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Abstract 
The emergence of a novel coronavirus strain triggered a global health crisis, 

impacting both health and economies worldwide, including Thailand since 2019. 
While prior research hinted at connections between environmental factors and 
rising COVID-19 cases, these links remained inconclusive. This study investigated 
indoor and outdoor (I/O) ratios and explored potential correlations between fine 
particulate matter (PM2.5), meteorological conditions, and the case fatality rate 
(CFR%) of COVID-19 in Bangkok and its metropolitan area from January to 
December 2021. In Spearman’s Rank correlation analysis, the results found that 
CFR% exhibited a positive correlation with relative humidity (RH) (r=0.187) and 
a negative correlation with PM2.5 (r=-0.190) and wind speed (WS) (r=-0.039). 
The generalized additive model (GAM) indicated that RH, PM2.5, temperature, 
and WS adversely affect the CFR% of COVID-19. Consistent relationships between 
PM2.5, RH, and WS were observed in both Spearman’s Rank correlation and the 
GAM model. This study underscored the complexity of understanding pandemic 
dynamics across seasons, I/O ratios, and the influence of lag days. By presenting 
the results, they may serve as a valuable reference for planning interventions 
during future pandemics. 
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Introduction 
 The novel coronavirus outbreak, identified in China 
in December 2019, primarily spreads through respiratory 
droplets, similar to SARS-CoV. This syndrome, known 
as COVID-19, has caused widespread illness and deaths 
globally, including in Thailand. Symptoms of COVID-
19 vary from mild to severe, affecting the lungs' ability 
to clear pathogens. Transmission occurs through direct 
or indirect contact with infected individuals via respiratory 
droplets and can also happen by touching contaminated 
surfaces and subsequently touching the eyes, nose, or 
mouth. 
 There is growing concern about the connection 
between meteorological factors and the COVID-19 
outbreak. In Asia, a systematic review indicated a 
consistent relationship between temperature, humidity 

and population density [1]. The top 20 countries with 
the highest confirmed cases showed strong correlations 
between climate variables and COVID-19 outcomes. 
High temperature and humidity have been found to 
influence local transmission of COVID-19 and reduce 
confirmed cases. Meteorological variables such as low 
temperature, wind speed, dew/frost, rainfall and surface 
pressure tended to prolong the virus [2–3]. In addition, 
Nath et al. (2021) revealed that extreme weather patterns 
and events, which are becoming more frequent and 
intense due to climate change, especially temperature and 
humidity, can play a crucial role in influencing the 
distribution and health risks associated with COVID-
19 [4]. 
 Additionally, air quality plays a role in exacerbating 
COVID-19 symptoms, especially in areas with poor air 
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quality. Exposure to air pollutants, such as PM2.5, PM10, 
and O3, has been strongly correlated with COVID-19 
hospital admissions and mortality rates. Air pollution, 
which encompasses PM2.5, PM10, sulfur dioxide, 
nitrogen dioxide, and ozone, has detrimental effects 
on human physical health, leading to nonmalignant 
respiratory fatalities, lung cancer, and cardiovascular 
issues [5]. Short-term exposure to PM2.5, PM10, and 
O3 strongly correlated with COVID-19 related hospital 
admissions and mortality in Iran [6]. In Thailand, 
Bangkok and surrounding areas consistently rank in 
the top ten for annual PM2.5 concentrations. Studies 
have shown the positive impact of COVID-19 measures, 
such as lockdowns and restricted activities, on improving 
air quality [7]. However, limited research has explored 
the relationship between COVID-19 mortality and 
environmental factors. Meteorological factors are generally 
linked to seasonal variations, which in turn can influence 
the transmission and severity of COVID-19. While this 
hypothesis has been investigated in various regions to 
understand the potential impact of weather-related factors 
on the virus’s spread, it remains relatively unexplored 
in the context of Bangkok and its nearby provinces. 
 Several past studies have used continuously moni-
tored outdoor concentrations as a study factor. However, 
since the majority of people spend more than 90% of 
their time indoors, in this study, indoor-to-outdoor 
(I/O) ratios were employed to convert outdoor values 
from monitoring stations to indoor values. The focus 
was on PM2.5 to compare whether outdoor values from 
monitoring stations and indoor values differ. The 
concentrations of ambient air pollutants can have a 
major effect on indoor air pollution and considering 
that people spend approximately 90% of their time 
indoors, there is a need to study the I/O ratios in 
relation of pollutants such as respirable particulate 
matter PMs) in major cities [8]. PM2.5 is the most well-
intentioned because its concentration can be an 
indicator of indoor air quality levels with potential 
impacts on health and work performance [9]. The I/O 
ratios is a straightforward, yet valuable parameter used 
to identify the sources of indoor and outdoor 
pollution and their correlations. 
 This study aimed to address the gaps in previous 
research and gain a better understanding of the rela-
tionship between the CFR of COVID-19 and envi-
ronmental factors in urban areas, incorporating the 
I/O ratios and air pollution. Our study focused on 
Bangkok and five metropolitan provinces, which, due 
to their high population density and status as vital 
economic hubs, have been heavily impacted by the 
pandemic. These six provinces also have the highest 
number of COVID-19 infections and deaths in the 

country, and they are also provinces with high readiness 
in terms of meteorological data. 
 
Materials and methods 
1) Study area 
 The study was conducted in the Bangkok metropolitan 
region, including Bangkok, Nakhon Pathom, Nonthaburi, 
Pathum Thani, Samut Prakan, and Samut Sakhon 
provinces. Several factors influenced the selection of 
this study area. Bangkok is located in the central region 
of Thailand. It shares borders with Nonthaburi and 
Pathum Thani provinces to the north, Samut Prakan 
province to the south, and Nakhon Pathom and Samut 
Sakhon provinces to the west. These neighboring 
provinces are significantly influenced by the develop-
ment and economic activities of Bangkok, the capital 
city. Moreover, this region serves as the economic hub 
of the country. The population density in these six 
provinces ranks among the highest in the nation, with 
an average of 1,471 people km-2. This study collected 
data from the year 2021, spanning from January 1st to 
December 31st, as it was the year marked by the 
COVID-19 outbreak, witnessing up to three waves 
(the 2nd, 3rd, and 4th waves) within a single year. 
 
2) Data collection 
 This study spanned from J January 1st to December 
31st, 2021, aligning with the timeframe specified by the 
COVID-19 Management Center (CDC). The CDC 
identified specific areas with the highest increase in 
infected individuals, designating them as the strictest 
control areas. 
 
2.1) Meteorological and air pollution data 
 Daily average temperature, wind speed (WS), rainfall, 
and relative humidity (RH) were collected from the 
Thailand Meteorological Department. Daily average of 
PM2.5 was retrieved from 18 monitoring stations 
operated by the Division of Air Quality Data, Air 
Quality and Noise Management Bureau, and the 
Pollution Control Department. In this study, the daily 
AQI is based on the 24-hour average of hourly 
readings. 
 
2.2) COVID-19 confirmed positive cases and deaths 
 Data extraction was performed based on confirmed 
COVID-19 cases and deaths from the public organization’s 
website (www.data.go.th) operated by the Digital Go-
vernment Development Agency website. The published 
information is in a file format that can be displayed as 
a data sample, automated visualization, and APIs for 
publishable datasets. 
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 The CFR is influenced by delays in reporting dates 
for cases and deaths (Eq.1). The formula restricts the 
analysis to resolved cases to mitigate delays in case 
resolution and estimate mortality from COVID-19. 
The formula is as follows Eq. 1. 
 
2.3) Empirical indoor and outdoor PM2.5 concentration 
measurement 
 Portable PM2.5 meter (A25 series) was used to measure 
indoor and outdoor PM2.5 concentrations. In each pro-
vince, three communities nearby the TMD stations were 
randomly selected, each community comprising 50 sites. 
Each province, therefore, yielded 150 I/O PM2.5 samples, 
resulting in a total collection of 900 samples. The meteo-
rological monitoring stations and our empirical PM2.5 
measurement sites are illustrated in Figure 1. 
 
 
 
 

3) Data analysis 
 The data obtained from this study were statistically 
and graphically analyzed with the R program (R Core 
Team, 2021). Descriptive statistics were employed to 
capture the characteristics of I/O ratios of PM2.5 con-
centrations. The data used to study the correlation with 
the COVID-19 CFR patients included the following 
parameters: PM2.5, wind speed, relative humidity, 
average temperature, rainfall, and season (wet and dry 
seasons). Spearman’s correlation was performed to 
determine the monotonic association between the CFR 
and meteorological factors and PM2.5. Generalized addi-
tive models (GAM) were executed to discover non-linear 
relationships among important factors that influence 
the CFR of COVID-19. We applied two types of GAMs 
families to address different response variables: Gaussian 
family for CFR values in percentage, and binomial 
family for CFR values represented by 0 and 1. We also 
considered the daily average lag effect for the 7-day 
period, compared to the daily baseline [10].

                  CFR (%) =  Number of deaths from COVID−19
(Number of deaths from COVID−19)+(Number of recovered from disease)

x100                           (Eq. 1) 

 
 The data on the number of recoveries and deaths are obtained from the public organization under the Digital 
Government Development Agency website. 
 

 
Figure 1 A map shows the Bangkok metropolitan area (Red points represent weather monitoring stations,  

totaling 18 points. Green points denote PM2.5 sampling locations in each province (900 samples). 
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Results and discussion 
1) PM2.5 indoor/outdoor ratios 
 Prior to conducting further analysis, we identified 
outliers among the total of 900 samples, leading to the 
exclusion of 25 samples. The province with the most 
exclusions is Pathum Thani, where 15 samples were 
excluded. This was likely because the areas where PM2.5 
samples were collected experienced strong air turbulence, 
resulting in significantly higher PM2.5 concentrations in 
shaded areas compared to open areas at several locations. 
 In a general sense, the I/O ratios has been utilized 
to assess the relationships between air pollutants. This 
ratios can be used to reflect the significant variability 
due to numerous factors, including outdoor pollutant 
levels, spatial variances, indoor activities, architectural 
designs, geographical locations, and equipment, among 
others. For the purposes of this study, the interpret-
tation of the I/O ratios with respect to indoor air 
pollution is defined as follows [11]: 
 I/O ratios > 1.2 implies indoor pollutant concentrations 
surpass that outdoors, possibly as a result of indoor sources. 
 I/O ratios of 0.8 to 1.2 implies indoor pollutant 
concentrations are in a state of equilibrium with 
outdoor levels. 
 I/O ratios < 0.8 implies indoor pollutant concentrations 

are lower than outdoor levels, indicating the potential 
influence of outdoor factors. 
 From Table 1, the average I/O ratios for all provinces 
ranged from 0.86 to 0.99, indicating a state of equi-
librium where the concentrations of PM2.5 inside and 
outside were relatively similar. Bangkok showed the 
lowest I/O ratios. In residential homes and public 
buildings, indoor PM2.5 levels were primarily influenced 
by outdoor sources when the I/O ratios was close to 
one. In such cases, it would be advisable for residents 
to remain indoors rather than venturing outside when 
outdoor PM2.5 concentrations are elevated. 
 In reviewing the relationship between indoor and 
outdoor environments we found that the I/O ratios 
observed in many countries falls within the range of 
0.8 to 1.2, and our study aligns with this observation [12]. 
 Figure 2 highlighted the statistical variabilities in 
I/O data among the provinces, with some provinces 
having a wider distribution of values than others. 
Bangkok and Pathum Thani have the widest range, 
with values ranging from 0.29 to 1.53 and 0.37 to 1.53, 
respectively. Samut Sakhon has the narrowest range, 
with values ranging from 0.53 to 1.34. Nakhon Pathom 
has the highest median value at 1.00, followed by 
Samut Sakhon at 0.98, while Bangkok has the lowest 
median value at 0.86. 

 
Table 1 Descriptive statistics of PM2.5 I/O ratios by province 

Province Average PM2.5 
indoor* 

Average PM2.5 
outdoor* 

Average I/O Min I/O Max I/O Median I/O N 

Bangkok 45.5 54.0 0.86 0.29 1.53 0.86 147 
Nakhon Pathom 42.7 43.1 0.99 0.71 1.55 1.00 148 
Nonthaburi 36.0 37.9 0.95 0.43 1.48 0.96 146 
Pathum Thani 17.6 18.2 0.98 0.37 1.53 0.93 135 
Samut Prakan 56.9 66.5 0.87 0.43 1.4 0.89 149 
Samut Sakhon 48.0 49.4 0.98 0.53 1.34 0.98 150 

Remark:  *25µg m-3 (annual average standard value) (Announcement of the National Environment Board 2010, 2010) 
 

 
Figure 2 Box plot distribution of PM2.5 I/O ratios in Bangkok and metropolitan area. 

(BKK = Bangkok; NKP = Nakhon Pathom; NTB = Nonthaburi; PTN = Pathum Thani;  
SPK = Samut Prakan; SSK = Samut Sakhon)
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2) COVID-19 deaths and COVID-19 infections by season 
 Generally, meteorological factors are related to 
seasonal variations. Therefore, the number of COVID-
19 cases and related deaths were analyzed in the context 
of wet and dry seasons. The wet season is defined as the 
period between May and October, when Thailand 
typically experiences more rainfall and elevated humi-
dity levels. In contrast, the dry season occurs from 
November to April, and is characterized by lower rainfall 
and reduced humidity. 
 Table 2 demonstrates a noticeable disparity in 
COVID-19 cases and related deaths based on the season 
in these particular provinces. This seasonal variation 
implies that the number of cases and fatalities is not 
constant throughout the year. It appears that the dry 
season corresponds to lower counts of both COVID-
19 cases and deaths, while the wet season is associated 
with higher numbers of cases and deaths. This contrast 
between the two seasons raises questions about what 
factors might be driving these variations. 
 
Table 2 Cases of infection and deaths in 2021 by 
province in different seasons 

Province Case of covid-19 Season 

Wet  Dry  

Bangkok New case 411,514 57,017 

New death 6,490 364 

Nakhon 
Pathom 

New case 34,021 2,564 

New death 600 23 

Nonthaburi New case 63,770 5,635 

New death 404 14 

Pathum Thani New case 39,018 4,435 

New death 795 34 

Samut Prakan New case 122,981 12,475 

New death 1,401 82 

Samut Sakhon New case 92,098 18,869 

New death 856 24 

 
 This analysis can provide valuable insights that 
inform public health strategies and responses. If the 
analysis reveals that the wet season is associated with 
higher cases and deaths, public health authorities 
might consider implementing stricter measures during 
this period to mitigate the impact of the virus. 
Understanding seasonality can help in allocating 
healthcare resources more effectively. For instance, 
more medical staff and hospital beds might be required 
during peak seasons. Through an investigation of the 

factors contributing to this pattern, public health 
measures can be more effectively designed to address 
the challenges posed by the seasonally fluctuating 
dynamics of COVID-19, ultimately enhancing pandemic 
preparedness and response. 
 Figure 3 presents the dispersion of each variable of 
interest in different provinces, categorized into wet 
seasons and dry seasons. Across six provinces, the mean 
and median values of PM2.5 were higher during the dry 
season compared to the wet season. This contrasts with 
the CFR%, which showed higher dispersion during the 
wet season compared to the dry season. Another 
noteworthy finding in this research was that the wind 
speed values in Samut Prakan and Samut Sakhon 
provinces, exhibited greater dispersion than in other 
provinces. This may be attributed to the fact that both 
of these provinces are located near the sea, resulting in 
higher wind speeds compared to other provinces, 
although this did not lead to lower PM2.5 values in 
these areas compared to others. 
 The high maximum CFR% of 28.57 in Bangkok 
indicated a substantial fatality rate, which could be due 
to various factors, such as a strain on healthcare 
resources or a surge in cases. Similar to Bangkok, 
Nonthaburi also exhibits a high maximum CFR. This 
could be indicative of critical challenges in managing 
the pandemic in this province. Samut Sakhon, similar 
to Bangkok and Nonthaburi, exhibited a high maximum 
CFR% of 33.33, indicating exceptional fatality rates. 
The median CFR% of 0.49 suggested that Pathum 
Thani experienced moderate fatality rates. Nakhon 
Pathom and Samut Prakan have a relatively low average 
CFR. However, the presence of any non-zero CFR values 
suggested the occurrence of fatalities. In summary, while 
some provinces revealed relatively low average CFR 
values, the presence of high maximum CFR values in 
several provinces raised concerns. 
 The CFR of COVID-19 was used to distinguish 
between the first and second waves in Ontario, Canada. 
The first wave CFR ranged from 0.004 to 0.146, 
whereas the second wave CFR ranged from 0.003 to 
0.034 [13]. and South Korea and Germany have CFR 
values of approximately 1%, similar to those in Table 
3, while Italy, Spain, the United Kingdom, and France 
have a CFR that is approximately 12% higher [14]. 
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Figure 3 Box plots representing distribution of CFR% and meteorological parameters in Bangkok and metropolitan area. 

 
Table 3 Data of CFR% and meteorological parameters in Bangkok and metropolitan area 

Province Statistical value CFR PM2.5 Rain RH Temp WS 

Bangkok Average 1.32 26.93 0.024 71.5 28.29 4.59 
Min 0 0 0 41.25 18.48 0 
Max 28.57 107 3.8 100 32.7 29.5 
Median 0 21 0 71 29.3 2.3 
n 357 357 357 357 357 357 

Nakhon 
Pathom 

Average 0.55 21.08 0.048 56.56 30.54 1.6 
Min 0 3 0 34 19.8 0.1 
Max 10 96 9.4 99 35.8 4.5 
Median 0 15.5 0 56 31 1.4 
n 363 363 363 363 363 363 

Nonthaburi Average 1.44 24.2 0.031 65.49 29.58 1.1 
Min 0 0 0 36 19.1 0 
Max 25 117 5.8 85 34.2 3.5 
Median 0 19 0 66.5 30 1.15 
n 360 360 360 360 360 360 

Pathum 
Thani 

Average 0.8 25.81 0.005 66.31 29.22 1.79 
Min 0 5.8 0 39.6 33.86 0.28 
Max 11.82 126.8 0.6 96.8 18.82 4.02 
Median 0.49 21.2 0 66.4 29.72 1.74 
n 363 363 363 363 363 363 
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Table 3 Data of CFR% and meteorological parameters in Bangkok and metropolitan area (continued) 
Province Statistical value CFR PM2.5 Rain RH Temp WS 

Samut 
Prakan 

Average 0.67 29.7 0.039 63.23 31.82 44.5 
Min 0 2.5 0 40 19.56 1.18 
Max 6.06 142 12.8 98 55.4 76.7 
Median 0 23.5 0 61.5 30.5 46.5 
n 364 364 364 364 364 364 

Samut 
Sakhon 

Average 1.09 30.4 0.017 61.38 27.7 31.17 
Min 0 2.5 0 29.5 12.24 13.9 
Max 33.33 142 1.8 94.5 40 60 
Median 0.86 23.5 0 61.5 28.5 30.8 
n 365 365 365 365 365 365 

 
3) Relationships between CFR, PM2.5, and meteorological 
factors 

The weather significantly affects the transmission 
of infectious diseases by impacting how they spread, 
the susceptibility of hosts, and the survival of viruses 
in the environment. Research on weather conditions 
and COVID-19 shows that each weather factor has 
both beneficial and detrimental effects, especially in 
winter when host susceptibility increases and virus 
viability rises [15]. 

Figure 4 displays the results of a correlation study 
utilizing Spearman's Rank correlation coefficient to 
examine the relationships between meteorological 
factors and PM2.5 levels, as well as CFR% of COVID-
19 in Bangkok and metropolitan area from January to 
December 2021. The CFR% exhibited a positive corre-
lation with relative humidity (RH) (r=0.187) and a 
negative correlation with PM2.5 (r=-0.190) and wind 
speed (WS) (r=-0.039). In a similar fashion, previous 
research exploring the impacts of PM2.5 and meteoro-
logical parameters also identified a positive correlation 
between RH with daily confirm cases of COVID-19 
[10]. It was also found that the impact of weather and 
seasonality on the COVID-19 pandemic in Saudi Arabia 
was negatively related to relative humidity (RH) (r= -
0.62) and minimum temperature (r = -0.61) [16]. This 
differs from our study where a positive correlation of 
RH was found. While there was an adverse correlation 
with PM2.5, it remained essential to monitor PM2.5 dust 
levels. Particulate matter (PM2.5) has the potential to 
elevate the infection rate of SARS-CoV-2 and the severity 
of COVID-19. PM2.5 can lead to a 1.5-fold upregulation 
of the angiotensin 2 converting enzyme (ACE2), a 
mechanism exploited by viral particles for entering 
human lung alveolar cells, resulting in a 1.5-fold 
increase in RAB5 protein [17]. 

In Baghdad [18], Iraq, a seasonal relationship was 
also observed, with the highest number of deaths 

occurring during the summer of 2020, accounting for 
41% of the total. In Mumbai, India, a significant asso-
ciation between COVID-19 and various meteorological 
factors was observed, including temperature, dew point, 
relative humidity, as well as surface pressure [19]. In 
Italy, temperature showed a negative correlation with 
the CFR of COVID-19, as well as with the concen-
trations of air pollutants (NO2, O3, PM10, and PM2.5), 
while relative humidity was positively associated with 
the CFR [1]. In this Italian report, However for PM2.5, 
the Italian report revealed a positive correlation with 
CFR, which differs from the findings presented in this 
report. 

Numerous factors influence the rise or fall in the 
number of COVID-19 cases. These factors include the 
implementation of lockdown measures, population 
mobility in each region, contact with symptomatic and 
asymptomatic individuals, and the progress of COVID-
19 vaccination efforts. The spread of COVID-19 is a 
complex interplay of various factors, not solely reliant 
on air pollution or meteorological conditions. By 
considering these multiple factors, we can engage in a 
more comprehensive discussion and arrive at more 
definitive conclusions regarding the dynamics of 
COVID-19 transmission. 

 
4) Effects of PM2.5 and meteorological parameters 
factors and CFR%  

Nonparametric technique, GAM model, was applied 
to analyze PM2.5 data and meteorological parameters 
from monitoring stations in relation to CFR% values. 
In the initial stage, two GAM models were compared 
between response types of CFR% as percentage and 
CFR% as binary codes. The binomial model performed 
better prediction, therefore, we decided to conduct the 
binomial analysis to investigate the relationship and 
analysis.
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Figure 4 Scatter plots of the spearman’s rank correlation coefficient between PM2.5 and  

meteorological parameters factors and CFR% in Bangkok and metropolitan area from 1 January to 31 December 2021. 
 

The GAM binomial model includes CFR% as CFR 
binary (0 and 1) and PM2.5 values as PM2.5I/O. Table 4 
presents data from the GAM for PM2.5I/O and meteo-
rological parameters across all seasons, affecting the 
CFR% of COVID-19. Using the GAM model with data 
from all six provinces yields the highest deviance 
explained value of 36% with the R2 value of 0.42. 
Significant variables influencing the CFR percentage 
were PM2.5I/O (p-value: dry season = 0.0003, wet season 
<2e-16), RH (p-value: dry season = 0.000770, wet season 
<2e-16), and wind speed (p-value: dry season = 0.270985, 
wet season <2e-16). This underscored the statistical 
significance of these variables concerning CFR% in both 
dry and wet seasons. 

In Wuhan, CFR% was found to be related to PM 2.5. 
The CFR% was positively related to the total lag0-lag5 
concentrations of PM 2.5 and PM 10 (r > 0.36, P < 0.03). 
However, no significant relationship was found between 
temperature, RH, and CFR of COVID-19 (r = 0.13, P = 
0.44, and r = 0.21, P = 0.22, respectively) [20]. 

 
5) Clustering of CFR magnitudes and various lags 

This research categorized the main data into two 
groups: high CFR and low CFR, based on the CFR% 
values from Table 3. The High CFR group included 
Nonthaburi and Bangkok provinces, while the low 
CFR group comprised Pathum Thani, Nakhon Pathom, 
Samut Prakan and Samut Sakhon provinces. 
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Table 4 Data of GAM related to CFR% and meteorological parameters in Bangkok and the metropolitan area 

Parameter Season edf Ref.df Chi.sq p-value 

PM2.5I/O Dry  1.65 1.88 16.90 0.0003*** 

Wet  2.00 2.00 305.58 <2e-16*** 

Rain Dry  2.13 2.49 0.45 0.7818 

Wet  1.00 1.00 0.60 0.4388 

RH Dry  3.11 3.78 19.30 0.0008*** 

Wet  1.00 1.00 34.50 <2e-16*** 

Temp Dry  4.20 4.66 29.59 1.49e-05*** 

Wet  1.40 1.70 2.91 0.2710 

WS Dry  4.45 4.85 70.92 <2e-16*** 

Wet  4.64 4.91 40.80 2.27e-07*** 

Remark:   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
                  R-sq.(adj) = 0.42   Deviance explained =   36%   -REML = 1007.6 Scale est. = 1   n = 2173 
 
Table 5 Data of GAM model of lag Day-0 and lag Day-7 

Province 
group 

Lagged effect P-value R-sq. Deviance 
explained 

(%) 
CFR PM2.5 Day PM2.5 Rain RH Temp WS 

Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet 

High 
CFR 

CFR% PM2.5 Day-0 . **     .  . *** 0.3 34.9 

Day-7  **  .      *** 0.3 36.1 

PM2.5I/O Day-0 . **     .  . *** 0.3 35.0 

Day-7  **        *** 0.3 36.1 

CFR 
(Binary) 

PM2.5 Day-0 .      ***  **  0.6 57.5 

Day-7 .      ***  **  0.6 56.8 

PM2.5I/O Day-0 .      ***  *  0.6 57.2 

Day-7 *      ***  **  0.6 57.6 

Low CFR CFR% PM2.5 Day-0          * 0.1 12.2 

Day-7          * 0.1 10.8 

PM2.5I/O Day-0          * 0.1 12.0 

Day-7          * 0.1 10.6 

CFR 
(Binary) 

PM2.5 Day-0           0.4 33.8 

Day-7            0.4 31.8 

PM2.5I/O Day-0           0.4 33.4 

Day-7           0.3 31.0 

Remark:   Signif. (codes: ≤ 0 ‘***’ ≤ 0.001), (0.001 ≤ ‘**’ ≤ 0.01), (0.01 ≤ ‘*’ ≤ 0.05), (0.05 ≤ ‘.’ ≤ 0.1), (0.1 ≤ ‘ ’ ≤ 1) 

 
In Table 5, there is further differentiation of data 

compared to Table 4, allowing for greater insight into the 
connections between the effects. This includes data that 
distinguishes the CFR between the two groups over the 
lag periods of Day-0 and Day-7. The highest deviance 
explained values were found in the high CFR group, 
which CFR% values represented as CFR (Binary). This is 
particularly observed in the lag Day-7 data group of 
PM2.5I/O and p-values obtained for PM2.5 and WS are 
consistent with those in Table 4. The GAM modes with 
binary CFR values exhibited better predictive models 
when compared to the percentage CFR. Lag days 
performed not much different predictive outputs when 
compared to the baseline model. In the north-central 
United States, day lag is related to variables. Most 
significantly, positive associations were found in lower 
levels of each selected meteorological factor from 3 to 11 
lagged days. Our findings were contradictory to this study 
in which lagged days showed significance on COVID-19 

incidence. In particular, a significantly positive association 
appeared in minimum relative humidity higher than 
88.36% at a 5-day lag [21]. 

 
Conclusions 

This research has unveiled a direct correlation between 
the average relative humidity and the case fatality per-
centage (CFR%) of COVID-19 in Bangkok and the 
surrounding metropolitan area. Additionally, using new 
data clustering techniques, our resulting generalized 
additive model (GAM) has the R2 value of 0.6, explaining 
a substantial 57.6% of the variance in CFR% using the 
High CFR binary derived from lag Day-7 data associated 
with PM2.5I/O. However, it is important to recognize 
that several complex factors come into play when 
assessing COVID-19 dynamics. These factors include 
the presence of asymptomatic COVID-19 patients, the 
progress of immunization campaigns, socioeconomic 
factors influencing healthcare access, the emergence of 
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different SARS-CoV-2 variants, and the unique topo-
graphy of the area. To gain a more comprehensive 
understanding, further research is warranted. This 
research should explore the potential influence of 
vaccination efforts and pollutant levels, as well as the 
medical histories of individuals who have contracted 
SARS-CoV-2. Such insights are important not only for 
responding to the current pandemic but also for 
predicting and preparing for future outbreaks. These 
findings can assist policymakers in making informed 
decisions to prevent and mitigate risks associated with 
respiratory infections. Furthermore, can suggest the need 
for increased public health policies, particularly in urban 
planning and environmental regulations. Due to diverse 
environmental conditions and lifestyles, the health impacts 
of air pollution vary across different regions. Therefore, 
it is essential to tailor air pollution policies according 
to local circumstances to strike a balance between 
economic costs and health benefits. Moreover, stricter 
air pollution regulations should be implemented in areas 
with severe pollution levels. Overall, the following 
limitations of the study should be considered in 
further research:   

- Air pollution data obtained from environmental 
monitoring stations may not precisely reflect an 
individual's actual exposure level. 

- This study is not representative of the entire 
general population.  

- This study did not account for potential con-
founding factors that could influence the relationship 
between environmental factors and COVID-19, such 
as age, gender, smoking status, alcohol consumption, 
comorbidities, and vaccinations. 
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