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Abstract 
This study aims to establish the optimal regression model for predicting total 

suspended solids (TSS) and Turbidity based on in situ data and spectral regions 
of Sentinel-2 images. Various machine learning models were evaluated, including 
Multilayer Perceptron Regression (MLPR), Random Forest Regression (RFR), 
AdaBoost Regression (ABR), Multiple Linear Regression (MLR), and K-Nearest 
Neighbors Regression (KNNR). These models were applied to different band 
combinations of spectral regions: visible (VIS), near-infrared (NIR), shortwave-
infrared (SWIR), VIS+NIR (VNIR), and VIS+NIR+SWIR (VNIR+SWIR). The 
study results revealed that the MLR model, while not the best performer during 
training (R2 = 0.89 for TSS and R2 = 0.66 for turbidity), did not exhibit overfitting, 
with corresponding R² values in testing being 0.80 and 0.42, respectively. Variable 
selection for MLR models identified optimal spectral bands: B3, B5, B6, B8, B11, 
and B12 for TSS, and B4, B8, B11, and B12 for Turbidity. The final no-intercept 
multiple linear regression models achieved R2 = 0.88 for TSS and R2 = 0.62 for 
turbidity. Performance metrics for TSS were superior, with lower MAE, MSE, 
and RMSE compared to Turbidity. This study underscores the efficacy of using 
MLR models with selected spectral bands for accurate and generalizable predictions 
of TSS and turbidity.    
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Introduction 
 Turbidity and total suspended solids (TSS) are critical 
parameters in assessing water quality and detecting water 
pollution [1–2]. Turbidity measures the cloudiness or 
haziness of water caused by large numbers of individual 
particles, while TSS quantifies the solid particles suspended 
in water. High levels of turbidity and TSS can impair 
water quality by reducing light penetration, disrupting 
aquatic ecosystems, and interfering with the life cycles 
of fish and other aquatic organisms [3–4]. These para-
meters also indicate the presence of pollutants such as 
sediments, organic matter, and microorganisms, making 
them essential for monitoring the health of water bodies 
and ensuring the safety of water for human use and 
ecological sustainability [2, 5]. 

 Traditional methods for measuring TSS and turbidity 
primarily rely on in situ measurements and subsequent 
laboratory analyses. While these methods provide 
accurate and direct assessments, they have significant 
drawbacks. In situ sampling is often labor-intensive, 
time-consuming, and expensive, requiring personnel to 
visit sampling sites regularly [5]. Moreover, the transpor-
tation and handling of samples to laboratories introduce 
the risk of contamination and degradation, potentially 
affecting the reliability of results. The spatial and temporal 
coverage of in situ measurements is also limited, making 
it challenging to obtain a comprehensive understanding 
of water quality dynamics over large areas or extended 
periods [6]. Recent studies highlight these limitations. 
Boyd (2020) demonstrated that in situ methods, while 
accurate, are often logistically and economically 
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infeasible for large-scale monitoring projects [4]. Sagan et 
al. (2020) discussed the limitations of spatial and temporal 
coverage in traditional methods, which often fail to 
capture dynamic changes in water quality [6]. 
 The advent of remote sensing technology has re-
volutionized the monitoring of water quality parameters 
such as TSS and turbidity. Satellites equipped with 
advanced sensors can capture high-resolution spectral 
data over vast water bodies, providing extensive spatial 
and temporal coverage that is unattainable with 
traditional methods [7-8]. By analyzing reflectance data 
from various spectral bands, researchers can estimate 
the concentrations of TSS and turbidity across large 
regions in near real-time [7-8]. This approach allows 
for continuous monitoring, early detection of pollution 
events, and the assessment of long-term trends in water 
quality, ultimately enhancing the management and 
protection of aquatic environments [9-10]. Numerous 
studies have validated the effectiveness of satellite remote 
sensing in water quality monitoring. For example, [7] 
used Landsat-8 and Sentinel-2 data to model reservoir 
chlorophyll-a, TSS, and turbidity, achieving high accu-
racy in their predictions. Similarly, [8] confirmed the 
consistency of suspended particulate matter concentration 
retrievals from Sentinel-2 and Landsat-8 sensors, de-
monstrating the reliability of satellite data for water 
quality monitoring. 
 Machine learning techniques provide an effective 
tool for managing water quality using either field data 
[11] or satellite data [12–13]. By training machine learning 
models on spectral data and corresponding in situ mea-
surements, it is possible to develop predictive models 
that accurately estimate water quality across different 
conditions and regions [14]. Machine learning algorithms 
can learn complex relationships between spectral 
reflectance and water quality parameters, improving 
the precision and reliability of predictions [15]. The 
integration of machine learning with satellite data not 
only automates the analysis process but also enhances 
the capacity to monitor and manage water quality more 
efficiently and effectively, providing valuable insights for 
environmental scientists and policymakers [12]. Several 
studies have demonstrated the advantages of integrating 
machine learning with satellite remote sensing for 
water quality monitoring. For instance, Granata et al. 
(2024) utilized a stacked MLP-RF algorithm to forecast 
evapotranspiration, achieving significant improvements 
in prediction accuracy [14]. Similarly, Khalifa et al. 
(2024) highlighted the robustness of Random Forest 
models in handling complex, nonlinear relationships in 
environmental data, underscoring their applicability in 
water quality monitoring [15]. 

 This study is particularly important for Vietnam 
and the upper Ma River Basin for several reasons. The 
upper Ma River Basin, located in Northwest Vietnam, 
is a vital water resource supporting the livelihoods of 
millions of people. The basin is crucial for agricultural 
activities, fisheries, and as a source of drinking water. 
However, it faces significant environmental challenges 
due to deforestation, agricultural runoff, industrial dis-
charges, and rapid urbanization, all of which contribute 
to increased levels of TSS and turbidity [16–17]. The upper 
Ma River Basin is also prone to seasonal variations in 
water quality, influenced by the tropical monsoon 
climate characterized by distinct dry and wet seasons. 
These variations can lead to fluctuations in pollutant levels, 
making continuous and comprehensive monitoring 
essential for effective water resource management [5]. 
Ensuring water quality in this region is critical for 
maintaining the health of aquatic ecosystems, protecting 
biodiversity, and securing safe water for human con-
sumption. 
 By building on the foundations laid by previous 
research and incorporating advanced machine learning 
techniques, this study seeks to enhance the accuracy 
and efficiency of water quality monitoring in the upper 
Ma River. This will provide valuable insights for envi-
ronmental management and contribute to the sustainable 
development of water resources in the region. Specifically, 
we aim to identify the most effective machine learning 
model for monitoring water quality in the upper Ma 
River, focusing on the selection of optimal spectral 
regions and model types. We will compare the perfor-
mance of Multilayer Perceptron Regression (MLPR), 
Random Forest Regression (RFR), AdaBoost Regression 
(ABR), Multiple Linear Regression (MLR), and K-Nearest 
Neighbors Regression (KNNR) models in predicting 
TSS and turbidity based on spectral data from different 
regions, including the visible (VIS), near-infrared (NIR), 
and shortwave-infrared (SWIR) bands. 
 The outcomes of this research will not only advance 
scientific understanding of water quality monitoring 
but also inform policy decisions and management 
strategies aimed at preserving the ecological integrity 
and water quality of the upper Ma River Basin. This is 
essential for ensuring the sustainability of water 
resources in Vietnam, thereby supporting the health 
and well-being of its population. 
 
Materials and methods 
1) Study area 
 The upper Ma river basin is located in Northwest 
(NW) Vietnam and covers a total area of 6,688 km2 
(Figure 1). The region is affected by the tropical monsoon 
climate which is characterized by the alternation between 
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dry and wet seasons. Annual rainfall averages 1,900 
mm. The wet season lasts six months from May to 
October and accumulates approximately 85–95% of the 
total annual rainfall. Land use in the basin is dominated 
by forests (59% of the total area) and field crops (33%). 
The natural landscape of the basin has changed consi-
derably since 1990s, with i.a. deforestation of large forest 
and protected areas by cutting and burning for the 
expansion of cultivated land mainly, which lead to 
decreased water quality [17]. In addition to deforestation, 
socio-economic development activities such as industry, 
mining, craft villages and agriculture have created 
increasing pressure on the natural environment of the 
basin [16], which is likely to be resulting in increased 
erosion and hence sediment load in the river system. 
 
2) Data 
2.1) TSS and turbidity in-situ measurement 
 TSS and turbidity measurements were carried out 
through extensive field campaigns conducted by the 
Vietnamese Center for Environment Monitoring. These 
surveys were performed at nine strategic locations along 
the upper Ma River, covering a wide geographical range 
that represents the diverse environmental conditions 
within the basin. 
 For TSS, water samples were collected at a depth of 
0-50 cm using a specialized water sampler to ensure a 

representative sample of the surface layer. These samples 
were immediately preserved in 1 L dark-colored bottles 
to minimize exposure to light and prevent any alterations 
to the sample content. The bottles were then refrigerated 
and transported to the laboratory for analysis, where 
TSS was measured by filtering the water samples and 
drying the residue to a constant weight. 
 In contrast, turbidity was measured in situ using the 
Secchi disk method [18], a widely used approach to 
estimate the clarity of water. An 8-inch diameter disk, 
with alternating black and white quadrants, was lowered 
into the water column until it could no longer be seen 
from the surface. The depth at which the disk dis-
appears is directly correlated with the turbidity of the 
water. Additionally, a turbidity meter was placed near 
the water surface (at a depth of less than 50 cm) for two 
minutes, and the readings were averaged to enhance 
accuracy. 
 To ensure precise data matching for modeling pur-
poses, the dates of these in-situ measurements were 
synchronized with Sentinel-2 satellite imagery acquisitions. 
This synchronization minimized time discrepancies 
between the field data collection and the satellite 
observations, ensuring that both datasets captured similar 
environmental conditions during each campaign.

 

 
 

Figure 1 Map of the upper Ma river basin and the location of the monitoring stations. 
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Table 1 Dates of in-situ data collection and corresponding Sentinel-2 images 
Data of 

in-situ campaign 
Date of Sentinel-2 
image acquisition 

Difference time (days) Image ID 

17/03/2017 18/03/2017 1 T48QUJ_20170318T033531_B 

16/05/2017 17/05/2017 1 T48QUJ_20170517T033541_B 

17/07/2017 16/07/2017 1 T48QUJ_20170716T033541_B 

20/8/2017 20/08/2017 0 T48QUJ_20170820T033529_B 

12/03/2018 13/03/2018 1 T48QUJ_20180313T033531_B 

25/05/2018 22/5/2018 3 T48QUJ_20180522T033541_B 

12/07/2018 11/07/2018 1 T48QUJ_20180711T033541_B 

20/08/2018 20/08/2018 0 T48QUJ_20180820T033531_B 

19/10/2018 19/10/2018 0 T48QUJ_20181019T033741_B 

03/03/2019 03/03/2019 0 T48QUJ_20190303T033639_B 
 

 
Figure 2 Sentinel-2 layout of spectral bands [19]. 

 
2.2) Sentinel-2 imagery 
 Ten level 1C top-of-atmosphere Sentinel-2 images 
covering the study area were acquired from the Sentinel 
Scientific Hub (https://scihub.copernicus.eu/). Of these, 
four images corresponded to the dates of TSS and 
turbidity data collection, five images were taken within 
one day of these dates, and one image was captured three 
days prior to the field data collection dates. Atmospheric 
correction was conducted using Sen2Cor, converting 
the images to Level 2A bottom-of-Atmosphere reflectance 
images. For each image, spectral bands in the visible 
region (bands 2, 3, and 4), near-infrared region (bands 
5, 6, 7, and 8), and short-wave infrared region (bands 
11 and 12) were utilized. 
 
2.3) Machine learning models 
 To generate matchups between field measurements 
and spectral reflectance values, band reflectance in the 
pixels overlapping with the field sampling locations was 
retrieved. This data was used to build the input dataset 

for selecting the best regression model among various 
machine learning algorithms. Five regression algorithms 
were tried, including MLPR, RFR, ABR, MLR, and 
KNNR. 
 The MLPR, a type of artificial neural network, has 
emerged as a robust method for water quality modeling. 
MLPR is particularly well-suited for handling the non-
linear relationships often present in environmental 
data [14]. It consists of an input layer, one or more 
hidden layers, and an output layer, with each layer 
comprising multiple interconnected neurons [20].  
 The RFR is a powerful technique for water quality 
modeling due to its ability to handle complex, nonlinear 
relationships in data [21]. It operates by constructing 
multiple decision trees during training and outputting 
the mean prediction of the individual trees [15]. This 
ensemble method improves accuracy and robustness, 
making it ideal for predicting water quality parameters 
from spectral data. 
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 The ABR is a robust technique for water quality 
modeling, known for its ability to enhance predictive 
performance by combining multiple weak learners [22]. 
In ABR, sequential models are trained, with each new 
model focusing on the errors made by the previous 
ones [23]. This iterative process improves the overall 
accuracy and robustness of the predictions.  
 The MLR is a straightforward yet effective method 
for water quality modeling. It operates by modeling the 
linear relationships between multiple predictor variables 
(spectral bands) and response variables (TSS and turbidity) 
[24]. MLR calculates coefficients for each predictor, pro-
viding a clear equation that predicts water quality para-
meters based on spectral inputs. This method's simpli-
city and interpretability make it valuable for understanding 
how different factors influence water quality. 
 The KNNR is a versatile and intuitive method for 
water quality modeling. It operates by predicting the 
value of a water quality parameter, such as TSS or 
turbidity, based on the average values of the k-nearest 
data points in the feature space [25]. This non-parametric 
approach is particularly effective when the data exhibits 
complex, non-linear relationships. 
 In machine learning, models are defined by their 
parameters, but their performance is significantly influenced 
by hyperparameters. Tuning these hyperparameters is 
crucial for finding the optimal configuration that maximizes 
the model's performance. Various approaches exist for 

hyperparameter tuning, including manual search, grid 
search, and random search. Among these, grid search 
has been proven highly effective and is widely used in 
numerous studies. In this research, grid search was 
applied to optimize the hyperparameters of the RF, KNN, 
Adaboost, and MLP regression models. Multiple linear 
regression, being a relatively simple and straightforward 
algorithm with fewer hyperparameters, was used in its 
default form. The hyperparameters, search ranges, and 
optimal values for the four models are reported in 
Table 2. 
 
2.4) Data standardization 
 When building regression models, it is common 
practice to standardize the data. Standardization is a 
preprocessing step that involves transforming the data 
so that it has a mean of zero and a standard deviation 
of one. This process ensures that all variables contribute 
equally to the analysis and helps to improve the 
performance and interpretability of the model.  
 Standardization transforms the original data D using 
the following Eq. 1. 
 

           𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐷𝐷− 𝜇𝜇
𝜎𝜎

                          (Eq. 1) 

 
 Where D is original data, is the mean of the data, and 
is the standard deviation of the data.

 
Table 2 Hyperparameters of regression models 

Regressor Hyperparameter Search value Optimal value 

KNN n_neighbors [1, 3, 5, 7, 9] 3 

Weight [uniform, distance] Uniform 

Metric [minkowski, euclidean, manhattan] Euclidean 

Multilayer perceptron hidden_layer_sizes [1, 5, 10, 20] 2 

activation [identity, logistic, tanh, relu] Relu 

solver [lbfgs, sgd, adam] Adam 

learning_rate [constant, invscaling, adaptive] Constant 

Random forest learning_rate_init [0.001, 0.01, 0.1, 1] 0.001 

n_estimators [1, 5, 10, 20] 20 

max_features [sqrt, log2, None] None 

max_depth [1, 5, 10, 20] 10 

AdaBoost n_estimators [1, 5, 10, 20] 10 

learning_rate [0.001, 0.01, 0.1, 1] 0.1 
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Figure 3 Flowchart of the study. 
 

2.5) Accuracy metrics 
 To evaluate and compare different models to de-
termine the most appropriate one for predicting water 
quality parameters, several accuracy metrics were used.  
 R2 is a statistical measure that indicates the proportion 
of the variance in the dependent variable that is pre-
dictable from the independent variables. It ranges from 
0 to 1, where a value closer to 1 suggests a better fit of the 
model to the data. The R2 is calculated by Eq. 2.  
 

                 𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

                           (Eq. 2) 

 

 Where SSres is the sum of squares of residuals and 
SStot is the total sum of squares. 
 
 Adjusted R2 adjusts the R2 value for the number of 
predictors in the model, providing a more accurate 
measure of model performance when multiple variables 
are involved. It can decrease if the added predictors do 
not improve the model significantly. The adjusted R2 is 
calculated by Eq. 3. Where n is the number of observations 
and k is the number of predictors. 
 

       𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 = 1 − ��1−𝑅𝑅
2�(𝑠𝑠−1)

𝑠𝑠−𝑘𝑘−1
�        (Eq. 3) 

 AIC (Akaike information criterion) is a measure of 
the relative quality of a statistical model for a given dataset. 
It balances model fit and complexity by penalizing the 
inclusion of unnecessary parameters. Lower AIC values 
indicate better models. The AIC is calculated by Eq. 4. 
Where L is the likelihood of the model. 

   
𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2 ln(𝐿𝐿)                    (Eq. 4) 
 

 BIC (Bayesian information criterion) is similar to 
AIC but includes a stricter penalty for models with more 
parameters. It is derived from Bayesian probability and 
is useful for model selection among a finite set of models. 
The BIC is calculated by Eq. 5. 
 

                𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑘𝑘) − 2 ln(𝐿𝐿)                      (Eq. 5) 
 
Results and discussion 
1) Data standardization and correlation 
 Tables 3 and 4 display the values of in situ turbidity, 
in situ TSS, and spectral bands before and after standardi-
zation, respectively. As shown in Table 3, their means 
are equal to 0 and their standard deviations are equal to 
1. Post-standardization, Turbidity ranges from -1.38 to 
3.02, while TSS ranges from -1.06 to 2.97.

  
Table 3 Values of variables before standardization 

Index Turbidity TSS B2 B3 B4 B5 B6 B7 B8 B11 B12 

Count 90 90 90 90 90 90 90 90 90 90 90 
Mean 104.04 260.92 0.27 0.29 0.30 0.26 0.31 0.34 0.32 0.20 0.13 

Std 68.19 186.35 0.25 0.23 0.23 0.19 0.19 0.19 0.23 0.12 0.1 
Min 9.80 64.00 0.04 0.06 0.04 0.08 0.10 0.11 0.05 0.04 0.02 
25% 60.48 133.25 0.09 0.14 0.14 0.14 0.17 0.19 0.13 0.12 0.06 
50% 88.50 202.00 0.15 0.19 0.21 0.18 0.24 0.28 0.26 0.16 0.09 
75% 141.50 324.50 0.38 0.37 0.39 0.32 0.37 0.42 0.46 0.27 0.19 
Max 310.00 815.00 1.08 0.99 0.94 0.80 0.82 0.85 0.91 0.63 0.51 
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Table 4 Values of variables after standardization 
Index Turbidity TSS B2 B3 B4 B5 B6 B7 B8 B11 B12 

Count 90 90 90 90 90 90 90 90 90 90 90 
Mean 0 0 0 0 0 0 0 0 0 0 0 

Std 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Min -1.38 -1.06 -0.92 -1.0 -1.14 -0.95 -1.08 -1.18 -1.16 -1.33 -1.20 
25% -0.64 -0.69 -0.72 -0.65 -0.70 -0.64 -0.71 -0.77 -0.81 -0.67 -0.78 
50% -0.23 -0.32 -0.48 -0.44 -0.39 -0.43 -0.37 -0.33 -0.29 -0.34 -0.47 
75% 0.55 0.34 0.44 0.34 0.40 0.29 0.32 0.39 0.59 0.55 0.58 
Max 3.02 2.97 3.26 3.01 2.82 2.78 2.69 2.62 2.51 3.49 3.90 

 
 Figure 4 illustrates the Pearson correlations among 
Turbidity, TSS, and spectral bands. In the visible and 
near-infrared regions (VNIR), the correlation values 
between TSS and nine selected spectral bands are notably 
higher than those between turbidity and bands. Specifically, 
Pearson correlation values between turbidity and bands 
in the VNIR region range from 0.70 to 0.75, whereas 
those between TSS and bands range from 0.74 to 0.82. 
Conversely, in the shortwave infrared region, Pearson 
correlation values between Turbidity and spectral bands 
are higher than those of TSS, ranging from 0.54 to 0.57 
for Turbidity and 0.50 to 0.53 for TSS. 
 
2) Select optimal regression model and spectral region 
 Figure 5 illustrates the R² values for different regression 
models of TSS during the training phase. The RFR and 
ABR models demonstrated superior performance across 
all spectral regions. Specifically, RFR’s R² values ranged 
from 0.90 (shortwave infrared: SWIR) to 0.96 (VNIR 
+SWIR), while ABR’s R² values ranged from 0.83 (SWIR) 
to 0.95 (VNIR+SWIR). The MLPR followed, with R² 
values ranging from 0.58 (SWIR) to 0.93 (VNIR+SWIR). 
In the VIS, NIR, and SWIR spectral regions, the MLR 
model performed the worst, with R² values fluctuating 
from 0.31 (SWIR) to 0.68 (NIR). However, in the VNIR 
and VNIR+SWIR regions, the MLR model performed 
better, with R² values fluctuating from 0.85 (VNIR) to 
0.89 (VNIR+SWIR). 
 In contrast, during the testing phase, MLR was the 
best model in the VNIR and VNIR+SWIR regions, with 
R² values of 0.75 and 0.80, respectively. In the NIR and 
SWIR spectral regions, KNN performed the best, with 
R² values of 0.56 and 0.39, respectively. The R² values 
of MLPR, RFR, and ABR were significantly lower in the 
testing phase compared to the training phase, indicating 
potential overfitting during training. Overall, the SWIR 
region, which includes only bands 11 and 12, resulted 
in the lowest R² values for all models. Conversely, the 
VNIR+SWIR region, which includes nine bands, resulted 

in the highest R² values for all models because the VNIR 
bands are sensitive to surface reflectance properties, 
particularly water clarity and particle scattering. The 
presence of suspended solids in water leads to increased 
scattering of light, which is strongly captured in the 
visible and near-infrared regions, especially in bands 
corresponding to wavelengths between 400 and 900 nm. 
Secondly, the SWIR bands provide additional information 
related to water content and the absorption properties 
of suspended particles. Bands in the SWIR region (1,000 
–2,500 nm) are particularly effective at detecting moisture 
and finer sediments that are typically not as detectable 
in the VNIR bands. The combination of VNIR and SWIR   
suspended solids, and other environmental variables, 
resulting in a more comprehensive and accurate pre-
diction of TSS concentrations. Empirically, numerous 
studies have validated the utility of combining VNIR and 
SWIR bands for water quality monitoring, particularly 
for TSS estimation. For example, Wang et al. (2020) 
demonstrated that the combination of VNIR and SWIR 
bands produced higher accuracy in retrieving suspended 
particulate matter compared to using either region alone 
[26]. Additionally, the SWIR bands are less affected by 
atmospheric scattering, further improving the robustness 
of predictions in diverse environmental conditions. This 
combination thus enhances the ability to capture both 
the optical properties of suspended solids and their inter-
actions with water, leading to the superior performance 
observed across all machine learning models. 
 The analysis revealed that RFR and ABR models, 
despite their high R² values during training, suffered 
from overfitting, as indicated by the significant drop in 
R² values during testing. This highlights the importance 
of evaluating model performance across both phases to 
ensure generalizability. The MLR model, while not the 
top performer in the training phase, exhibited a better 
balance between training and testing R² values, parti-
cularly in the VNIR and VNIR+SWIR regions, indicating 
better generalizability.
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Figure 4 Correlation among turbidity, TSS, and spectral bands. 

 

 
Figure 5 R2 values for different regression models and spectral regions (TSS). 

 
 The VNIR+SWIR spectral region consistently provided 
the highest R² values across all models, suggesting that 
this region captures the most relevant information for 
TSS prediction. The combination of VNIR and SWIR 
bands appears to enhance the model’s ability to predict 
TSS accurately by integrating information from both 
spectral regions. In contrast, the SWIR region alone, 
limited to bands 11 and 12, resulted in the lowest R² 
values, highlighting its limited utility in isolation. 
 Based on the findings, the MLR model emerged as 
the most reliable choice, offering balanced performance 
with high R² values and minimal overfitting. Therefore, 
selecting MLR model in conjunction with the VNIR+ 
SWIR spectral bands is recommended for achieving 
accurate and generalizable TSS predictions. 

 Figure 6 illustrates the R² values for various regression 
models of turbidity during the training phase. Similar 
to TSS, the RFR and ABR models exhibited superior 
performance across all spectral regions. Specifically, the 
R² values for RFR model ranged from 0.85 (SWIR) to 
0.93 (VNIR+SWIR), while ABR model's R² values spanned 
from 0.74 (SWIR) to 0.89 (VNIR+SWIR). The MLPR 
model followed, with R² values ranging from 0.50 (SWIR) 
to 0.85 (VNIR+SWIR). Conversely, the MLR model 
had the poorest performance across all spectral regions, 
with R² values varying from 0.35 (SWIR) to 0.66 (VNIR 
+SWIR). The KNNR model performed better than MLR 
model, with R² values ranging from 0.56 (SWIR) to 0.66 
(VNIR+SWIR). 
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Figure 6 R2 values for different regression models and spectral regions (turbidity). 

 
 During the testing phase, all models exhibited low 
performance, with most R² values below 0.5. The MLR 
model performed the best, achieving the highest R² value 
of 0.51 in the NIR region. The lowest R² value was 0.11, 
recorded by the MLPR model in the SWIR region. The 
performance of the RFR and ABR models was also 
reduced, with R² values fluctuating from 0.24 and 0.26 
(SWIR) to 0.40 and 0.44 (VNIR), respectively. The R² 
value for the KNNR model ranged from 0.29 (SWIR) 
to 0.44 (VNIR+SWIR). 
 The analysis reveals that during the training phase, 
the RFR and ABR models deliver high R2 values, in-
dicating strong model fit to the training data. However, 
their reduced performance in the testing phase suggests 
overfitting. In contrast, the MLR model, while not the 
top performer during training, exhibits a better balance 
between training and testing R² values, particularly 
VNIR+SWIR regions, indicating better generalizability. 
This mirrors the findings from TSS prediction, where 
MLR was also identified as a robust model with 
minimal overfitting. 
 
 

3) Determining optimal configuration of multiple linear 
regression models for predicting TSS and turbidity 
3.1) Variable selection 
 In regression analysis, the number of possible com-
binations of n factors refers to the number of different 
subsets of the n factors that can be formed. This includes 
all possible subsets, ranging from the empty set (no factors) 
to the set containing all n factors. The total number of 
subsets of a set with n factors is given by 2n. This is because 
each factor can either be included or excluded from a 
subset, resulting in 2 possibilities per factor, and thus 2n 
combinations in total. However, since the empty does not 
provide any factors for the model, it is excluded. Therefore, 
the number of meaningful combinations is 2n-1. 
 In this study, nine bands were nine factors for TSS 
and turbidity models. Hence, 29-1 = 511 combinations 
were created. These combinations were examined to 
determine which bands contribute valuable information 
to the models using adjusted R2. Additionally, indices such 
as R2, AIC, and BIC were reported to compare models. 
Table 5 and table 6 report the five best combinations 
based on adjusted R2 for TSS model and turbidity model, 
respectively. 

 
Table 5 Best combinations for TSS model based on adjusted R2 

ID B2 B3 B4 B5 B6 B7 B8 B11 B12 R2 R2a AIC BIC 

246 0 1 1 1 1 0 1 1 1 0.880 0.870 -176.039 -156.041 
190 0 1 0 1 1 1 1 1 1 0.880 0.870 -176.196 -156.197 
430 1 1 0 1 0 1 1 1 1 0.881 0.871 -176.330 -156.332 
174 0 1 0 1 0 1 1 1 1 0.879 0.871 -177.400 -159.902 
182 0 1 0 1 1 0 1 1 1 0.880 0.872 -178.019 -160.521 
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Table 6 Best combinations for turbidity model based on adjusted R2 
ID B2 B3 B4 B5 B6 B7 B8 B11 B12 R2 R2a AIC BIC 

78 0 0 1 0 0 1 1 1 1 0.64 0.619 -80.91 -65.911 
390 1 1 0 0 0 0 1 1 1 0.64 0.619 -80.991 -65.992 
142 0 1 0 0 0 1 1 1 1 0.64 0.619 -80.996 -65.997 
134 0 1 0 0 0 0 1 1 1 0.635 0.619 -81.830 -69.331 
70 0 0 1 0 0 0 1 1 1 0.637 0.620 -82.145 -69.646 

 
 The tables present the ID for each combination, the 
presence (1) or absence (0) of each band (B2 to B12), and 
the corresponding statistical measures (R2, adjusted R2, 
AIC, and BIC). According to Table 4 and Table 5, the 
combination of bands that offer the best predictive 
power for TSS is B3, B5, B6, B8, B11, and B12, while the 
combination of bands that offer the best predictive 
power for Turbidity is B4, B8, B11, and B12. The 
corresponding R2, adjusted R2, AIC, and BIC for the 
TSS model are 0.880, 0.872, -178.019, and -160.521, 
respectively, and for the turbidity model are 0.637, 
0.620, -82.145, and -69.646, respectively. 
 
3.2) Detailed MLR models for predicting TSS and 
turbidity 
 The detailed MLR models for predicting TSS and 
turbidity (Table 7) include the coefficients, standard 
errors, t-values, and p-values for each selected band, 
and their intercept values. Notably, the intercept values 
for both models are zero because the input data was 
standardized. Thus, the resulted regression models are 
no-intercept multiple linear regression (NIMLR) models. 
 For the TSS model, all p-values of the variables in 
the TSS model are less than 0.05, meaning that each 
variable (B3, B5, B6, B8, B11, and B12) is statistically 
significant at the 5% significance level. This indicates a 
strong relationship between these bands and TSS, 

suggesting that changes in these bands are significantly 
associated with changes in TSS. This enhances confidence 
in the model's reliability and validity. The coefficients 
reveal that B3, B6, and B11 have inverse relationships with 
TSS, while B5, B8, and B12 have direct relationships. 
 For the turbidity model, all p-values of the variables 
are less than 0.05, except for B4, meaning that predictors 
B8, B11, and B12 are statistically significant at the 5% 
significance level. The p-value for B4 is 0.066, which is 
greater than 0.05, indicating that B4 is not statistically 
significant. This suggests that changes in B4 are not 
significantly associated with changes in Turbidity, and its 
inclusion may not contribute meaningful predictive power. 
Hence, B4 will be removed to improve the model’s per-
formance and eliminate unnecessary complexity. 
 In conclusion, the NIMLR for predicting TSS following 
Eq. 6 and the NIMLR model for predicting turbidity 
following Eq. 7. 
 With six variables, the NIMLR model for TSS 
outperforms than that for turbidity model. In fact, the 
performance metrics of TSS are R2 = 0.88, MAE = 0.26 
(mg L-1), MSE = 0.12 (mg L-1), and RMSE = 0.34 (mg  
L-1). In contrast, the metrics of NIMLR model for 
turbidity, which uses 3 variables, are R2 = 0.62, MAE = 
0.47 (NTU), MSE = 0.37 (NTU), RMSE = 0.61 (NTU). 
Figure 7 shows the scatter plot of predicted values by 
models and the correspond observed values.

 
               TSS = -2.264*B2+2.449*B5-1.305*B6+2.240*B8-1.164*B11+0.804*B12 (mg L-1)                               (Eq. 6) 
 
                            Turbidity = 0.958*B8-1.332*B11+1.089*B12 (NTU)                                                              (Eq. 7) 
 
Table 7 Detailed MLR models for predicting TSS and turbidity 

Detailed TSS model Detailed turbidity model 

ID Var. Coef. Std. err. t-val p-val ID Var. Coef. Std. err. t-val p-val 

1 B3 -2.264 0.321 -7.061 0.000 1 B4 -0.458 0.246 -1.863 0.066 
2 B5 2.449 0.449 5.460 0.000 2 B8 1.429 0.279 5.124 0.000 
3 B6 -1.305 0.464 -2.814 0.006 3 B11 -1.464 0.375 -3.899 0.000 
4 B8 2.240 0.327 6.852 0.000 4 B12 1.185 0.366 3.240 0.002 

5 B11 -1.164 0.248 -4.696 0.000  

6 B12 0.804 0.238 3.377 0.001       

 

Table 8 Final detailed MLR model for predicting Turbidity 
ID Variable Coef. Std. err. t-val p-val 

1 B8 0.958 0.12 7.995 0.0 
2 B11 -1.332 0.374 -3.563 0.001 
3 B12 1.089 0.367 2.964 0.004 
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Figure 7 Scatter plots of NIMLR for TSS and turbidity. 

 
Discussion 
 The results highlight that the VNIR+SWIR spectral 
region provided the highest R² values across all models, 
confirming its superior ability to capture information 
relevant to predicting TSS. This result is consistent with 
prior studies, which have shown that the combination 
of visible and shortwave infrared bands improves the 
accuracy of water quality models. The high performance 
of the MLR model in testing suggests it may be the most 
reliable model for generalizing predictions, despite other 
models like Random Forest and AdaBoost showing better 
performance during training. The balance between training 
and testing results for MLR indicates that it is less prone 
to overfitting, which is critical in predictive modeling 
applications where unseen data must be handled effectively. 
 The study demonstrates that integrating Sentinel-2 
imagery with machine learning models is an effective 
approach for monitoring water quality, especially in regions 
where frequent in-situ measurements are impractical. 
The findings support the wider use of MLR and VNIR+ 

SWIR spectral bands for predicting TSS in different 
water bodies, not only in Vietnam but in other regions 
facing similar environmental challenges. The use of spectral 
data for large-scale monitoring offers a scalable and 
efficient solution for managing water resources and 
detecting pollution in real-time. 
 While the VNIR+SWIR region was effective, the study’s 
reliance on data from a single region (upper Ma River) 
limits the generalizability of the results to other geogra-
phical areas. Additionally, the models were trained on 
a relatively small dataset, which may affect their ability to 
generalize to significantly different environmental condi-
tions. Future work could expand the dataset, incorporate 
more environmental variables, and apply more advanced 
techniques like regularization to mitigate overfitting in 
tree-based models like Random Forest and AdaBoost. 

Conclusions 
 This study has demonstrated the potential of machine 
learning models for predicting TSS and turbidity using 
Sentinel-2 spectral data. The MLR model, particularly 
when combined with VNIR+SWIR bands, provided the 
most reliable predictions due to its balanced performance 
and minimal overfitting. These findings underscore the 
importance of selecting appropriate spectral regions for 
accurate water quality monitoring. 
 The use of MLR models with VNIR+SWIR bands 
can greatly enhance water quality monitoring efforts in 
Vietnam, especially in regions where traditional in-situ 
measurements are limited by cost and logistics. The ability 
to apply remote sensing data for continuous, large-scale 
environmental monitoring has significant implications 
for water resource management, pollution control, and 
early detection of water quality issues. Local environmental 
agencies and policy makers could incorporate these models 
to improve the management of river basins, mitigate 
the impacts of urbanization and industrialization, and 
respond to the challenges posed by climate change. 
 Future studies should focus on expanding the dataset 
to include a wider variety of environmental conditions 
and geographical regions. This will help to improve the 
generalizability of the models and further validate the 
findings across different ecosystems. Additionally, exploring 
hybrid models that integrate additional environmental 
variables, such as chlorophyll-a or water temperature, 
could enhance the predictive power of machine learning 
algorithms. Incorporating advanced techniques like regu-
larization or deep learning methods may also mitigate 
overfitting in tree-based models, offering more robust 
predictions. 
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