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Abstract 
This study explores a method of waste classification using deep learning, 

specifically employing the Convolutional Neural Network (CNN). This research 
involves the creation of a unique dataset, a hybrid of publicly accessible data and a 
newly compiled collection of images across 13 waste classes: paper, glass, wood, 
metal, clothes, PCB e-waste, non-PCB e-waste, PET, HDPE, LDPE, PP, PVC, and 
PS. The development of the CNN model was approached in two ways: transfer 
learning and full learning. In the transfer learning approach, two pre-trained 
models, MobileNetV2 and DenseNet121, were utilized. While in the full learning 
approach, the architecture is constructed using the sequential method. The 
experimental results indicated that the DenseNet121 transfer learning model 
outperformed others, achieving an impressive accuracy of 95.2% and an average 
F-1 score of 0.95 on test data. This was closely followed by the MobileNetV2 
transfer learning model, which attained an accuracy of 92% and an average F-1 
score of 0.92. In comparison, the full learning model reached an accuracy of 65% 
and an average F-1 score of 0.65. Generally, transfer learning models yielded more 
optimal results than those full learning model. This efficiency can be attributed to 
the pre-existing knowledge in the transfer learning models, which eliminates the 
need to learn input patterns from the ground up. However, it's important to note 
that the dataset size of 4586 images across 13 classes may not be sufficient for 
developing a robust machine learning model from scratch. 
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Introduction 
 Every human activity is likely to generate waste. 
With economic development, high urbanization rates, 
and improved living standards, the amount of waste is 
also rapidly increasing. According to data from the 
National Waste Management Information System (SIPSN) 
of the Indonesian Ministry of Environment and Forestry, 
in 2022, Indonesia produced approximately 36.4 million 
tons of waste annually [1]. This figure marked an increase 
from the previous year, where the waste generation was 
around 28.5 million tons. The rise in waste production 
correlates with the growing population of Indonesia 
each year. Figure 1 presents the composition of waste 
based on types in Indonesia in 2022. 

 The most significant types of waste produced include 
food remnants (40.54%), wood/branches (13.09%), paper 
/cardboard (11.29%), plastic (17.89%), metal (3.08%), 
and fabric (2.6%). However, this study will focus on 
detecting waste that still holds value and can be recycled 
or repurposed. The detection of those types of waste is 
important, because concentrating on sorting waste that 
can be recycled or repurposed is integral to developing 
a sustainable, economically viable, and environmen-
tally responsible approach to waste management. This 
focus not only addresses immediate waste disposal 
challenges but also contributes to the broader goals of 
resource conservation and sustainable development. 
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Figure 1 Waste composition in Indonesia in 2022 [1]. 

 
 From the types of waste mentioned earlier, plastic 
waste, being the second largest in volume, deserves 
special attention due to its alarming rate of growth. By 
2050, the global volume of plastic waste is projected to 
reach 1.1 billion tons [2]. Consequently, appropriate 
handling of plastic waste according to its type is necessary. 
Plastics come in several types, each with unique charac-
teristics and common uses: 

•  Polyethylene Terephthalate (PET): This lightweight, 
durable, disposable plastic should not be used with hot 
liquids. It's typically used for plastic drink bottles, 
cooking oil packaging, and food wrappers. 

•  High-Density Polyethylene (HDPE): A strong, rigid 
plastic not suitable for reuse. Common uses include 
liquid soap and shampoo bottles. 

•  Polyvinyl Chloride (PVC): A hard plastic, PVC is 
not recommended for food and beverage packaging 
due to chemicals that can disrupt the digestive system. 
It is commonly used in electronic cable coatings and 
pipes. 

•  Low-Density Polyethylene (LDPE): This type of 
plastic is low-density, flexible, and transparent, often 
used for plastic bags, sauce bottles, etc. 

•  Polypropylene (PP): Easily mouldable at high 
temperatures, flexible, hard, and oil-resistant, PP is 
commonly used for plastic furniture, food packaging 
containers, and straws. 

•  Polystyrene (PS), commonly known as Styrofoam, 
is easily moldable at high temperatures, lightweight 
and rigid at room temperature. It is typically used for 
toys and Styrofoam food containers. 

 
Each type of plastic has different properties such as 

density, durability, and heat resistance, making them 
suitable for various applications [3]. Therefore, proper 
identification and segregation based on these charac-
teristics are crucial for effective recycling and waste 
management strategies. 

Electronic waste (e-waste) presents a significant 
environmental challenge that needs urgent attention. 
It can be broadly divided into two categories: items 
with and without Printed Circuit Boards (PCBs). PCBs 
are essential components found in numerous electronic 
devices, including smartphones and computers. They 
are constructed from insulating materials like fiberglass 
or plastic and are designed with conductive pathways 
on the surface to facilitate the flow of electricity and 
connect various electronic components. The array of 
e-waste encompasses a wide range of items. Among those 
containing PCBs are communication and IT devices such 
as smartphones, GPS devices, and PCs [4]. Additionally, 
e-waste includes cooling appliances like refrigerators 
and air conditioners, screens and monitors including 
TVs and laptops, lighting devices such as neon lights 
and LED lamps, as well as large and small appliances 
ranging from washing machines and dishwashers to 
calculators and electric shavers [5]. This diversity of e-
waste highlights the complexity of managing and 
recycling these materials effectively to mitigate their 
environmental impact. 

According to data from the Indonesian Ministry of 
Environment and Forestry, Indonesia generated appro-
ximately 33,683.781 tons of e-waste in 2021, and this 
number is expected to increase annually [1]. It is 
estimated that by 2028, Indonesia will produce about 
49,627,917 tons of e-waste, with an average annual 
growth rate of 14.91% [6]. To overcome such problem, 
one crucial step in waste management is the process of 
waste sorting. Proper segregation and handling of e-
waste are vital to prevent environmental pollution and 
to facilitate recycling and safe disposal of hazardous 
materials. Effective e-waste management not only 
mitigates negative environmental impacts but also 
opens avenues for resource recovery and recycling, 
contributing to a circular economy approach. 

In Indonesia, waste materials with resale value, 
such as plastic, glass, paper, and metal, are typically 
sorted by the informal sector, including scavengers. 
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These materials are either recycled or sold. However, 
sorting waste by scavengers poses significant health 
risks, such as disease contamination, injury risks from 
sharp objects like glass or needles, falls, and inadequate 
personal protective equipment [7]. 

To address waste management issues, an effective 
waste sorting method is necessary so that different types 
of waste can be processed appropriately. Inefficient 
waste sorting methods lead to poorly sorted waste 
accumulation, resulting in uncontrolled landfill growth 
and rapid overloading of waste processing facilities. 

There are various waste sorting methods, including 
manual sorting and automated sorting. Manual sorting 
relies on human labor and skills, while automated 
sorting uses equipment or software to make the process 
more efficient [8]. The fourth Industrial Revolution 
has introduced waste sorting methods utilizing machine 
learning based on image data, replacing manual sorting 
methods. Several machine learning methods for waste 
classification include Bayesian networks [9], Artificial 
Neural Networks (ANN) [10], K-Nearest Neighbor, 
random forest, and Gaussian naive bayes [11]. 

Among all mentioned methods, deep learning 
using Convolutional Neural Networks (CNN) excels 
in image classification. CNN, a type of Neural Network, 
comprises several layers commonly used for image 
detection and is applied in image classification, object 
tracking, image segmentation, etc. [12]. Research con-
ducted by Sami et al. [13] compared various machine 
learning and deep learning methods in waste sorting. 
The methods used in this study include Support 
Vector Machine (SVM), Random Forest, Decision Tree, 
and CNN. The study found that CNN achieved the 
highest accuracy rate of 90%, while other methods like 
SVM achieved 85%, and random forest and decision 
tree reached 55% and 65%, respectively. Based on this 
comparison, CNN is chosen for application in this 
study. 

Additionally, based on the types of waste mentioned 
earlier, this study will investigate 13 data classes, 
separating plastic classes by type and including new 
classes not explored in other studies, such as PVC and 
PS, and differentiating e-waste classes based on the 
composition of the printed circuit board. The study 
will also add wood and clothing classes, which have not 
been extensively researched in other studies. 

 
Literature review 

Currently, several CNN architectures are used to 
build waste classification models, including AlexNet, 
ResNet, DenseNet, VGGNet, among others. Each of 
these models achieves relatively high accuracy. However, 
for waste classification, there is a lack of large datasets 

currently available [14]. A few public datasets like Trashnet 
are available for waste classification. Developed by Yang 
et al. [15], Trashnet is a publicly accessible dataset with 
2527 images across six classes: 594 papers, 501 glass, 
482 plastics, 410 metals, 403 cardboards, and 137 
trashes. Trashnet is commonly used in waste classifi-
cation research, as seen in studies by Bircanoglu et al. 
[16], Yujie et al. [17], and Ziouzios et al. [18]. 

In the research by Bircanoglu et al. [16], the Trashnet 
dataset was used to classify six image classes. This study 
employed various CNN models with a train-from-scratch 
method, including ResNet50, MobileNetv2, Inception 
ResNet, InceptionV4, DenseNet121, Xception, and the 
RecycleNet model, a modification of DenseNet 121 with 
altered skip connection patterns in DenseNet121's dense 
block. Additionally, various optimizers were experimented 
with, including Adam and Adadelta. The experiment 
with DenseNet121 using transfer learning and the Adam 
optimizer achieved an accuracy of 95%, while the 
RecycleNet model trained from scratch reached an 
accuracy of 81%, with training times of 15.9ms (GPU) 
and 352ms (CPU) over 200 epochs. 

Yujie et al. [17] experimented with two modified 
AlexNet models: one using softmax activation in the 
fully-connected layer with categorical cross-entropy 
loss function and the other using SVM in the fully-
connected layer with categorical hinge loss. The expe-
riments, which included partial data augmentation 
techniques (30 epochs with data augmentation followed 
by 30 epochs without), yielded an accuracy of 79.94% 
with the second model. 

Ziouzios et al. [18] applied cloud computing for 
waste sorting at recycling centers using the transfer 
learning method with the MobileNetV2 CNN archi-
tecture. MobileNetV2 was chosen for its ability to 
achieve high accuracy with few hyperparameters. The 
experiment conducted over 20 epochs and an optimal 
learning rate of 1.66 x 10-3 achieved an accuracy of 
96.57%. Common errors in this study included mis-
classification of metal, plastic, and glass due to the 
transparent and reflective attributes of these materials. 

Mao et al. [19] used the Trashnet dataset for their 
research, optimizing the DenseNet model with a 
genetic algorithm for fine-tuning hyperparameters in 
DenseNet121's fully-connected layer. The optimization 
of neuron numbers and dropout rate was the primary 
focus for improving the DenseNet121 model. The 
optimized DenseNet121 achieved an accuracy of 
99.60%, the highest compared to other CNN models 
for the Trashnet dataset, with a training time of 5542 
seconds over 40 epochs. 

Although widely used, the Trashnet dataset has 
several weaknesses as outlined by Zhang et al. [20]. 
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These include a limited amount of data, uneven 
distribution of waste types, and homogenous backgrounds 
in the images that do not accurately represent real-
world conditions, hindering the model's generalization 
ability. To address these limitations, Zhang et al. [20] 
used the NWNU-dataset, comprising 18,911 images 
across five classes: paper, glass, plastic, metal, and 
fabric. This study utilized transfer learning with a pre-
trained Densenet169 model, fine-tuned to the dataset. 
The resulting accuracy was 82.8%, with a testing time 
of 22.56 sec. 

To achieve more comprehensive classification results, 
additional data is required. Patrizi et al. [21] and Huynh 
et al. [22] added organic waste classes to their datasets. 
Patrizi et al. [21] used the Compostnet dataset, an 
extension of Trashnet with 175 organic waste images 
and 49 trash images. They employed the BackRep 
augmentation technique, changing image backgrounds 
to various conditions to reflect real-world scenarios. The 
experiment conducted in controlled conditions (conveyor 
-belt) and natural environments showed that BackRep-
enhanced InceptionV4 models performed better in 
natural scenarios, achieving 44.2% accuracy compared 
to 40.9% with the standard dataset. 

Huynh et al. [22] expanded the Trashnet dataset by 
adding 4,113 images sourced from Google, increasing 
the total to 6,640 images across seven classes. They 
used ResNet101, achieving an accuracy of 92.43%. 
Majchrowska et al. [23] combined 10 publicly available 
datasets, reaching 75% accuracy using the EfficientNet-
D2 model. Karthikeyan et al. [24] merged four data-
sets, including Trashnet, using an eight-layer CNN 
architecture, achieving 98% accuracy. 

Karthikeyan et al. [24] also included a wood class 
in their dataset, a rarity in previous studies. Their total 
dataset comprised 7,000 images across seven classes, 
including wood. They utilized the DDR-net model, a 
modification of the ResNext model, implementing 
double fusion and regularization techniques. The 
DDR-net model achieved 97.3% accuracy, higher than 
the tested ResNext101 model with 93% accuracy. 

Previous studies on plastic waste classification have 
not differentiated between plastic types. To enhance the 
success of plastic waste management, systems capable 
of sorting plastics by type are needed. Bobulski et al. 
[25] developed a CNN architecture to classify four types 
of plastic waste: HDPE, PET, PP, and PS. The model, 
with 15 convolutional layers, achieved 99% accuracy 
in training but dropped to 74% in testing. 

Chazhoor et al. [26] used transfer learning with six 
pre-trained models, including AlexNet, ResNet-50, 
ResNeXt, MobileNetV2, DenseNet, and SqueezeNet, 
to classify plastic waste. The highest accuracy was 

achieved by ResNeXt, with 87.44% in training and a 
13.11-min training time over 20 epochs. Mobile-
NetV2 was noted for its slightly lower accuracy but 
faster training time. In addition, inspired by the gaining 
attention of E-waste due to its increasing volume, Baker 
et al. [27] classified 12 types of smartphones from six 
brands using AlexNet, achieving 98% accuracy with the 
Stochastic Gradient Descent with momentum (SGDM) 
optimizer. 

According to the previous literatures, most studies 
only focused on developing models based on a specific 
dataset. Meanwhile, certain classes are only available in 
specific datasets, while not present in others. Therefore, 
this study aims to combine several publicly accessible 
datasets and add new classes like wood, clothes, and e-
waste. The plastic and e-waste classes will be further 
differentiated. The e-waste will be divided into PCB-
containing and non-PCB waste, an aspect not pre-
viously explored. This research will classify waste into 
13 classes, including PET, HDPE, LDPE, PP, PS, PVC, 
e-waste PCB, and e-waste non-PCB. The potential 
development of waste sorting using CNN will be ex-
plored with two methods: transfer learning using 
DenseNet121 and MobileNetV2, and building from 
scratch. The choice of DenseNet121 is based on its 
high accuracy in previous studies, while MobileNetV2 
is selected for its small size and relative high accuracy, 
making it suitable for application in smaller devices. 

 
Data and method 
1) Datasets 

The data sources for this research include several 
public datasets such as Trashnet, Trashbox, the Clothing 
dataset, the Garbage Classification dataset, and waste 
from a sushi restaurant. Relevant image classes for the 
study are selected from these datasets. For image 
classes not available in these datasets, data collection is 
performed by downloading images from Google. 
Following this, a series of data preprocessing steps will 
be conducted on these datasets to produce image data 
ready for use in the training and testing phases of the 
CNN model. This approach ensures a comprehensive 
and diverse dataset, enhancing the model's ability to 
generalize and perform accurately across various types 
of waste materials. 

Once the data is collected, the next step involves 
data reduction to avoid class imbalance, which can 
lead to model bias towards classes with dominant data, 
thereby reducing the model's ability to generalize. 
Another reason for data reduction is the limitation of 
computational performance of the device. Large datasets 
require devices with high computational power. The 
parameter for data reduction is to decrease the number 
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of images in larger classes to match the class with the 
least number of images, which in this case is the HDPE 
class. After data reduction, the total number of images 
in the dataset is adjusted, with the detailed breakdown 
of the revised dataset as presented in Table 1. 

 
2) Data preprocessing 
2.1) Splitting and shuffling data 

In this research, the data is divided into three parts: 
training, validation, and test sets. Splitting is crucial for 
segregating the data, while shuffling randomizes the 
order to prevent bias. Both splitting and shuffling are 
conducted simultaneously using scikit-learn library. 
The splitting is executed by determining the ratio 
between training, validation and test. A 70:15:15 ratio 
is used for training, validation, and test sets, respectively, 
as substantial training data is necessary for the model 
to recognize features in the input [16, 18]. Specifically, 
the training set contains 3,210 images, while the 
validation and test sets each have 688 images. This 
distribution ensures a balanced approach to model 
training and evaluation, enhancing the model's perfor-
mance and generalizability. In addition, the data shuffling 
is performed randomly to prevent bias, improve model 
robustness, and ensure that the experiments are repro-
ducible. 

 
2.2) Rescale dan resize 

The processes of rescaling and resizing in this 
research are performed using the ImageDataGenerator 
library from Keras. Rescaling is crucial as it multiplies 
the data before any other processing. Since RGB image 
data has coefficients ranging from 0-255, these values 
are too high for the model to process effectively. Therefore, 
rescaling is done by multiplying the data values by 
1/255 to normalize them to a range between 0 and 1. 
This normalization aids in more efficient and stable 
model training. 

On the other hand, resizing alters the dimensions 
of the input data to ensure uniformity across all inputs. 
For this study, an input image size of 300 x 300 pixels 
is used. Consistent image size is essential for the model 
to process the data uniformly, which helps in maintaining 
the integrity of the image features and facilitates more 
accurate predictions by the model. By implementing 
both rescaling and resizing, the study ensures that the 

input data is optimally prepared for processing by the 
CNN model. 

 
2.3) Data augmentation 

The augmentation process in this study is carried 
out using the same library as in the rescale and resize 
stages, namely ImageDataGenerator from Keras. Data 
augmentation transforms the input data to generate 
and add new variations, thereby increasing the amount 
of data. This is achieved by employing built-in 
parameters of the ImageDataGenerator library for data 
transformation. Several parameters are utilized for 
data augmentation in this research, including: 

 
1. Height shift range: 
This process shifts the image vertically, both upwards 

and downwards, in proportion to the image's height. 
In this study, the maximum range used is 0.2, meaning 
the maximum vertical shift is 20% of the image's height. 
Figure 2 presents the images before and after height 
shift range. 

 
Figure 2 Result of height shift range. 

 
2. Shear range: 
This process skews the image along the x and y axes, 

providing a distorted perspective in the image data. 
The attribute used for this augmentation process is set 
to 0.2, causing skewing along both the x and y axes by 
0.2. Figure 3 presents the shear range result. 

 
Figure 3 Result of shear range.

 
Table 1 Number of images per class 

Class HDPE LDPE PET PP PS PVC Clothes E waste 
non PCB 

E waste 
PCB 

Glass Metal Paper Wood 

Number of 
images 

340 368 931 350 561 366 7295 389 655 5170 2941 3699 1049 
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3. Zoom range: 
This process zooms into the image, either by 

enlarging it or by adding pixels around the image to 
make it appear larger. The zoom range attribute is set at 
value of 0.2, meaning the image will be zoomed in or 
out by 20% of its original size, as illustrated in Figure 4. 

 
Figure 4 Result of zoom range. 

 
4. Horizontal flip: 
The horizontal flip attribute is set to true to generate 

new variations of the image data with a horizontal 
orientation different from the original image. Figure 5 
presents an example of horizontal flip. 

 
Figure 5 Results of horizontal flip. 

 
These augmentation techniques effectively increase 

the diversity of the dataset, allowing the model to learn 
from a broader range of data variations and thereby 
enhancing its generalization ability. 

 
3) Pretrained model 

The selection of pretrained models in this study 
refers to those available in the Keras Applications 
module, which offers a variety of pretrained models 
along with their weights trained on ImageNet. These 
models can be used for predictions, feature extraction, 
and fine-tuning. In this research, pretrained models 
are employed specifically for feature extraction. 

There are 38 pretrained Keras models available that 
can be chosen based on the research requirements. 
From these 38 models, attributes of each model are 
considered in the selection process, such as the model 
size (in MB), Top-1 Accuracy, Top-5 Accuracy, the 
number of parameters, and the processing time per 
iteration. Top-1 Accuracy and Top-5 Accuracy refer to 
the model's performance on the ImageNet validation 

dataset. Based on these attributes, two pretrained models 
have been selected for the transfer learning process in 
this study: MobileNetV2 [28] and DenseNet121 [29]. 

MobileNetV2 is selected due to its small size 
relative to other available models. This compact size 
results in fewer parameters compared to other 
pretrained models, positively influencing the model's 
iteration time. Consequently, MobileNetV2 boasts the 
fastest iteration time among its counterparts. 
Additionally, its Top-1 Accuracy and Top-5 Accuracy 
are superior to those of MobileNetV1, its predecessor, 
making it a more efficient choice. 

DenseNet121, on the other hand, is chosen for its 
greater number of parameters compared to MobileNet 
V2. This increased complexity allows DenseNet121 to 
extract features more effectively, resulting in higher 
Top-1 and Top-5 Accuracies compared to earlier models. 
However, the larger number of parameters also means 
a larger model size, leading to slower processing times 
with a time difference of approximately 1.6 ms per 
iteration. 

These selections highlight a strategic trade-off 
between computational efficiency and model complexity. 
MobileNetV2 offers rapid processing suitable for 
applications where speed and model size are critical, 
while DenseNet121 provides more detailed feature 
extraction, beneficial for tasks requiring higher accuracy 
and deeper learning capabilities. 
 
4) Full learning model 

The next architecture to be analyzed in this study is 
one that utilizes the full learning method. The stages 
involved are similar to the previous method, starting 
with the development of the full learning architecture, 
followed by training, validation, and testing phases. 
The architecture that undergoes training, validation, 
and testing is hereafter referred to as the model. The 
key difference from the previous model is that in this 
method, the model is constructed from the ground up, 
where the entire architecture and model parameters 
are manually determined. Figure 6 presents the archi-
tecture of the proposed full learning model. 

The full learning model architecture in this study is 
meticulously constructed using the sequential method. 
This architecture comprises five convolutional layers, 
each designed to capture complex patterns in the 
dataset. The first layer contains 16 filters of size 7x7, 
the second layer has 32 filters of size 5x5, while the 
third, fourth, and fifth layers have 64, 128, and 256 
filters, respectively, all with a filter size of 3x3. Each 
layer utilizes the Rectified Linear Unit (ReLU) 
activation function. Following every convolutional 
layer, there is a max pooling layer of size 2x2, which 
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extracts the maximum value from each grid to reduce 
the spatial dimensions of the feature maps. 

Subsequently, a Global Max Pooling layer is employed 
to further reduce the dimensions of the feature maps 
from three dimensions to one, making them suitable 
for the classification layers. The architecture includes 
two dense layers and one dropout layer for the 
classification process. The first dense layer comprises 
512 neurons with the ReLU activation function. A 
dropout layer with a rate of 0.4 follows the first dense 
layer to reduce model complexity. The second dense 
layer has 13 neurons, aligning with the 13 classes in the 
dataset, and uses the softmax activation function, 
suitable for multi-class classification problems. 

This architecture results in a total of 540,973 
trainable parameters. The training process is conducted 
over 100 epochs to achieve optimal results. This 
methodical approach to building the architecture from 
scratch allows for fine-tuning and adapting each layer 
to the specific requirements of the dataset, potentially 
leading to a more effective model for the given 
classification task. 

Building a model from scratch allows for complete 
customization and control over the model's architecture, 
making it possible to tailor the model specifically to the 
dataset's characteristics and the research objectives. 
This method offers the advantage of a deeper 
understanding of how each component of the model 
contributes to its overall performance. However, it 
requires careful consideration and expertise in 
designing the architecture and selecting appropriate 
parameters to ensure optimal performance. This 
approach is particularly beneficial for exploring 
innovative or non-standard architectures that might 
not be available in pretrained models. 

 
5) Hyperparameter setting 

The training phase is conducted to extract features 
from the input images. During this process, several 
hyperparameters are set and remain constant through-
out the training and validation stages. These hyper-
parameters are crucial as they significantly influence 
the learning process and the overall performance of the 
model. The specific hyperparameters used in this 
research are detailed in Table 2.

 

     
Figure 6 Full learning model. 
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Table 2 Hyperparameters setting 
No Hyperparameter Value 

1 Learning rate 0.0001 
2 Loss function Categorical crossentropy 
3 Evaluation metrics Accuracy, precision, recall 
4 Image size 300 x 300 
5 Batch Size 32 
6 Epochs 100 

 
The learning rate is a parameter that controls how 

much the model adjusts its parameters during the 
training process. In this study, a relatively small learn-
ing rate of 0.0001 is used. This slow rate of parameter 
updates minimizes the loss, allowing for more precise 
model adjustments. The loss function employed is 
categorical crossentropy, which is suitable for multi-
class classification problems. The metrics used are 
accuracy, precision, and recall, serving to display the 
evaluation values of these three metrics at each epoch 
during the training process. Additionally, these metrics 
are used for generating accuracy, precision, and recall 
graphs. During the training, the same hyperparameters 
setting are set for both transfer learning and full 
learning models, except the image size which follows 
the input size of respective architecture, to ensure fair 
comparison. 

The image size used in full learning model is 300 x 
300 pixels, chosen to align with the computational 
capabilities of the equipment used. A larger image size 
would require more parameters in the training process, 
thus increasing the computational power needed. The 
study uses 100 epochs, meaning that the training process 
iterates 100 times. A batch size of 32 is employed, 
meaning that 32 images are processed in each training 
epoch. With a total of 3210 training images and a batch 
size of 32, each epoch involves approximately 100 
training iterations.  

After completing the training and validation processes, 
testing is conducted using the trained model on the 
test set. Testing is performed on new data that the 
model has not previously encountered to assess how 
well the model classifies data accurately. The batch size 
for testing is also set at 32, and no data augmentation 
is done during this process. The results of the testing 
process include an evaluation of accuracy, precision, 
recall, F-1 score, and a confusion matrix. This metho-
dology ensures a thorough evaluation of the model's 
performance, providing insights into its strengths and 
areas for improvement, especially in terms of its ability 
to generalize and accurately classify new data. 

 
 
 

Result and discussion 
1) Training results 
1.1) MobileNetV2 

In the transfer learning process of this study, the 
model undergoes training and testing phases using the 
weights of MobileNetV2, with a key step being the 
freezing of layers in the pretrained model. The purpose 
of freezing layers is to retain the weights in the feature 
extraction layer without retraining them. This approach 
ensures that the pretrained model's learned patterns 
are preserved, leveraging its prior knowledge for the 
current dataset. 

Additionally, modifications are made to the fully 
connected layer to suit the research needs. These 
modifications include adding a dropout layer with a 
rate of 0.2 to reduce the model's complexity, thereby 
decreasing the risk of overfitting. Overfitting occurs 
when a model learns the training data too well, 
including the noise and outliers, which can negatively 
affect its performance on new, unseen data. The drop-
out layer helps in preventing this by randomly dropping 
units from the neural network during training, which 
forces the model to learn more robust features. 
Furthermore, the output layer is altered from 1000 
classes to 13 classes, aligning with the number of 
classes in this study's dataset. This change tailors the 
model more specifically to the task at hand. 

The final architecture results in a total of 3,583,053 
parameters, of which 1,325,069 are trainable, and 2,257,984 
are non-trainable. This division of parameters allows 
for a balance between leveraging the learned features 
from the MobileNetV2 model and fine-tuning the 
model to fit the specific data and classification tasks of 
this study. This strategic combination of pretrained 
knowledge and task-specific adaptation is key to the 
success of transfer learning methodologies. 

The model is evaluated both before and after the 
training phase using the validation set to measure 
accuracy and loss values pre- and post-training. This 
approach provides a clear insight into the model's 
performance improvements due to training. The 
model demonstrates a significant increase in accuracy 
and a decrease in loss value after the training process, 
as indicated in Figure 7. 

Based on Figure 7, both the training and validation 
accuracy curves are close together and plateau at a high 
level, which indicates good generalization. There is no 
significant gap between the two, suggesting that the 
model is not overfitting. The training accuracy starts 
high and remains stable throughout the epochs, which 
could indicate that the model had a good initialization, 
possibly from effective pretraining or an easy-to-learn 
dataset. 
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Figure 7 Training progress of MobileNetV2 model. 

 
Both the training and validation loss curves show a 

sharp decline initially and then level off, which is 
typical and desirable during the training of a neural 
network. This suggests that the model quickly learned 
to reduce errors on the training set and validation set. 
The validation loss closely follows the training loss, 
which again indicates that the model generalizes well 
to unseen data. There is no sign of divergence between 
the two curves, which would suggest overfitting. 

Overall, the figure suggests that the model has 
trained successfully, achieving high accuracy and low 
loss on both the training and validation sets, indicating 
a well-fitting model. The close convergence of training 
and validation lines further suggests that the model 
should perform reliably when making predictions on 
new, similar data. 

The improvement in accuracy and reduction in loss 
is an indication that the model has successfully learned 
from the training data, adjusting its weights and biases 
to better predict the validation set. Such evaluations 
are essential for iterative model development, allowing 
researchers to fine-tune training parameters and 
model architecture to achieve optimal performance. 

 
1.2) DenseNet121 

The training process of DenseNet121 transfer learning 
models follows the same procedure of MobileNetV2 
training with freezing layers to retain the weights in the 
top layers. Similarly, the model is trained with 100 epochs. 
Figure 8 presents the training progress of DenseNet121 
transfer learning model in the perspective of accuracy 
and loss of training and validation datasets. 

 

Figure 8 Training progress of DenseNet121 model. 
 

Similar to the training of MobileNetV2 models, the 
accuracy curves for both training and validation start 
high and plateau, indicating that the model quickly 
reaches a high level of accuracy and maintains it, which 
is indicative of effective learning. The close proximity 
of the training and validation accuracy lines suggests 
that the model generalizes well and is not overfitting to 
the training data. 

The loss curves for both training and validation 
sharply decrease at the beginning and then level off, 
which is typical of neural network training. This 
indicates that the model rapidly minimizes the loss 
function at the start of training. The validation loss 
closely mirrors the training loss throughout the training 
process, which again suggests the model has good 
generalization capabilities. As compared to the training 
of MobileNetV2 models, the gap between training and 
validation loss of DenseNet121 models are narrower, 
which indicates that it has better generalization 
capabilities of the model. 

 
1.3) Full learning model 

Unlike the transfer learning models, during the 
learning process, all layers and parameters of full 
learning model are trained. The training is executed 
using the hyperparameters value set in Table 2. The 
graph of accuracy and loss for training and validation 
datasets of full learning model during the training 
process are presented in Figure 9.
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Figure 9 Training progress of full learning model. 

 
Based on Figure 9, the training accuracy steadily 

increases over the 100 epochs, which indicates that the 
model is learning from the training data. The validation 
accuracy also increases, but it plateaus and fluctuates 
more than the training accuracy. This fluctuation could 
suggest the beginning of overfitting or a model that is 
less stable on the validation data. 

The training loss decreases over time, showing that 
the model is increasingly fitting the training data well. 
The validation loss decreases initially but then starts to 
fluctuate and even slightly increase towards the later 
epochs. This behavior is a potential indicator of 
overfitting, as the model starts to learn the noise in the 
training data rather than generalizable patterns. 

Unlike the previous models, where training and 
validation lines were close and stable, this figure shows 
more separation between training and validation lines, 
especially in the loss graph. The previous graphs showed 
a model that had very little change in validation loss 
and accuracy, maintaining a high level of performance 
across epochs. In contrast, this figure suggests that the 
model's performance on the validation set is less stable 
and possibly overfitting towards the end of the training 
epochs. While the model is still learning and improv-
ing its performance on the training set, the divergence 
in the validation metrics suggests that it may not 
generalize as effectively to new data. The increased 
fluctuation in the validation metrics implies that the 
model may be capturing noise rather than underlying 
patterns in the later stages of training. 

 
1.4) Training results comparison 

Figure 10 presents the comparison of indicators 
obtained by the models after training. Based on the 

evaluation results of the accuracy, precision, and recall 
matrices across all epochs used on the training and 
validation data for each type of constructed model, it 
can be concluded that the transfer learning 
DenseNet121 model produces the best results among 
the other models used. The DenseNet121 model shows 
the best outcomes on both training and validation 
data, with a positive upward trend during training and 
no indication of fluctuating data, suggesting that there 
are no signs of overfitting. 

 
Figure 10 Comparison of training results. 

 
The image above illustrates a comparison among 

the models based on accuracy, loss, precision, and recall 
metrics for training and validation data. This com-
parative analysis helps to highlight the relative strengths 
and weaknesses of each model and underscores the 
superior performance of the DenseNet121 model in 
terms of consistent learning and generalization without 
overfitting to the training data. Such a comparison is 
vital for selecting the most effective model for deploy-
ment in real-world applications. 

In Figure 10, it is observed that the transfer learning 
DenseNet121 model generally achieves the most 
optimal results compared to the other models, except 
in the loss metric where DenseNet121 has a slightly 
higher loss of 0.0193 compared to MobileNetV2's loss 
of 0.0053. However, this difference in loss is not 
significant, and overall, the DenseNet121 model per-
forms better in other metric aspects, making it the best 
model of those tested. 

The MobileNetV2 model also displays commendable 
results, although its performance is slightly less favorable 
than that of DenseNet121. Despite this, both the 
DenseNet121 and MobileNetV2 transfer learning models 
have achieved good results and are deemed imple-
mentable, having reached a satisfactory point of 
convergence. 

On the other hand, the full learning model is 
considered less optimal compared to the two other 
models because it exhibits inferior results across all 
evaluation metrics used. The loss metric, in particular, 
draws attention in the full learning model, with a 
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significant difference from the other models, register-
ing a loss value of 0.54. This indicates a need for further 
adjustments and improvements in the full learning 
model to enhance its performance and bring it closer 
to the standards achieved by the pretrained models. 

In the perspective of efficiency, the model that 
requires the shortest training time is the transfer 
learning MobileNetV2, clocking in at 173.95 min. In 
contrast, the DenseNet121 model requires the longest 
training time, amounting to 189.87 min. This difference 
is attributable to the varying number of parameters 
used in each model. 

Considering the comparisons across various factors, 
it can be concluded that the transfer learning Dense 
Net121 model delivers the most optimal results. The 
DenseNet121 model is deemed successful in addressing 
the challenges posed in this research, demonstrating 
the most favorable outcomes with the constructed 
dataset. Therefore, based on the training phase eva-
luations, the DenseNet121 model is the best choice for 
solving multi-class waste classification problems due 
to its highest accuracy rate. 

 
2) Test results 

The testing phase is conducted using the test set to 
evaluate the model's accuracy after training with new 
image data that the model has not previously en-
countered during the training process. This step is 
critical as it assesses the model's generalization capa-
bilities and its effectiveness in classifying unseen data. 
It serves as a measure of how well the model can be 
expected to perform in real-world scenarios, where it 
will encounter images that were not part of its training 
dataset. Ensuring a robust testing phase is essential for 
validating the practical applicability of the model. 
Based on the testing results using the same test set for 
each model, a comparison of accuracy on the test set 
data was conducted among the three constructed models. 
The outcomes of this comparison can be viewed in 
Table 3. 

According to Table 3, all models perform well on 
the test data in terms of accuracy. Both transfer learn-
ing models achieved an accuracy above 0.90, and the 
full learning model reached an accuracy of 0.65. High 
accuracy across all data classes indicates that the 
transfer learning models can predict correctly with a 
high degree of reliability. 

In addition to accuracy, the precision values for the 
three models show that the transfer learning models 
yield satisfying results, with the DenseNet121 model 
displaying a precision of 0.95 and the MobileNetV2 
model showing a precision of 0.92. On the other hand, 
the full learning model has less satisfactory precision, 

with a value of 0.65. Precision indicates how often the 
model accurately predicts a given class when it predicts 
that class. 

The next metric, recall, shows that the highest recall 
value is from the DenseNet121 transfer learning model 
at 0.95, followed by the MobileNetV2 model at 0.91, 
with the full learning model at 0.64. Recall measures 
how often the model correctly identifies an actual class 
A as class A. The final metric, the F1 Score, which is the 
harmonic mean of precision and recall, shows the 
DenseNet121 transfer learning model with the highest 
value of 0.95, followed by the MobileNetV2 model at 
0.92. The full learning model has the lowest F1 Score 
at 0.65. The F1 Score is a balanced metric that con-
siders both false positives and false negatives, giving a 
more comprehensive view of the model's performance. 

These metrics suggest that the DenseNet121 model 
is the most robust among the three, offering the best 
balance between precision and recall, which are critical 
in a multi-class classification setting. It implies that 
DenseNet121 is not only accurate but also consistent 
in its predictions across various classes. The overall 
performance makes DenseNet121 the preferred model 
for tasks requiring high reliability in predictions. 
Further, the detailed analysis of the model’s perfor-
mance in each class is presented in Figure 11. 

Based on Figure 11, it is apparent that the accuracy 
of test data among the three models is reported. Both 
models employing transfer learning techniques perform 
exceedingly well, with each achieving accuracy rates 
above 0.90 in most data classes. However, the 
DenseNet121 model edges out with superior accuracy 
on the test data, particularly in certain classes such as 
LDPE and paper, where it outperforms the Mobile 
NetV2 transfer learning model. 

Conversely, the full learning model shows lower 
accuracy compared to the transfer learning models, 
with the highest accuracy for this model being 0.81 for 
PCB e-waste, while the lowest being 0.29 for metal. 
The higher accuracy in the transfer learning models is 
likely due to the pretrained knowledge about general 
features relevant to the data classes involved in this 
research. 

Transfer learning models benefit from the know-
ledge gained from large, diverse datasets like ImageNet, 
which often results in a model that is better at 
extracting and generalizing the essential features from 
the input data. This pre-existing knowledge base 
allows the model to quickly adapt to the specific tasks 
of the current research, leading to higher performance 
levels on test data. The detailed performance in each 
class is depicted in the confusion matrix of the three 
models, presented in Figures 12–14.
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Tabel 3 Comparison of testing results 
Model Accuracy Precision Recall F-1 Score Training time (min) 

DenseNet121 Transfer learning model 0.95 0.95 0.95 0.95 189.87 
MobilenetV2 Transfer learning model 0.92 0.92 0.91 0.92 173.95 
Full learning model 0.65 0.65 0.64 0.65 183.89 

 

 
Figure 11 Accuracy comparison across all classes. 

 

 
Figure 12 Normalized confusion model MobileNetV2 transfer learning matrix. 
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Figure 13 Normalized confusion matrix DenseNet121 transfer learning model. 

 

 
Figure 14 Normalized confusion matrix full learning model. 
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Based on Figure 12, the waste classes that show 
suboptimal performance in MobileNetV2 model 
compared to other classes are glass and metal. The 
accuracy for the glass and metal classes did not exceed 
0.82. This could be due to the model's difficulty in 
distinguishing between the glass and PP classes, as 
both have similar characteristics, such as transparency, 
leading to a higher number of false negatives where 
actual positive instances are incorrectly predicted as 
negative by the CNN model. In addition, the model 
may struggle to differentiate between metal and PVC, 
as they both can exhibit similar features, like a gray 
color, which can confuse the model and affect its 
classification accuracy.  

A similar pattern is also recorded for the Dense 
Net121 model shown in Figure 13 in which the lowest 
accuracy was obtained by both glass and metal classes. 
Some of the false negatives encountered within the 
glass waste class occur when the model incorrectly 
predicts glass as non-PCB e-waste, PP, PS, PCB-
containing e-waste, or metal. For metal classes, the 
model exhibits some errors in identifying the metal 
class, mistakenly detecting it as other classes, including 
PET, PVC, PS, non-PCB e-waste, and wood. This 
misclassification may arise because these materials 
share visual properties with glass, such as shininess, 
rigidity, or color.  

Meanwhile, for the full learning model, the accuracy 
in each class is significantly lower than the transfer 
learning models. Certain classes like glass and metal 
show significant confusion with other materials, as 
indicated by the lower diagonal values (0.39 for glass 
and 0.29 for metal) and higher misclassification rates 
with other classes. Classes like HDPE and LDPE also 
show some confusion with each other, which is under-
standable given their material similarities. In overall, 
improvements are required to increase the performance 
of full learning model. Some techniques for improvement 
might include collecting more diverse data for these 
classes, implementing class-specific data augmentation, 
or adjusting the model architecture to better capture 
the distinguishing features of these materials. 

 

 
Figure 15 Inference time per sample. 

The comparison of testing results also takes into 
account the testing/inference time for each model used 
in this research. The comparative testing times can be 
viewed in Figure 15. According to this figure, the full 
learning model has the shortest testing time at 0.352 
milliseconds, followed by the DenseNet121 transfer 
learning model at 0.362 milliseconds, and the 
MobileNetV2 transfer learning model has the longest 
testing time at 0.374 milliseconds. 

The full learning model's shortest testing time can 
be attributed to its lower complexity relative to the 
other models, which likely contain more hidden layers 
and parameters. Fewer layers and parameters can lead 
to faster inference times, as there are less computations 
for the model to process when making predictions. 

While shorter testing times are advantageous, 
especially in real-time applications or when processing 
large datasets, it's important to balance speed with 
accuracy and robustness of the model. Although the 
full learning model is faster, it may not necessarily 
perform as well in terms of accuracy when compared 
to more complex models like DenseNet121 and 
MobileNetV2. Therefore, when selecting a model for 
deployment, the specific application requirements 
must be considered, including the acceptable trade-off 
between speed and performance. 

 
3) Discussion, implication, and limitation 

Based on the comparison of training and testing results, 
it can be concluded that the best-performing model is 
the DenseNet121 transfer learning model. This is supported 
by the performance on both training and testing data 
for the DenseNet121 model, which generally surpasses 
the other models. The Mobile NetV2 transfer learning 
model also performs well, with results that are compe-
titive with DenseNet121. However, despite its good 
performance, the overall outcomes from the Mobile 
NetV2 model are not better than those of the Dense 
Net121 transfer learning model. 

Furthermore, the full learning model shows inferior 
results compared to the other models used. One possible 
reason for this could be that the hyperparameters 
employed were not ideally suited for the problem 
addressed in this research. To optimize results, compre-
hensive experimentation on the hyper-parameters, 
such as the number of layers, number of filters, filter 
sizes, number of neurons, activation functions, regulari-
zation, learning rate, and batch size, would be necessary. 

A too small number of epochs could also contribute 
to suboptimal model results. However, using a large 
number of epochs can risk overfitting, where the model 
learns the training data too well but struggles to 
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generalize to new data, leading to a significant discre-
pancy between training and testing accuracy. 

Additionally, full learning models require a large 
amount of data to effectively learn patterns and features 
from the input images from scratch, thus classifying 
inputs well. It is possible that the amount of data per 
class used in this research has not been sufficient for 
the full learning model to achieve high accuracy. On the 
other hand, transfer learning methods have an advantage 
in this regard, as those models have already been trained 
on large and diverse datasets. Therefore, transfer 
learning models are more adept at learning and recog-
nizing features and patterns in new images because 
they have prior knowledge of potential features in each 
class, making classification easier. To address this 
issue, next study can develop a large size database for 
waste images which can be used for training full 
learning models effectively. 

This research has the capability to classify waste 
types more intricately by introducing new waste classes 
not covered in previous studies, such as electronic waste, 
clothing, and wood. Generally, this study has the 
potential to advance the field of waste management. 
The expected benefits from this research include 
increased recycling efficiency, integration with auto-
mated sorting systems, development of applications, 
machine learning enhancements, and reduction of 
environmental pollution. The limitations of this study 
could provide opportunities for future research 
development, which include: 

•  Object detection improvement: Since the current 
technique is image classification, the model requires 
input images to contain only one object per data class 
for accurate detection. If multiple objects are present 
in a single input image, the model may struggle to 
detect the correct class. To overcome this issue, object 
recognition techniques can be employed, which can 
detect multiple objects within a single input image. 

•  Interpretability enhancement: This study utilizes 
a form of CNN that is unexplainable, meaning the 
internal decision-making process of the model is not 
transparent to the researchers. Future research could 
focus on explainable artificial intelligence (XAI) to 
understand how the model processes and classifies 
input images. 

•  Data volume for full learning models: The number 
of data points per class is considered insufficient for 
creating a robust full learning model, which requires a 
significant amount of data. This limitation was due to 
the researcher's resource constraints. Future studies 
with access to larger datasets could enhance the model's 
performance. 

Class representation: The waste classes used in this 
study do not represent all the waste types produced. 
Classes such as organic waste, cardboard, rubber, etc., 
were not included. Future studies could expand on the 
types of waste classified to create a more comprehensive 
waste management solution. 

In addition, for further investigation, it would be 
beneficial to explore a range of convolutional neural 
network architectures beyond MobileNetV2 and 
DenseNet121 to enrich the comparative analysis and 
potentially improve classification accuracy. State-of-
the-art architectures such as ResNet50, MobileNetV3, 
and EfficientNet could offer unique advantages due to 
their varying depths, complexities, and approaches to 
handling convolutional operations. ResNet50, known 
for its residual learning framework, could enhance the 
learning of deeper networks without the vanishing 
gradient problem. MobileNetV3, optimized for mobile 
and edge devices, might offer a more efficient inference 
time while maintaining high accuracy. EfficientNet, 
which scales model size in a more structured way to 
achieve better accuracy and efficiency, could provide a 
balance between accuracy and computational resources. 

Incorporating these improvements into future research 
could lead to more advanced, accurate, and interpre-
table models for waste classification and management, 
contributing to environmental sustainability and the 
efficiency of recycling processes in developing countries, 
such as in Indonesia. 

 
Conclusion 

This study examines urban waste management 
identification using a deep learning approach based on 
image classification, employing a new dataset compiled 
from publicly accessible collections. The author aggre-
gated relevant datasets, including Trashnet, Trashbox, 
Clothing, Garbage Classification, Waste from Sushi 
Restaurants, and Most Common Recyclable and Non-
Recyclable Objects, resulting in a new dataset of 4,586 
images across 13 classes. This dataset was then divided 
into training (3,210 images), validation (688 images), 
and testing (688 images) subsets. Model development, 
training, and testing yielded several insights. Three 
models were built using two distinct techniques: 
transfer learning with MobileNetV2 and DenseNet121, 
and a build-from-scratch approach. The DenseNet121 
transfer learning model excelled in training and testing, 
achieving 0.95 accuracy, while MobileNetV2 also 
performed well with 0.92 accuracy. The full learning 
model did not converge satisfactorily by epoch 100 and 
showed signs of overfitting, with a test accuracy of 0.65. 
Overall, the DenseNet121 transfer learning model 
surpassed the other models in most evaluation metrics 
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and showed the best performance in classifying the 13 
waste classes. Despite DenseNet121's longer training 
time due to its larger number of trainable parameters 
(8,018,829), it was identified as the superior model for 
waste classification. The testing times for the three 
models are closely matched, averaging around 0.35 
milliseconds per sample. This minimal variance suggests 
that each model can efficiently process data in near 
real-time, making them all suitable for real-time waste 
identification applications where quick decision-
making is crucial. 
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