 1–4 to calculate the TSI value and 
estimate and map the trophic state. The methodological 
diagram of the steps performed in the study is presented 
in Figure 2. 
 

                         MAE = ∑ �yi - zi�
n
i=1

n
                          (Eq. 6) 

 

                 MAPE = 
∑

�yi - zi�
yi

n
i=1

n
               (Eq. 7) 

 

                       RMSE =�∑ �yi - zi�
2n

i=1
n

                      (Eq. 8) 
 
 where n is the number of samples, yi represents the 
ground monitoring values, and zi represents the 
forecast values calculated from the regression model.

 

 
Figure 2 Methodological flowchart. 
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Results and discussion 
1) Trophic state at ground monitoring points 
 The results of the analysis of the trophic state on the 
basis of the TSI values at the monitoring points (Figure 
3) suggest that 30/35 points are eutrophic, with only 
5/20 points being mesotrophic. Nevertheless, all of 
these mesotrophic locations have TSI values close to 
those of the eutrophic state. In May 2023, all 10 
monitoring points had TSI values that indicated eutro-
phication. This shows that the water in Dau Tieng 
Reservoir is experiencing signs of eutrophication at 
most monitoring points. However, to achieve more 
objective conclusions about the trophic state of the 
reservoir, instead of conclusions based on 35 ground 
monitoring points, this study combines forecast value 
results from remote sensing methods for the entire 
reservoir area, as presented in the next section. 
 
2) Spatial distribution of the trophic state 
 The results of the correlation analysis between the 
ground monitoring values and 14 remote sensing 
algorithms according to R (Table 4) reveal that the two 
parameters SD and TP correlate best with the BR3 
algorithm. In contrast, the Chl-a parameter correlates 
best with the RVI algorithm. SD was negatively correlated, 
whereas TP and Chl-a were positively correlated. The 
p values of the ground monitoring values calculated 

with the BR3 and RVI algorithms for all three parameters 
were less than the 5% significance level, indicating that 
these correlations were statistically significant. The 
regression models of the parameters from the ground 
monitoring values and the spectral values from the 
remote sensing algorithms BR3 and RVI are presented 
in Figure 4. The R2 values of the regression models are 
all greater than 0.8, indicating that they are robust and 
appropriate. Regression models can explain most of 
the variation in the dependent variable on the basis of 
changes in the independent variables. The linear 
equations from the regression model between the 
ground monitoring values and the spectral values from 
the remote sensing algorithms BR3 and RVI are used 
to calculate the forecast values for each parameter, 
SD, TP, and Chl-a, which correspond to Eqs. 9-11, 
respectively. 
 
                     Y(SD) = -3.119X + 2.489                (Eq. 9) 
 
                     Y(TP) = 0.138X + 0.007                 (Eq. 10) 
 
             Y(Chl-a) = 54.498X – 31.171             (Eq. 11) 
  
 In this case, Y is the forecast value, and X is the 
spectral value of the remote sensing algorithms.

 

    
 

    
 

Figure 3 Trophic state at ground monitoring points: a) October 22, 2012, b) November 27, 2012, 
c) December 22, 2012, d) January 26, 2013, e) February 27, 2013 and f) May 6, 2023. 
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Figure 4 Regression model of parameters: (a) SD, (b) TP, and (c) Chl-a. 

 
Table 4 Correlation analysis of ground monitoring and spectral values from remote sensing algorithms of parameters 
according to R 

Algorithms SD TP  Chl-a Algorithms SD TP  Chl-a 
BLUE -0.64 0.32 0.54 BR4 -0.57 0.28 0.46 

GREEN -0.61 0.33 0.56 BR5 -0.77 0.55 0.76 
RED -0.63 0.36 0.56 RVI -0.78 0.68 0.90 
NIR -0.79 0.55 0.78 NDVI -0.65 0.52 0.71 
BR1 -0.46 0.26 0.51 NDWI 0.74 -0.51 -0.73 
BR2 -0.59 0.32 0.55 NDTI -0.56 0.25 0.45 
BR3 -0.81 0.85 0.78 NDSSI 0.78 -0.53 -0.80 

 
Table 5 Accuracy of the forecast values from the regression models according to the forecast errors 

Parameters MAE MAPE RMSE 
SD (m) 0.0851 0.1531 0.0973 

TP (mg L-1) 0.0107 0.1627 0.0129 
Chl-a (μg L-1) 0.7155 0.0745 0.8364 

 
 The results of evaluating the accuracy of the forecast 
values of the parameters from the regression models 
according to the MAE, MAPE, and RMSE are presented 
in Table 5. The results show that the errors between 
ground monitoring and forecast values are relatively 
low. Therefore, regression models can be used to map 
the spatial distributions of parameters and trophic 
states according to the TSI for the entire Dau Tieng 
Reservoir. Spatial distribution maps of the parameters 
are shown in Figure 5, whereas maps of the trophic 
state are shown in Figure 6. 
 The spatial distributions of the parameters from the 
late rainy season to the early dry season from 2012–
2013 show that at the satellite image acquisition time 
of October 22, 2012, the SD parameter (Figure 5a-SD) 
had very low values in the Northwest and Northeast 
Reservoir areas, whereas TP (Figure 5a-TP) and Chl-
a (Figure 5a-Chl-a) had high concentrations in the 
entire reservoir area. A low SD indicates that the water 
environment has high turbidity and contains much 
suspended matter, whereas high concentrations of TP 
and Chl-an indicate that the water environment has 
excess nutrients. October 22, 2012, was at the end of 
the rainy season, the time when Dau Tieng Reservoir 
received water containing large amounts of nutrients 
from Ta On, Ta Ly, Ngo Streams, and Tha La River, 
leading to significantly increased turbidity and TP 
concentrations in the water, creating favorable conditions 

for algae growth. Another factor contributing to increased 
concentrations of nutrients in the rainy season in the 
Dau Tieng Reservoir is that rainwater runoff transports 
a large amount of fertilizer used in agricultural cultivation 
in alluvial areas into the aquatic environment [35]. At 
the satellite image acquisition times of November 27, 
2012, December 22, 2012, January 26, 2013, and 
February 27, 2013, the TP concentrations were still 
high (Figures 5b to e-TP), and the SD remained low 
throughout the reservoir area (Figures 5b to e -SD). 
However, the SD values were no longer very low in the 
northwestern reservoir as of October 22, 2012. The 
Chl-a concentrations exhibited relatively significant 
changes at different times (Figures 5a to e-Chl-a). 
Specifically, from the time of the satellite images on 
October 22, 2012, to February 27, 2013, the Chl-a 
concentrations gradually decreased in the eastern and 
southern areas, whereas in the northeast and northwest 
areas of the reservoir, the Chl-a concentrations were 
still high. The results of the TSI calculations for all five 
satellite image periods from the end of the rainy season 
to the beginning of the dry season from 2012–2013 
revealed that the trophic state of most areas of Dau 
Tieng Reservoir was eutrophic (Figures 6a to e), and 
some small areas in Northeast China and North-
western China were hypertrophic. Only a part of the 
Eastern area on January 26, 2013, and February 27, 
2013, was at the mesotrophic level. 

(a) (b) (c) 
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In the early rainy season of May 2023, the upstream 
areas of the reservoir, including the North, Northwest, 
and Northeast Reservoir branches, all presented shallow 
SD values (Figure 5f-SD), whereas the TP and Chl-a 
concentrations were high (Figures 5f-TP & 5f-Chl-a). In 
addition to receiving water from tributary streams and 
the Tha La River, these areas are also the focus of sand 
mining and fish cage farming activities [20]. Sand mining 
activities cause increased suspended solid concentra-
tions and water turbidity, thereby significantly reducing 
the amount of light transmitted, leading to low SD values 
in these areas. For cage fish farming activities, the amount 
of leftover food and waste from the farming process is 
the leading cause of increased TP concentrations in 
water, promoting phytoplankton growth. The SD values 
and TP and Chl-a concentrations in the Dau Tieng 
Reservoir water source are strongly influenced by 
season, hydro-logical regime, and human activities. The 
results of calculating the TSI value at satellite image 
acquisition times of May 6, 2023, show that eutrophication 
is severe in most Dau Tieng Reservoir areas (Figure 
6f), except for a small part of the Eastern Reservoir. In 
particular, the upstream area of the reservoir is in a 
hypertrophic state. 
 When aquatic environments contain nutrients, these 
nutrients are gradually removed through microbial 
decomposition, which plays a crucial role in the carbon 
cycle. Initially, aerobic microorganisms in the surface 
layer utilize dissolved oxygen to decompose organic 
matter. These processes transfer organic carbon into 
inorganic forms of carbon, primarily carbon dioxide 
(CO2), which is released into the atmosphere or taken 
up by aquatic plants for photosynthesis. However, 
when eutrophication occurs, these processes significantly 
deplete dissolved oxygen, depriving aquatic organisms 
of the oxygen required for respiration and triggering a 
cascade of ecological effects [36]. As excessive organic 
matter accumulates and cannot be fully decomposed 
at the surface layer, the remaining debris sinks to the 
bottom. In this oxygen-deficient environment, anaerobic 
microorganisms decompose the material, producing 
methane (CH4) and hydrogen sulfide (H2S). Methane, 
a potent greenhouse gas, becomes a part of the global 
carbon cycle when released into the atmosphere. 
These processes degrade habitats by introducing toxic 
compounds and creating hypoxic or anoxic zones, 
making survival difficult for many aquatic organisms. 
Sensitive species may die off or migrate, reducing bio-
diversity and disrupting the balance of the ecosystem 
[37]. 
 Furthermore, algal blooms, fueled by nutrient pollution, 
are among the most common consequences of such 

imbalances [38]. Some species of algae, such as blue–
green algae, produce toxins that can accumulate in living 
organisms and spread along the food chain from 
zooplankton to small fish, large fish, and even humans, 
potentially causing poisoning or death. When algae 
bloom, the dense growth of algal cells covers the water 
surface, preventing oxygen from diffusing from the air 
into the water. Additionally, the respiratory activity of 
algae at night, especially when the algae density is 
high, further depletes dissolved oxygen in the water. 
Although algal blooms temporarily sequester carbon by 
increasing its biomass during photosynthesis, this 
carbon is quickly returned to the environment when the 
algae die and decompose. As algae die, their decom-
position consumes a substantial amount of dissolved 
oxygen, leading to the formation of 'dead zones' where 
oxygen is completely depleted. These zones make 
aquatic habitats uninhabitable and disrupt the carbon 
cycle. The decomposition of algal biomass releases 
large amounts of carbon dioxide. Moreover, anaerobic 
conditions in the bottom layers contribute to methane 
production, exacerbating climate change and further 
disturbing the ecological balance of aquatic systems 
[36]. 
 The Dau Tieng Reservoir is an important water 
source for the daily needs and production activities of 
residents and neighboring areas. Recent studies have 
also indicated that reservoirs are experiencing algal 
blooms [20] and a decline in water quality [35]. 
Therefore, monitoring, minimizing pollution and ensuring 
water security are incredibly urgent. The approach in 
this study shows that remote sensing methods can be 
applied to monitor and assess the trophic state of 
reservoirs. Compared with the results of the trophic 
state assessment at monitoring points and the 
estimated results from satellite image data, 34/35 
points are similar. The validation results from the 
forecast errors also show that the deviation is relatively 
low. The advantage of the remote sensing method is 
that it can provide detailed data and information in real 
time on the basis of continuously updated satellite 
image data, helping to save costs and time and 
allowing proactive management and intervention. 
However, the disadvantage of this method is that it 
needs to be combined with ground measurement data 
to be able to construct an accurate and reliable forecast 
model. The limited number of ground monitoring points 
is a drawback in this study. In addition, during the rainy 
season, satellite image data are often affected by 
weather conditions, so the support of traditional 
measurement methods is still needed for continuous 
monitoring. 
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Figure 5 SD, TP, and Chl-a spatial distributions at satellite image acquisition times: a) October 22, 2012,  

b) November 27, 2012, c) December 22, 2012, d) January 26, 2013, e) February 27, 2013, and f) May 6, 2023 
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Figure 5 SD, TP, and Chl-a spatial distributions at satellite image acquisition times: a) October 22, 2012,  

b) November 27, 2012, c) December 22, 2012, d) January 26, 2013, e) February 27, 2013, and f) May 6, 2023 
(continued). 

 

   

    
Figure 6 Spatial estimation of the trophic state at satellite image acquisition times: a) October 22, 2012, 

b) November 27, 2012, c) December 22, 2012, d) January 26, 2013, e) February 27, 2013, and f) May 6, 2023. 
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Conclusions 
 This study presents a technique for mapping trophic 
states according to Carlson's TSI via remote sensing 
methods for the Dau Tieng Reservoir. The dataset from 
the late rainy season to the early dry season from 
2012–2013 estimate the forecast values of the SD, TP, 
and Chl-a parameters in the early rainy season of May 
2023. The spatial distribution results of the TSI value 
show that in the Dau Tieng Reservoir area on May 6, 
2023, eutrophication occurred in most reservoir areas 
and, in some places, was even hypertrophic. Despite 
some limitations in input data, such as the number of 
samples used in the regression model and the 
assessment of the accuracy of forecast value results 
being quite limited, research has demonstrated the 
feasibility of applying remote sensing methods in 
assessing the trophic state of the Dau Tieng Reservoir. 
The spectral reflectance characteristics of monitoring 
objects are factors that increase the possibility and 
accuracy of research. This study will be a source of 
consultation and a stepping stone to developing remote 
sensing algorithms for further research to monitor 
nutrient status and water quality in water bodies. The 
study results also warn relevant parties about the current 
state of nutrient pollution in the Dau Tieng Reservoir. It 
is necessary to have synchronous and timely solutions 
in reservoir water environmental management to 
reduce pollution, improve water quality, and protect the 
ecosystem in the area. Our next research direction will 
be to increase the number of ground monitoring samples 
used in the correlation analysis, build regression 
models, and validate the results from the models. This 
allows us to build a rigorous regression model with high 
accuracy that can be applied in practice to monitor the 
trophic state of water bodies. 
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