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Abstract 
Forests serve as carbon sink by storing and sequestrating carbon dioxide from 

the atmosphere. Forest cover loss adversely affects communities by increasing 
risks to the shortage of carbon storage. This study provides a comprehensive 
understanding of forest fragmentation and assessment of forest cover changes 
impacts on carbon storage over Nan province during 1990 to 2019. Spatial and 
temporal patterns were explored using landscape metrics analysis. Forest areas 
declined 10.69% over 30 years using random forest classifier based on Google 
Earth Engine platform, with an overall accuracy of 97.10%. The highest rate of 
forest cover changes was 5.27% (2010 to 2014), indicating intensive agricultural 
expansions. Distribution of non-forest areas increased around 11.81% in the 
watershed classification 1 and 2. Ban Luang district revealed a strong local 
community, representing district with no decline on forest cover changed rate 
(2007 to 2019). In contrast, Chaloem Phra Kiat district, involving economic 
growth at border crossing, presented high rate of forest cover changes. Landscape 
metric analysis explained changes of forest areas in size, number of patches, 
distance, and spatial distribution of fragments. More than four-fold increasing 
of forest patches over the last three decades was detected. Contagion Index and 
Shannon’s Diversity Index indicated more heterogeneity in forest size, caused by 
crop plantations. Maize and para rubber expansions are principal causes 
inducing the increase of forest patches. Carbon storage spatial distribution was 
discovered, using carbon storage and sequestration modeling based on the 
InVEST software. Carbon storage in the years 1990, 1998, 2007, 2010, 2014, and 

2019 were 290.17×106 MgC, 284.94×106 MgC, 269.91×106 MgC, 269.83×106 

MgC, 253.05×106 MgC, and 260.85×106 MgC, respectively. The findings will 
support carbon market development, generating population income from forest 
resources. This study provides strong evidence to encourage policymakers for 
the actions on forest conservations and climate change mitigation in Thailand. 
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Introduction 
 Forest areas accounted for 31.68% of land area in 
2019, which most forest areas are the property of the 
country. The largest forest area is in the Northern part 
of Thailand, where 52.46% of the area is covered by 

forest [1]. Recently, conversion of forest to other land 
use types adversely affects local communities by signi-
ficant increasing risks to the shortage of ecological 
resources and poor human well-being. Forest fragmen-
tation, which has not been well studied in Thailand, is a 
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dynamic process of transforming formerly large and 
continuous forest areas into small and isolated patches. 
It affects the delivery of ecosystem services such as 
change in climate, less of biodiversity, and insufficiency 
of global carbon storage [2]. The latter indicates forest 
carbon stocks in an ecosystem at any given point of 
time. Consequently, Thailand has established a national 
goal to increase natural forest cover up to 33% of the 
land area by 2027. Moreover, the country actively 
affords to promote and develop carbon market systems 
to generate income from carbon storage in the forestry 
sector [3]. However, timely and reliable information on 
spatial and temporal of forest cover change at the 
regional level is still lacking. Limitation of impacts 
assessment on ecosystem services also encounters the 
lack of technical skills, cyberinfrastructure, and a 
knowledge gap of remote sensing technology. Hence, 
understanding and identifying changes in the forest, 
particularly through the utilization of remote sensing 
data, are currently challenging for forest monitoring 
and decision-making processes. 
 Remote sensing technology is a potential tool to 
monitor forest cover change with more accurate and 
up-to-date information than traditional ground 
observation method [4]. Recently, random forest (RF) 
classifier through Google Earth Engine (GEE) plat-
form has been used for long-term forest cover change 
at the regional scale [5–7]. RF is less sensitive to training 
sample qualities and require less time for model training 
compared to other classifiers [8–9]. GEE is designed to 
store and process large data sets by using Google’s 
computing infrastructure. Additionally, Modified Soil-
Adjusted Vegetation Index (MSAVI) derived from 
satellite image is used to maximize the reduction in soil 
background effects and increase the dynamic range of 
vegetation signals [10–12]. Our earlier study revealed the 
utilization of Sentinel-2 spectral bands, Modified Soil-
Adjusted Vegetation Index (MSAVI), and topographic 
variables yielded the highest overall accuracy exceeding 
95% for land use land cover (LULC) classification in 
mountain area [13].  
 Several studies investigated forest fragmentation by 
calculation of landscape metrics based on FRAGSTATS 
software [14–18]. Landscape metrics have been proved 
to define landscape patterns, to compare the spatial 
heterogeneity among different landscapes, assess 
fragmentation, and to evaluate the spatial effects on 
ecosystem services [19–21]. FRAGSTATS, the first 
stand-alone software, has been widely used to quantify 
the changes of landscape characteristics to increase 
understanding of historical forest cover change.  
 More than half of the global forest carbon stocks is 
stored in their biomass [22]. Multiple researchers have 

shown that the Integrated Valuation of Ecosystem 
Services and Trade-offs (InVEST) tool could estimate 
the carbon storage for forest area in a reliable way [23–
25]. The advantages of InVEST include requirement of 
fewer input data, less skill on modelling, and production 
of more output data compared to other ecosystem 
services modelling tools. InVEST enables efficient 
mapping and quantification of ecosystem services as 
well as aiding in understanding the relation and impact 
of forest cover change on ecosystem services. 
 This study addresses research gaps by providing a 
comprehensive understanding of forest fragmentation 
and assessment of forest cover change impacts on 
carbon storage over Nan province during 1990 to 2019. 
The spatial patterns of forest cover change were 
characterized by the temporal changes in landscape 
metrics based on FRAGSTAT software, concerning 
forest management policies. Thus, the objective of this 
study was to determine the consequence of forest cover 
changes on carbon storage using InVEST tool, which 
will enable stakeholders to participate effectively in 
carbon markets and generate income from their forest 
resources. Additionally, the findings can be used to raise 
awareness on the importance of forests and ecosystem 
services as well as to contribute insight data for policy-
makers to drive sustainable forest management 
strategies in Thailand. 
 
Materials and methods 
1) Study area 
 Nan province locates in the easternmost part of 
Northern Thailand (central geographic coordinates 
100°46'44.36" E longitude and 18°47'1.61" N latitude). 
It encompasses a total area of approximately 12,142.12 
km2, comprising 15 districts and 99 sub-districts. The 
climate type is tropical savanna climate or tropical wet 
and dry climate in the Köppen-Geiger climate type map 
(Aw) [26]. Main characteristic of this province is mountain 
area (87.2%) at 600-1,200 meters above mean sea level 
with an average slope exceeding 30%. Dominating forest 
ecosystems include mixed deciduous forest, evergreen 
forest, and dry dipterocarp forest. 
 Legally, nearly 85% of Nan province was declared 
the National Forest area, but 24% of the forest area has 
been encroached upon. Deforestation has become a 
chronic problem in Nan province. Moreover, the land 
with a slope of 35% or more was defined as forest land 
that cannot be sought for title deed or land use 
certificate from the authorities. Thus, Nan becomes one 
of the top three provinces with the highest poverty rate 
in Thailand. On the other hand, mountainous area in 
Nan province is the headwaters of Nan River which 
contributes over 40 percent of the water into Chao 
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Phraya River, supplying the significant country’s water 
resources. Environmental changes in Nan Province could 
have potential to cause major downstream effects im-
pacting many provinces and people along the river. 
Therefore, the urgent issues in this area are reforest-
ation and ecological restoration. Given the fact that 
ecological, socio-economic, and strategic factors as well 
as highlighting the need for sustainable land management, 
Nan province is a critical area for this study. 
 
2) Data acquisition 
 Data used in this study were Landsat-5 TM, Landsat-8 
OLI, Sentinel-2 MSI, satellite-derived products, ground 
observation data, and other auxiliary variables. The 
dataset originated from our research [13], allowing 
intensive examinations of forest cover change and 
associated ecosystem services. 
 
2.1) Optical satellite data and auxiliary variables 
 Landsat-5 TM, Landsat-8 OLI, and Sentinel-2 MSI 
images during 1990 to 2019 were used in this study. The 
specific satellite bands employed as input parameters were 
given in Table 1. False color composites (RGB: SWIR, 
NIR, blue) of each satellite image were displayed in 
Figure 1.  Elevation and slope maps were derived from 

Shuttle Radar Topography Mission (SRTM) digital 
elevation models (DEM) 1 arc-second global data in 
WGS84 Geoid reference datum. The range of elevation 
is between 124 and 2,062 above mean sea level. All 
datasets were freely acquired from the U.S. Geological 
Survey (USGS) website as integrated in Google Earth 
Engine (GEE) platform. Furthermore, administration 
boundaries were acquired from the Geo-informatics 
and Space Technology Development Agency (GISTDA). 
 
2.2) Ground observation data 
 A total of 13,140 points were collected extensively 
over the entire study area during the growing season in 
2019 (Figure 2). Digital photographs, geocoordinates, 
and detailed descriptions of LULC classes (i.e., agri-
cultural land, built-up area, forest, Para rubber trees, 
maize, and water) were recorded through ground 
observations. In addition, the regions of interest (ROIs) 
for each LULC class were delineated by visual inter-
pretation of high-resolution images in Google Earth 
based on a high level of knowledge on LULC data 
according to past and ongoing fieldwork activities [27–
28]. The collected data and ROIs were utilized for the 
training on random forest classification and accuracy 
assessment of forest cover maps.

 
Table 1 Overview of satellite datasets utilized in the analysis 

Satellite Resolution (m) Band/Mode Acquisition 

Landsat-5 TM 30 Visible (band 1 - 3) 
NIR (band 4) 

SWIR (band 5) 

1990, 1998, 2007, 2010 

Landsat-8 OLI 30 Visible (band 2 - 4) 
NIR (band 5) 

SWIR (band 6) 

2014 

Sentinel-2 MSI 10, 20 Visible (band 2 - 4) 
NIR (band 8)  

SWIR (band 11) 

2019 

 

 
Figure 1 Satellite images for the analysis during 1990 to 2019. 
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Figure 2 Ground observation map in Nan province. 

 
3) Forest cover change using random forest model based 
on Google Earth Engine platform 
3.1) Satellite image pre-processing 
 Landsat-5 TM, Landsat-8 OLI, and Sentinel-2 MSI 
surface reflectance images were retrieved from GEE 
repository. The surface reflectance product was chosen 
for analysis as it has already been corrected for radio-
metric and atmospheric effects. All selected satellite 
data were calculated to derive the median image for 
each study year followed by clipping to the study area 
boundary. The satellite images were projected in the 
geographic coordinate system (GCS), world geodetic 
system 1984 datum (WGS84). The study area was situated 
in the mountainous region, experiencing frequent cloud 
cover conditions. Therefore, cloud and cloud shadow 
masking operations were implemented to avoid error 
classification. The C programming language imple-
mentation of Function of Mask (CFMask) algorithm 
was used to generate the pixel quality assurance band 
from Landsat surface reflectance images [29]. Meanwhile, 
the QA60 band was used to mask out clouds from the 
Sentinel-2 surface reflectance images [30]. Subsequently, 
Modified Soil-Adjusted Vegetation Index (MSAVI) was 
calculated from selected images to increase classification 
accuracy [13, 31–32]. MSAVI is calculated by Eq. 1. 

        MSAVI =  2𝑁𝑁𝑁𝑁𝑁𝑁+1−�(2𝑁𝑁𝑁𝑁𝑁𝑁+1)2−8(𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅)
2

               (Eq. 1) 

 
  where NIR is the reflectance in the near-infrared 
band and RED is the reflectance in the red band. 
 
3.2) Forest cover change detection using a pixel-based 
RF classifier 
 RF supervised machine learning algorithm based on 
GEE platform was initially utilized to produce LULC 
maps (agricultural land, built-up area, forest, para rubber, 
maize, and water classes) as input parameters for land-
scape metrics and carbon storage analysis. It was also 
used to produce forest and non-forest maps in 1990, 
1998, 2007, 2010, 2014, and 2019, coinciding with 
forest management policies over the study period. 
Optical satellite products, elevation, and slope data 
were integrated as features of the classifier input. 
Annual cloud free composites of each chosen year were 
created by using the median reflectance pixel values of 
the collection [33]. To deliver a reliable error estimation 
and maintain the computation time, a minimum of two 
tuning parameters, which are the number of classifica-
tion trees (ntree) desired setting at 100 random decision 
trees and the number of predictor variables used to split 
a node (mtry) setting at the square root of the number 
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of input variables, were used [34]. All input data were 
resampled to a resolution of 10 m using a bicubic 
interpolation to harmonize the different datasets [35]. 
Forest cover change during six consecutive periods: 
1990–1998, 1998–2007, 2007–2010, 2010–2014, 2014–
2019, and 1990–2019 analyzed by post-classification 
comparison method were carried out [36]. 
 
3.3) Accuracy assessment 
 A confusion matrix was applied to determine the 
accuracy assessment of forest cover change classification. 
This matrix was widely acknowledged as the standard 
descriptive reporting tool for accuracy assessment in 
remote sensing studies [37]. Ground observation data 
were randomly selected to train the RF classifier, utilizing 
70% of pixels from each class and the remaining 30% 
of pixels for validation [9, 38]. The confusion matrix 
was used to compute the overall accuracy (OA), user’s 
accuracy (UA) and producer’s accuracy (PA). OA value 
represented the average percentage of correctly classified 
pixels. The OA value ranged from 0 (no pixel correctly 
classified) to 1 (100% of pixels accurately assigned). UA was 
the measurement of commission error (overestimation) 
while PA was the measurement of omission error 
(underestimation). 
 
 4) Forest management policies in Nan province 
 Forest utilization regulations, forest protection and 
development planning, land management strategies 
were collected from various publications, reports, internet 
sources and government documents. Watershed classi-
fication (WSC) regulation was used to classify areas for 
watershed protection, production forestry, and agriculture 
based on an agreement among state agencies [39]. 
Watershed areas have been divided into five watershed 
classes including WSC1-WSC5. 
 WSC1 is the protection or conservation of forest 
and headwater sources with steep slope (more than 
50%). It was divided into two classes including 1A 
(permanent forest cover areas) and 1B (permanent 
forest areas which should be reforested or maintained 
in permanent agroforestry). WSC2 is a commercial 
forest area with slope 35-50%, whereas WSC3 is used 
for grazing, commercial forest areas, and crop planta-

tion with slope 25-35%. WSC4 is upland farming with 
slope 6-25%, suitable for row crops and grazing with 
moderate use of soil conservation measures. Lastly, 
WSC5 is lowland farming with very gentle or flat slope 
(less than 6%), suitable for crop plantation with few 
restrictions. This information was utilized as supporting 
input as the driving forces to control forest cover changes 
expansions. 
 
5) Landscape metrics analysis 
 FRAGSTATS spatial pattern analysis software was 
utilized to quantify the forest cover change patterns of 
each individual image classification (1990, 1998, 2007, 
2010, 2014, and 2019). Six metrics including Number 
of patches (NP), Patch density (PD), Largest patch 
index (LPI), Euclidean Nearest Neighbor (ENN), 
Contagion Index (CONTAG), and Shannon’s Diversity 
Index (SHDI) were selected and calculated at the class 
and landscape levels. These metrics were suitable for 
spatial pattern analysis in explaining the dynamic of 
forest changes [40–42]. The metrics used in this study 
were briefly described in Table 2. 
 
6) Ecosystem services assessment: Carbon storage analysis 
 The carbon storage and sequestration model within 
InVEST tool was utilized to estimate the net amount of 
carbon stored in a land parcel over time. This esti-
mation was calculated using Eq. 2. 
 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +  𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     (Eq. 2) 
 
 where, Ctotal denoted the total amount of carbon 
storage in megagrams per pixel of carbon; Cabove, 
Cbelow, Csoil, and Cdead denote the amount of carbon 
stored (carbon density) in aboveground biomass, 
belowground biomass, soil organic matter, and dead 
organic matter, respectively [43]. The model summarized 
results into a raster output of the spatial distribution of 
carbon storage. The amount of carbon storage was 
expressed in MgC per grid cell, which was a sum of all 
carbon pools. All input data were converted into units 
in accordance with the model required and categorized 
into appropriate formats as presented in Table 3. 

 
Table 2 List of the six metrics used at class and landscape level 

Metrics Level Description 

Patch density (PD) Class The PD range is more than 0, constrained by cell size. PD provides indications on the 
fragmentation degree of the different land cover types. 

Number of patches 
(NP) 

Class The total number of patches corresponding to forest class in the landscape. The NP 
range is NP ≥ 1 without limit. NP = 1 when the landscape contains only single patch 
of the corresponding patch type. 
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Table 2 List of the six metrics used at class and landscape level (continued) 

Metrics Level Description 

Largest patch index 
(LPI)  

Class The percentage of the forest class consists of the single largest patch at the class level. 
The LPI range is 0 to 100. LPI approaches 0 when the largest patch of the 
corresponding patch type is increasingly small, while LPI = 100 when the entire 
landscape consists of a single patch of the corresponding patch type. LPI provide 
indications on the fragmentation degree of the different land cover types. 

Euclidean Nearest 
Neighbor (ENN) 

Class ENN is one of the isolation metrics, which is used extensively to quantify the degree 
of spatial isolation of patches. It is the shortest straight-line distance (m) between a 
focal patch and its nearest neighbor of the same class, summarized at the patch, class 
or landscape levels. The ENN range is ENN > 0 without limit. ENN approaches 0 as 
the distance to the nearest neighbor decreases. 

Contagion Index 
(CONTAG) 

Landscape Measure of all patch types present in a landscape affected by adjacency and 
disaggregation. The CONTAG range is 0 < CONTAG ≤ 100. It approaches 0 when 
the distribution of adjacencies among unique patch types becomes increasingly 
uneven, while 100 means all patch types are equally adjacent to all other patch types. 

Shannon’s Diversity 
Index (SHDI) 

Landscape The proportional abundance of each patch type. Measure of diversity within 
landscape. The SHDI range is SHDI ≥ 0 without limit. SHDI approaches 0 when the 
landscape contains only 1 patch (no diversity). 

 
Table 3 Data acquired in carbon storage and sequestration model 

Data Description 

Land use land cover (LULC) maps 
 

LULC maps were examined using random forest classifier between 1990 and 2019. 
Six LULC classes including agricultural land, built-up area, forest, para rubber, 
maize, and water were used in the model.   

Table of carbon pools (.csv) Carbon stored in aboveground biomass, below-ground biomass, soil organic matter, 
and dead organic matter of six LULC classes. As per the carbon pool value, 
Agricultural land: C_above = 7.2, C_below = 1.9, C_soil = 62.44, C_dead = 1.1 [44 – 45]; 
Built-up area: C_above= 15, C_below = 3.8, C_soil = 41, C_dead = 0 [45 – 46]; 
Forest: C_above = 134, C_below = 27.6, C_soil = 90.6, C_dead = 3.6 [44 – 45]; 
Para rubber: C_above = 56.7, C_below = 9.9, C_soil = 74.3, C_dead = 7.4 [45 – 46]; 
Maize: C_above= 5, C_below = 2, C_soil = 10, C_dead = 0 [45 – 46]; 
Water: C_above= 0, C_below=  0, C_soil = 0, C_dead = 0 [46]. 

 
Results and discussion 
1) Forest cover change maps and rate of changes 
 Over the last three decades, the major types of LULC 
were forest area which periodically changed over time 
in Nan province. Similar results from this and previous 
studies indicated that maize and Para rubber trees were 
the dominant monoculture crops in the study area [13]. 
Focusing on forest cover type, forest area occupied 
70.28%, 68.74%, 67.95%, 66.35%, 62.86%, and 62.77% 
of the study area in 1990, 1998, 2007, 2010, 2014, and 
2019, respectively. The analysis revealed that the RF 
model through GEE platform yielded good accuracy 
with an overall accuracy higher than 90%. The overall 
accuracy (OA), user’s accuracy (UA) and producer’s 
accuracy (PA) of forest cover classification were 97.10, 
0.96, and 0.97, respectively. Classification process of 
this study showed accuracy higher than those in 
previous studies at the same area using MLC algorithms 

[47–48]. The spatial distribution of forest cover maps 
was illustrated in Figure 3. 
 The percentage of forest cover changed rate was 
presented in Figure 4. Forest area declined from 
8,533.67 km2 in 1990 to 7,621.22 km2 in 2019, 
accounting for 10.69%, while non-forest area increased 
25.29% of the study area. The largest rate of non-forest 
area increased by 10.37% during 2010-2014, followed 
by 5.19% in the study period of 1990-1998. The highest 
rate of forest changes was 5.27% during 2010-2014, 
which was the expansion of maize and para rubber 
plantations. Meanwhile, the lowest forest changes rate 
accounting for 0.15% was noticed during 2014-2019. 
This may be due to the strategic action plan to end 
forest encroachment with the aim toward reducing 
adverse effects on the environment. The strategic action 
plan is management of natural resources and environ-
ment by civil society contribution [49]. This is the first 
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strategy under Nan Development Plan (2015-2018) 
consisting strategic action1 promote conservation, resto-
ration, and development of soil, water, and forest 
emphasizing on participation; strategic action 2 promote 
water resources conservation and development to 
secure sufficient supply for consumption usage and 
agriculture; strategic action 3  promote and support 
pollution management; strategic action 4 develop local 
communities capability on disaster prevention and 
mitigation; and strategic action 5 promote integrated 
farming system. However, strategic action 1 and 5 
directly target the local communities’ activities on forest 
restoration and conservation. 
 Spatially, the forest cover changes area map in each 
district was illustrated in Figure 5a. Stable forest area 
was found to cover 7,345.33 km2, while stable non-
forest area was seen in 3,498.45 km2. Overall, forest 
changes area totally distributed over 1,298.34 km2. 

Non-forest areas appeared to extend from lowland to 
upland, increasing more pressure on forest areas. It was 
noted that spatial distribution of non-forest areas 
gradually increased from the southern to the northern 
part. Forest conversion in WSC were illustrated in 
Figure 5b. WSC was used to develop land use plans for 
natural resources conservation. WSC1 and 2 represented 
restricted headwater and watershed conservation areas, 
however, non-forest areas obviously increased. Specifically, 
forest cover changes areas were observed to spread over 
1,108.40 km2, accounting for 12.65% of the total area 
of WSC1 and 2. This phenomenon was originally 
distributed in the middle part of the study area at the 
location of WSC3, 4, 5 and later expanded into WSC1 
and 2. The expansion of non-forest areas increased 
around 11.81% in WSC 1 and 2, corresponding to 
forest loss of 1,034.49 km2. Overall, around 87% of 
WSC1 and 2 remained forest areas. 

 

 
Figure 3 The spatial extent of forest areas in Nan province during 1990 to 2019. 

 

 
Figure 4 Pie chart of forest changed rate in percentage of five consecutive periods. 
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Figure 5 Forest cover changes areas map in each district (a) and forest conversion in watershed  

classification classes WSC (b) from 1990 to 2019. 
 

 In Table 4, the results indicated that forest areas 
decreased in all districts of Nan province. The forest 
areas substantially decreased as it dropped from 
70.28% in 1990 to 62.77% in 2019. Phu Phiang district 
revealed the lowest forest area (42.35%), while Bo 
Kluea district showed the highest forest area (75.32%) 
in 2019. The latter result was consistent with the 
analysis that Bo Kluea district showed the lowest rate of 
forest cover loss (4.14%). This is possibly due to geo-
graphic factors, including the high-altitude area, origin 
of the Nan River, and land inaccessibility. The highest 
mountain, namely Phu Khe, could be a contributing 
factor to the preservation of forest cover. Contrastingly, 
Chaloem Phra Kiat district that was the area with no 
gain in forest extent during the last three decades, 
experienced the highest forest cover changes 
accounting for 23.74%. This finding agrees with the 
study of Kitchaicharoen et al. [50]. It was possible due 
to the economic growth in Chaloem Phra Kiat district, 
the border crossing to Luang Prabang Province in Laos. 
Interestingly, forest cover changed rate during 2007 to 
2019 of only Ban Luang district was not declined. This 
is possible due to effectiveness of community forests for 
forest conservation similar to the findings of related 
study in Nan province [51]. The local community in 
Ban Luang district strongly opposed to the practice of 
logging companies and established communities rules 
for preserving their forests as a sustainable heritage. 

 Generally, one of the factors for forest cover changes 
is population. The growing population increased the 
demand for lands and infrastructures resulting in 
pressure on fragile natural ecosystems [52–53]. Based 
on the population statistics data, the population growth 
in Nan province showed slightly change (increased by 
approximately 2% from 1990) [54–55]. Meanwhile, 
forest areas were continuously decreasing. Therefore, 
forest cover changes were not related to populations 
growth in Nan province. The possible reasons were 
non-sustainable land use practices, lack of awareness 
on natural resources utilizations, and conflict on the 
National Reserved Forests Act. Non-sustainable land 
use practices were the result of economic pressure on 
livelihoods such as indirect promotion activities of the 
private sector based on credit provision and convenient 
market offerings [50]. Lack of awareness on natural 
resources utilizations could be observed when local 
people consider the forest as unoccupied land and 
shifted their subsistence farming from small-scale 
production to cash crops, intensive mono-crop 
agriculture, integrated agriculture (namely kaset phasom 
phasaan in Thai) [56]. Lastly, conflict on the National 
Reserved Forests Act is the major problem which 
caused by overlapping of protected forest areas and 
land occupied by long-standing people [57].
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Table 4 Percentage of forest cover changed rate of six consecutive periods in each district 
District Forest cover changed rate (%) 

1990 – 1998 1998 – 2007 2007 – 2010 2010 – 2014 2014 – 2019 1990 – 2019 

Chiang Klang  -3.06 -4.21 3.40 -2.70 -3.63 -9.98 

Ban Luang  -2.35 -13.38 3.78 3.66 3.22 -6.09 

Santi Suk  -1.68 -2.01 -7.55 -4.50 1.66 -13.53 

Phu Phiang 8.49 -1.60 -12.25 -8.66 -5.76 -19.36 

Chaloem Phra Kiat  -3.98 -4.30 -8.80 -6.06 -3.13 -23.74 

Song Khwae  -3.98 -0.59 -0.77 -3.88 1.29 -7.77 

Thung Chang  -3.27 0.90 -0.91 -4.07 -2.01 -9.10 

Tha Wang Pha  -0.08 -5.87 2.62 -8.30 -3.47 -14.56 

Pua -0.14 1.40 -6.10 -4.97 0.71 -9.01 

Bo Kluea  -3.74 3.82 -3.73 -2.77 2.48 -4.14 

Na Muen -1.22 0.68 -0.05 -4.38 -3.75 -8.51 

Mueang Nan  -3.23 -4.09 3.05 -6.37 -0.09 -10.53 

Mae Charim  -3.40 2.31 -4.85 -5.97 2.36 -9.48 

Na Noi  -3.55 -8.96 1.73 -6.99 -0.08 -16.98 

Wiang Sa  -1.73 2.55 -3.89 -6.49 1.33 -8.24 

 
2) Spatial patterns of forest cover change over three 
decades 
 The main finding of landscape metric analysis revealed 
the spatial and temporal patterns of forest cover change 
in six spatial metrics from 1990 to 2019 as presented in 
Table 5. Forest areas have changed in size, number of 
patches, distance, and spatial distribution of fragments. 
The phenomenon of forest fragmentation was caused 
by more than four-fold increase in NP over the last 
three decades, leading to a greater isolation trend over 
time of forest patches. Forest areas showed maximum 
NP (32,777) in 2019 and minimum NP (7,197) in 1990. 
The conversion of forest to other land use classes, 
particularly maize and para rubber expansions in 2010-
2014 seems to be a significant reason inducing the 
increase of forest patches. The forest PD increased from 
0.59 in 1990 to 2.70 in 2019, demonstrating the increase 
of small fragmented or subdivided forest patches. This 
interpreted that effectiveness of forest areas cannot be 
guaranteed or it was, somehow, unable to achieve the 
government announcement on the National Reserved 
Forests Act. The LPI declined from 89.54% in 1990 to 
76.47% in 2019, indicating the largest forest patch was 
converted to another LULC class. This suggests higher 

fragmentation and disturbance over time. Discrete 
forest areas may be a cause of increasing forest 
fragmentation. The results of ENN metric showed a 
decrease in forest connectivity as the large area of forest 
become more isolated [58]. ENN gradually increased 
from 30 m in 1990 to 53.85 m in 2019. 
 For the results of entire Nan province, CONTAG and 
SHDI values can reflect the proportional distribution 
and spatial arrangement for evaluation of landscape 
heterogeneity. CONTAG revealed complete dispersion 
of different patch types by substantial declining from 
90.32% in 1990 to 75.92% in 2019. SHDI value increased 
periodically and reached a value of 0.79 in 2019 from 
0.33 in 1990. Rising SHDI and falling CONTAG values 
indicated the increasing of landscape diversity over time 
in Nan province. It was presumably caused by human 
disturbances for crop plantations [59]. According to 
the combination of SHDI and CONTAG measurements, 
it obviously showed that the heterogeneity of the 
landscape was intensified. Forests were the largest class 
at the beginning of the study period (in 1990). However, 
the forest in the landscape not only transforms to 
smaller patches continuously, but also becomes more 
isolated which highly affected ecosystem services. 

 
Table 5 Periodic changes in the values of landscape metrics of forest in class and landscape level from 1990 to 2019 

Year Metrics 

Forest class Landscape 
NP PD LPI ENN CONTAG SHDI 

1990 7197 0.59 89.54 30.00 90.32 0.33 

1998 8543 0.70 87.34 32.60 88.59 0.40 

2007 14245 1.17 81.96 40.00 83.02 0.58 

2010 17749 1.46 81.65 44.72 82.80 0.58 

2014 27169 2.24 75.71 50.00 78.26 0.72 

2019 32777 2.70 76.47 53.85 75.92 0.79 
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3) Impacts of forest cover changes on carbon storage 
 InVEST model is straightforward to be used for 
evaluation of spatial distribution maps of carbon 
storage. It can be applied in situations with limited 
available data and lacking of direct observation data 
[60]. The result of carbon storage maps was illustrated 
in Figure 6. It ranged from 0 to 2.56 MgC m-2. The 
highest amount of carbon storage was found in 1990, 
while the lowest one was seen in 2014. Carbon storage 

was estimated to 290.17×106 MgC, 284.94106 MgC, 

269.91×106 MgC, 269.83×106 MgC, 253.05×106 MgC, 

and 260.85×106 MgC in years 1990, 1998, 2007, 2010, 
2014, and 2019, respectively. It revealed a total of 

29.32×106 MgC decrease of carbon storage. In the study 
periods, carbon storage of forest areas was higher than 

that of non-forests class. One possible reason was forest 
could absorb and store more carbon than other crops 
[61]. High forest fragmentation would reduce the amount 
of carbon storage. According to forest cover changes, it 
was scientifically showed that carbon storage presented 
inverse correlation with intensity of agricultural plan-
tation. The selected geoinformatics technology with 
ecosystem services model were more practical to 
visualize holistic view of carbon storage in Nan 
Province comparing with previous studies using 
traditional measurements [62–63]. InVEST tool, to some 
extent, can be a valuable tool that helps researchers to 
move forward in this regard. Taken together, action for 
preservation of current carbon stores in existing forest 
areas should be a priority.  

 

 
Figure 6 Carbon storage maps during 1990 to 2019. 

 
Conclusions 
 This study unveils the scientific comprehensive 
insights of the long-term spatial and temporal patterns 
of forest cover changes (30-year) as well as consequential 
impacts on carbon storage in Nan province. By 
employing the RF classifier through GEE platform, this 
research offered a robust framework for analysis of 
forest cover change at the regional scale. The results 
showed that forest area declined 10.69%, while non-
forest area increased 25.29%. Forest cover changes 
areas were predominant in the upper part of WSC1 and 
2 with 11.81% non-forest expansion. Landscape metrics 
based on FRAGSTAT software rendered informative 
spatial patterns of forest cover change. The phenomenon 
of forest fragmentation was caused by more than four-

fold increase in the NP over the last three decades. 
Maize and para rubber expansions were major causes. 
InVEST tool was helpful for estimation of carbon 
storage in scarcity of local input data. It was beneficial 
in terms of quantifying losses in ecosystem services 
from forest change. By using InVEST tool, the impact 
of forest cover changes on carbon storage decreased 
29.32106 MgC during the past 30 years. Carbon storage 
was scientifically decreasing in opposition to intensity 
of agricultural plantation. The finding can inform land 
use planning forest conservation strategies, carbon market 
development and generate income from their forest 
resources. This study provides valuable information for 
policymakers and stakeholders actions to conserve forests 
and mitigate climate change in Thailand. 
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