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Abstract

The emergence of a novel coronavirus strain triggered a global health crisis,
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impacting both health and economies worldwide, including Thailand since 2019.
While prior research hinted at connections between environmental factors and
rising COVID-19 cases, these links remained inconclusive. This study investigated
indoor and outdoor (I/O) ratios and explored potential correlations between fine
particulate matter (PM2.5), meteorological conditions, and the case fatality rate
(CFR%) of COVID-19 in Bangkok and its metropolitan area from January to
December 2021. In Spearman’s Rank correlation analysis, the results found that
CFR% exhibited a positive correlation with relative humidity (RH) (r=0.187) and
a negative correlation with PM2.5 (r=-0.190) and wind speed (WS) (r=-0.039).
The generalized additive model (GAM) indicated that RH, PM2 .5, temperature,
and WS adversely affect the CFR% of COVID-19. Consistent relationships between
PM2.5, RH, and WS were observed in both Spearman’s Rank correlation and the
GAM model. This study underscored the complexity of understanding pandemic
dynamics across seasons, I/O ratios, and the influence of lag days. By presenting
the results, they may serve as a valuable reference for planning interventions
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during future pandemics.

Introduction

The novel coronavirus outbreak, identified in China
in December 2019, primarily spreads through respiratory
droplets, similar to SARS-CoV. This syndrome, known
as COVID-19, has caused widespread illness and deaths
globally, including in Thailand. Symptoms of COVID-
19 vary from mild to severe, affecting the lungs' ability
to clear pathogens. Transmission occurs through direct
or indirect contact with infected individuals via respiratory
droplets and can also happen by touching contaminated
surfaces and subsequently touching the eyes, nose, or
mouth.

There is growing concern about the connection
between meteorological factors and the COVID-19
outbreak. In Asia, a systematic review indicated a
consistent relationship between temperature, humidity

and population density [1]. The top 20 countries with
the highest confirmed cases showed strong correlations
between climate variables and COVID-19 outcomes.
High temperature and humidity have been found to
influence local transmission of COVID-19 and reduce
confirmed cases. Meteorological variables such as low
temperature, wind speed, dew/frost, rainfall and surface
pressure tended to prolong the virus [2-3]. In addition,
Nath et al. (2021) revealed that extreme weather patterns
and events, which are becoming more frequent and
intense due to climate change, especially temperature and
humidity, can play a crucial role in influencing the
distribution and health risks associated with COVID-
19 [4].

Additionally, air quality plays a role in exacerbating
COVID-19 symptoms, especially in areas with poor air
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quality. Exposure to air pollutants, such as PM2.5, PMio,
and O3, has been strongly correlated with COVID-19
hospital admissions and mortality rates. Air pollution,
which encompasses PM25, PMio, sulfur dioxide,
nitrogen dioxide, and ozone, has detrimental effects
on human physical health, leading to nonmalignant
respiratory fatalities, lung cancer, and cardiovascular
issues [5]. Short-term exposure to PM2.5, PM10, and
O3 strongly correlated with COVID-19 related hospital
admissions and mortality in Iran [6]. In Thailand,
Bangkok and surrounding areas consistently rank in
the top ten for annual PM2.5 concentrations. Studies
have shown the positive impact of COVID-19 measures,
such as lockdowns and restricted activities, on improving
air quality [7]. However, limited research has explored
the relationship between COVID-19 mortality and
environmental factors. Meteorological factors are generally
linked to seasonal variations, which in turn can influence
the transmission and severity of COVID-19. While this
hypothesis has been investigated in various regions to
understand the potential impact of weather-related factors
on the virus’s spread, it remains relatively unexplored
in the context of Bangkok and its nearby provinces.

Several past studies have used continuously moni-
tored outdoor concentrations as a study factor. However,
since the majority of people spend more than 90% of
their time indoors, in this study, indoor-to-outdoor
(I/0O) ratios were employed to convert outdoor values
from monitoring stations to indoor values. The focus
was on PM2.5 to compare whether outdoor values from
monitoring stations and indoor values differ. The
concentrations of ambient air pollutants can have a
major effect on indoor air pollution and considering
that people spend approximately 90% of their time
indoors, there is a need to study the I/O ratios in
relation of pollutants such as respirable particulate
matter PMs) in major cities [8]. PM2.5 is the most well-
intentioned because its concentration can be an
indicator of indoor air quality levels with potential
impacts on health and work performance [9]. The I/O
ratios is a straightforward, yet valuable parameter used
to identify the sources of indoor and outdoor
pollution and their correlations.

This study aimed to address the gaps in previous
research and gain a better understanding of the rela-
tionship between the CFR of COVID-19 and envi-
ronmental factors in urban areas, incorporating the
I/O ratios and air pollution. Our study focused on
Bangkok and five metropolitan provinces, which, due
to their high population density and status as vital
economic hubs, have been heavily impacted by the
pandemic. These six provinces also have the highest
number of COVID-19 infections and deaths in the

country, and they are also provinces with high readiness
in terms of meteorological data.

Materials and methods
1) Study area

The study was conducted in the Bangkok metropolitan
region, including Bangkok, Nakhon Pathom, Nonthaburi,
Pathum Thani, Samut Prakan, and Samut Sakhon
provinces. Several factors influenced the selection of
this study area. Bangkok is located in the central region
of Thailand. It shares borders with Nonthaburi and
Pathum Thani provinces to the north, Samut Prakan
province to the south, and Nakhon Pathom and Samut
Sakhon provinces to the west. These neighboring
provinces are significantly influenced by the develop-
ment and economic activities of Bangkok, the capital
city. Moreover, this region serves as the economic hub
of the country. The population density in these six
provinces ranks among the highest in the nation, with
an average of 1,471 people km2. This study collected
data from the year 2021, spanning from January 1% to
December 31%, as it was the year marked by the
COVID-19 outbreak, witnessing up to three waves
(the 2nd, 3rd and 4th waves) within a single year.

2) Data collection

This study spanned from ] January 15t to December
31%t, 2021, aligning with the timeframe specified by the
COVID-19 Management Center (CDC). The CDC
identified specific areas with the highest increase in
infected individuals, designating them as the strictest
control areas.

2.1) Meteorological and air pollution data

Daily average temperature, wind speed (WS), rainfall,
and relative humidity (RH) were collected from the
Thailand Meteorological Department. Daily average of
PM2:5 was retrieved from 18 monitoring stations
operated by the Division of Air Quality Data, Air
Quality and Noise Management Bureau, and the
Pollution Control Department. In this study, the daily
AQI is based on the 24-hour average of hourly
readings.

2.2) COVID-19 confirmed positive cases and deaths

Data extraction was performed based on confirmed
COVID-19 cases and deaths from the public organization’s
website (www.data.go.th) operated by the Digital Go-
vernment Development Agency website. The published
information is in a file format that can be displayed as
a data sample, automated visualization, and APIs for
publishable datasets.
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The CFR is influenced by delays in reporting dates
for cases and deaths (Eq.1). The formula restricts the
analysis to resolved cases to mitigate delays in case
resolution and estimate mortality from COVID-19.
The formula is as follows Eq. 1.

2.3) Empirical indoor and outdoor PM2.5 concentration
measurement

Portable PM2.5 meter (A25 series) was used to measure
indoor and outdoor PM2.5 concentrations. In each pro-
vince, three communities nearby the TMD stations were
randomly selected, each community comprising 50 sites.
Each province, therefore, yielded 150 I/O PM2.5 samples,
resulting in a total collection of 900 samples. The meteo-
rological monitoring stations and our empirical PM2.5
measurement sites are illustrated in Figure 1.

CFR (%) =

3) Data analysis

The data obtained from this study were statistically
and graphically analyzed with the R program (R Core
Team, 2021). Descriptive statistics were employed to
capture the characteristics of I/O ratios of PM2.5 con-
centrations. The data used to study the correlation with
the COVID-19 CFR patients included the following
parameters: PM25, wind speed, relative humidity,
average temperature, rainfall, and season (wet and dry
seasons). Spearman’s correlation was performed to
determine the monotonic association between the CFR
and meteorological factors and PM2.5. Generalized addi-
tive models (GAM) were executed to discover non-linear
relationships among important factors that influence
the CFR of COVID-19. We applied two types of GAMs
families to address different response variables: Gaussian
family for CFR values in percentage, and binomial
family for CFR values represented by 0 and 1. We also
considered the daily average lag effect for the 7-day
period, compared to the daily baseline [10].

Number of deaths from COVID-19

x100

(Number of deaths from COVID-19)+(Number of recovered from disease)

(Eq. 1)

The data on the number of recoveries and deaths are obtained from the public organization under the Digital

Government Development Agency website.
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Figure 1 A map shows the Bangkok metropolitan area (Red points represent weather monitoring stations,

totaling 18 points. Green points denote PM2.5 sampling locations in each province (900 samples).
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Results and discussion
1) PM2.5 indoor/outdoor ratios

Prior to conducting further analysis, we identified
outliers among the total of 900 samples, leading to the
exclusion of 25 samples. The province with the most
exclusions is Pathum Thani, where 15 samples were
excluded. This was likely because the areas where PM2.5
samples were collected experienced strong air turbulence,
resulting in significantly higher PM2.5 concentrations in
shaded areas compared to open areas at several locations.

In a general sense, the I/O ratios has been utilized
to assess the relationships between air pollutants. This
ratios can be used to reflect the significant variability
due to numerous factors, including outdoor pollutant
levels, spatial variances, indoor activities, architectural
designs, geographical locations, and equipment, among
others. For the purposes of this study, the interpret-
tation of the I/O ratios with respect to indoor air
pollution is defined as follows [11]:

I/O ratios > 1.2 implies indoor pollutant concentrations
surpass that outdoors, possibly as a result of indoor sources.

I/O ratios of 0.8 to 1.2 implies indoor pollutant
concentrations are in a state of equilibrium with
outdoor levels.

/O ratios < 0.8 implies indoor pollutant concentrations

are lower than outdoor levels, indicating the potential
influence of outdoor factors.

From Table 1, the average I/O ratios for all provinces
ranged from 0.86 to 0.99, indicating a state of equi-
librium where the concentrations of PM2.5 inside and
outside were relatively similar. Bangkok showed the
lowest I/O ratios. In residential homes and public
buildings, indoor PM2 5 levels were primarily influenced
by outdoor sources when the I/O ratios was close to
one. In such cases, it would be advisable for residents
to remain indoors rather than venturing outside when
outdoor PM2.5 concentrations are elevated.

In reviewing the relationship between indoor and
outdoor environments we found that the I/O ratios
observed in many countries falls within the range of
0.8 to 1.2, and our study aligns with this observation [12].

Figure 2 highlighted the statistical variabilities in
I/O data among the provinces, with some provinces
having a wider distribution of values than others.
Bangkok and Pathum Thani have the widest range,
with values ranging from 0.29 to 1.53 and 0.37 to 1.53,
respectively. Samut Sakhon has the narrowest range,
with values ranging from 0.53 to 1.34. Nakhon Pathom
has the highest median value at 1.00, followed by
Samut Sakhon at 0.98, while Bangkok has the lowest
median value at 0.86.

Table 1 Descriptive statistics of PM2.5 I/O ratios by province

Province Average PM2.5 Average PM25  Average I/O Min I/O Max1/O Median I/O N
indoor* outdoor*
Bangkok 45.5 54.0 0.86 0.29 1.53 0.86 147
Nakhon Pathom 42.7 43.1 0.99 0.71 1.55 1.00 148
Nonthaburi 36.0 37.9 0.95 0.43 1.48 0.96 146
Pathum Thani 17.6 18.2 0.98 0.37 1.53 0.93 135
Samut Prakan 56.9 66.5 0.87 0.43 1.4 0.89 149
Samut Sakhon 48.0 49.4 0.98 0.53 1.34 0.98 150

Remark: *25pg m-3 (annual average standard value) (Announcement of the National Environment Board 2010, 2010)
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Figure 2 Box plot distribution of PM2.5I/O ratios in Bangkok and metropolitan area.
(BKK = Bangkok; NKP = Nakhon Pathom; NTB = Nonthaburi; PTN = Pathum Thani;

SPK = Samut Prakan; SSK = Samut Sakhon)
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2) COVID-19 deaths and COVID-19 infections by season

Generally, meteorological factors are related to
seasonal variations. Therefore, the number of COVID-
19 cases and related deaths were analyzed in the context
of wet and dry seasons. The wet season is defined as the
period between May and October, when Thailand
typically experiences more rainfall and elevated humi-
dity levels. In contrast, the dry season occurs from
November to April, and is characterized by lower rainfall
and reduced humidity.

Table 2 demonstrates a noticeable disparity in
COVID-19 cases and related deaths based on the season
in these particular provinces. This seasonal variation
implies that the number of cases and fatalities is not
constant throughout the year. It appears that the dry
season corresponds to lower counts of both COVID-
19 cases and deaths, while the wet season is associated
with higher numbers of cases and deaths. This contrast
between the two seasons raises questions about what
factors might be driving these variations.

Table 2 Cases of infection and deaths in 2021 by
province in different seasons

Province Case of covid-19 Season
Wet Dry
Bangkok New case 411,514 57,017
New death 6,490 364
Nakhon New case 34,021 2,564
Pathom New death 600 23
Nonthaburi New case 63,770 5,635
New death 404 14
Pathum Thani New case 39,018 4,435
New death 795 34
Samut Prakan New case 122,981 12,475
New death 1,401 82
Samut Sakhon New case 92,098 18,869
New death 856 24

This analysis can provide valuable insights that
inform public health strategies and responses. If the
analysis reveals that the wet season is associated with
higher cases and deaths, public health authorities
might consider implementing stricter measures during
this period to mitigate the impact of the virus.
Understanding seasonality can help in allocating
healthcare resources more effectively. For instance,
more medical staff and hospital beds might be required
during peak seasons. Through an investigation of the

factors contributing to this pattern, public health
measures can be more effectively designed to address
the challenges posed by the seasonally fluctuating
dynamics of COVID-19, ultimately enhancing pandemic
preparedness and response.

Figure 3 presents the dispersion of each variable of
interest in different provinces, categorized into wet
seasons and dry seasons. Across six provinces, the mean
and median values of PM2.5 were higher during the dry
season compared to the wet season. This contrasts with
the CFR%, which showed higher dispersion during the
wet season compared to the dry season. Another
noteworthy finding in this research was that the wind
speed values in Samut Prakan and Samut Sakhon
provinces, exhibited greater dispersion than in other
provinces. This may be attributed to the fact that both
of these provinces are located near the sea, resulting in
higher wind speeds compared to other provinces,
although this did not lead to lower PM25 values in
these areas compared to others.

The high maximum CFR% of 28.57 in Bangkok
indicated a substantial fatality rate, which could be due
to various factors, such as a strain on healthcare
resources or a surge in cases. Similar to Bangkok,
Nonthaburi also exhibits a high maximum CFR. This
could be indicative of critical challenges in managing
the pandemic in this province. Samut Sakhon, similar
to Bangkok and Nonthaburi, exhibited a high maximum
CFR% of 33.33, indicating exceptional fatality rates.
The median CFR% of 0.49 suggested that Pathum
Thani experienced moderate fatality rates. Nakhon
Pathom and Samut Prakan have a relatively low average
CEFR. However, the presence of any non-zero CER values
suggested the occurrence of fatalities. In summary, while
some provinces revealed relatively low average CFR
values, the presence of high maximum CFR values in
several provinces raised concerns.

The CFR of COVID-19 was used to distinguish
between the first and second waves in Ontario, Canada.
The first wave CFR ranged from 0.004 to 0.146,
whereas the second wave CFR ranged from 0.003 to
0.034 [13]. and South Korea and Germany have CFR
values of approximately 1%, similar to those in Table
3, while Italy, Spain, the United Kingdom, and France
have a CFR that is approximately 12% higher [14].
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CFR concentration by Province and Season PM2.5 concentration by Province and Season
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Figure 3 Box plots representing distribution of CFR% and meteorological parameters in Bangkok and metropolitan area.

Table 3 Data of CFR% and meteorological parameters in Bangkok and metropolitan area

Province Statistical value CFR PM25 Rain RH Temp WS
Bangkok  Average 1.32 26.93 0.024 71.5 28.29 4.59
Min 0 0 0 41.25 18.48 0

Max 28.57 107 3.8 100 32.7 29.5

Median 0 21 0 71 29.3 2.3

n 357 357 357 357 357 357

Nakhon  Average 0.55 21.08 0.048 56.56 30.54 1.6
Pathom Min 0 3 0 34 19.8 0.1
Max 10 96 9.4 99 35.8 4.5

Median 0 15.5 0 56 31 1.4

n 363 363 363 363 363 363

Nonthaburi  Average 1.44 24.2 0.031 65.49 29.58 1.1

Min 0 0 0 36 19.1 0

Max 25 117 5.8 85 34.2 3.5

Median 0 19 0 66.5 30 1.15

n 360 360 360 360 360 360
Pathum Average 0.8 25.81 0.005 66.31 29.22 1.79
Thani Min 0 5.8 0 39.6 33.86 0.28
Max 11.82 126.8 0.6 96.8 18.82 4.02
Median 0.49 21.2 0 66.4 29.72 1.74

n 363 363 363 363 363 363
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Table 3 Data of CFR% and meteorological parameters in Bangkok and metropolitan area ( continued)

Province Statistical value CFR PM25 Rain RH Temp WS
Samut Average 0.67 29.7 0.039 63.23 31.82 44.5
Prakan Min 0 2.5 0 40 19.56 1.18

Max 6.06 142 12.8 98 55.4 76.7
Median 0 23.5 0 61.5 30.5 46.5
n 364 364 364 364 364 364
Samut Average 1.09 30.4 0.017 61.38 27.7 31.17
Sakhon Min 0 2.5 0 29.5 12.24 13.9
Max 33.33 142 1.8 94.5 40 60
Median 0.86 23.5 0 61.5 28.5 30.8
n 365 365 365 365 365 365

3) Relationships between CFR, PM2 5, and meteorological
factors

The weather significantly affects the transmission
of infectious diseases by impacting how they spread,
the susceptibility of hosts, and the survival of viruses
in the environment. Research on weather conditions
and COVID-19 shows that each weather factor has
both beneficial and detrimental effects, especially in
winter when host susceptibility increases and virus
viability rises [15].

Figure 4 displays the results of a correlation study
utilizing Spearman's Rank correlation coefficient to
examine the relationships between meteorological
factors and PM2.5 levels, as well as CFR% of COVID-
19 in Bangkok and metropolitan area from January to
December 2021. The CFR% exhibited a positive corre-
lation with relative humidity (RH) (r=0.187) and a
negative correlation with PM2.5 (r=-0.190) and wind
speed (WS) (r=-0.039). In a similar fashion, previous
research exploring the impacts of PM2.5 and meteoro-
logical parameters also identified a positive correlation
between RH with daily confirm cases of COVID-19
[10]. It was also found that the impact of weather and
seasonality on the COVID-19 pandemic in Saudi Arabia
was negatively related to relative humidity (RH) (r= -
0.62) and minimum temperature (r = -0.61) [16]. This
differs from our study where a positive correlation of
RH was found. While there was an adverse correlation
with PM25, it remained essential to monitor PM2.5 dust
levels. Particulate matter (PM2.5) has the potential to
elevate the infection rate of SARS-CoV-2 and the severity
of COVID-19. PM2:5 can lead to a 1.5-fold upregulation
of the angiotensin 2 converting enzyme (ACE2), a
mechanism exploited by viral particles for entering
human lung alveolar cells, resulting in a 1.5-fold
increase in RAB5 protein [17].

In Baghdad [18], Iraq, a seasonal relationship was
also observed, with the highest number of deaths

occurring during the summer of 2020, accounting for
41% of the total. In Mumbai, India, a significant asso-
ciation between COVID-19 and various meteorological
factors was observed, including temperature, dew point,
relative humidity, as well as surface pressure [19]. In
Italy, temperature showed a negative correlation with
the CFR of COVID-19, as well as with the concen-
trations of air pollutants (NOz2, O3, PMi0, and PM235),
while relative humidity was positively associated with
the CFR [1]. In this Italian report, However for PM2.5,
the Italian report revealed a positive correlation with
CER, which differs from the findings presented in this
report.

Numerous factors influence the rise or fall in the
number of COVID-19 cases. These factors include the
implementation of lockdown measures, population
mobility in each region, contact with symptomatic and
asymptomatic individuals, and the progress of COVID-
19 vaccination efforts. The spread of COVID-19 is a
complex interplay of various factors, not solely reliant
on air pollution or meteorological conditions. By
considering these multiple factors, we can engage in a
more comprehensive discussion and arrive at more
definitive conclusions regarding the dynamics of
COVID-19 transmission.

4) Effects of PM25 and meteorological parameters
factors and CFR%

Nonparametric technique, GAM model, was applied
to analyze PM2.5 data and meteorological parameters
from monitoring stations in relation to CFR% values.
In the initial stage, two GAM models were compared
between response types of CFR% as percentage and
CFR% as binary codes. The binomial model performed
better prediction, therefore, we decided to conduct the
binomial analysis to investigate the relationship and
analysis.
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Figure 4 Scatter plots of the spearman’s rank correlation coefficient between PM2.5 and
meteorological parameters factors and CFR% in Bangkok and metropolitan area from 1 January to 31 December 2021.

The GAM binomial model includes CFR% as CFR
binary (0 and 1) and PM2.5 values as PM2.51/0. Table 4
presents data from the GAM for PM2.51/0 and meteo-
rological parameters across all seasons, affecting the
CFR% of COVID-19. Using the GAM model with data
from all six provinces yields the highest deviance
explained value of 36% with the R? value of 0.42.
Significant variables influencing the CFR percentage
were PM2.51/0 (p-value: dry season = 0.0003, wet season
<2e-16), RH (p-value: dry season = 0.000770, wet season
<2e-16), and wind speed (p-value: dry season = 0.270985,
wet season <2e-16). This underscored the statistical
significance of these variables concerning CFR% in both
dry and wet seasons.

In Wuhan, CFR% was found to be related to PM 2.5.
The CFR% was positively related to the total lag0-lag5
concentrations of PM 2.5 and PM 10 (r > 0.36, P < 0.03).
However, no significant relationship was found between
temperature, RH, and CFR of COVID-19 (r = 0.13,P =
0.44,and r = 0.21, P = 0.22, respectively) [20].

5) Clustering of CFR magnitudes and various lags

This research categorized the main data into two
groups: high CFR and low CFR, based on the CFR%
values from Table 3. The High CFR group included
Nonthaburi and Bangkok provinces, while the low
CER group comprised Pathum Thani, Nakhon Pathom,
Samut Prakan and Samut Sakhon provinces.
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Table 4 Data of GAM related to CFR% and meteorological parameters in Bangkok and the metropolitan area

Parameter Season edf Ref.df Chi.sq p-value
PMa2s10 Dry 1.65 1.88 16.90 0.0003***
Wet 2.00 2.00 305.58 <2e-16***
Rain Dry 2.13 2.49 0.45 0.7818
Wet 1.00 1.00 0.60 0.4388
RH Dry 3.11 3.78 19.30 0.0008***
Wet 1.00 1.00 34.50 <2e-16***
Temp Dry 4.20 4.66 29.59 1.49e-05%**
Wet 1.40 1.70 291 0.2710
WS Dry 4.45 4.85 70.92 <2e-16***
Wet 4.64 491 40.80 2.27e-07%%*
Remark: Signif. codes: 0 ****0.001 **’0.01 **0.05 0.1 "1
R-sq.(adj) = 0.42 Deviance explained = 36% -REML = 1007.6 Scaleest. =1 n=2173
Table 5 Data of GAM model of lag Day-0 and lag Day-7
Province Lagged effect P-value R-sq.  Deviance
group CFR PM25 Day PMy5 Rain RH Temp WS explained
Dy We Dy Wet Dy Wet Dy Wet Dy Wet (%)
High CFR%  PMs Day0 . * . . Y03 34.9
CFR Day-7 ** e 0.3 36.1
PMsyo0  Day-0 . b X 0.3 35.0
Day-7 o o 03 36.1
CFR PM,5s  Day-0 or o 0.6 57.5
(Binary) Day-7 e * 0.6 56.8
PMzsio  Day-0 . hx * 0.6 57.2
Day-7  * ek o 0.6 57.6
Low CFR  CFR% PMy s Day-0 * 0.1 12.2
Day-7 * 0.1 10.8
PMasiyo  Day-0 * 0.1 12.0
Day-7 * 0.1 10.6
CFR PM,s  Day-0 04 33.8
(Binary) Day-7 0.4 31.8
PMsy0  Day-0 0.4 33.4
Day-7 0.3 31.0

Remark: Signif. (codes: <0 “***<0.001), (0.001 £ ***<0.01), (0.01 £’ <0.05), (0.05<°><0.1), (0.1’ <1)

In Table 5, there is further differentiation of data
compared to Table 4, allowing for greater insight into the
connections between the effects. This includes data that
distinguishes the CFR between the two groups over the
lag periods of Day-0 and Day-7. The highest deviance
explained values were found in the high CFR group,
which CFR% values represented as CFR (Binary). This is
particularly observed in the lag Day-7 data group of
PMa2:51/0 and p-values obtained for PM2.5 and WS are
consistent with those in Table 4. The GAM modes with
binary CFR values exhibited better predictive models
when compared to the percentage CFR. Lag days
performed not much different predictive outputs when
compared to the baseline model. In the north-central
United States, day lag is related to variables. Most
significantly, positive associations were found in lower
levels of each selected meteorological factor from 3 to 11
lagged days. Our findings were contradictory to this study
in which lagged days showed significance on COVID-19

incidence. In particular, a significantly positive association
appeared in minimum relative humidity higher than
88.36% at a 5-day lag [21].

Conclusions

This research has unveiled a direct correlation between
the average relative humidity and the case fatality per-
centage (CFR%) of COVID-19 in Bangkok and the
surrounding metropolitan area. Additionally, using new
data clustering techniques, our resulting generalized
additive model (GAM) has the R2 value of 0.6, explaining
a substantial 57.6% of the variance in CFR% using the
High CFR binary derived from lag Day-7 data associated
with PM2.51/0. However, it is important to recognize
that several complex factors come into play when
assessing COVID-19 dynamics. These factors include
the presence of asymptomatic COVID-19 patients, the
progress of immunization campaigns, socioeconomic
factors influencing healthcare access, the emergence of
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different SARS-CoV-2 variants, and the unique topo-
graphy of the area. To gain a more comprehensive
understanding, further research is warranted. This
research should explore the potential influence of
vaccination efforts and pollutant levels, as well as the
medical histories of individuals who have contracted
SARS-CoV-2. Such insights are important not only for
responding to the current pandemic but also for
predicting and preparing for future outbreaks. These
findings can assist policymakers in making informed
decisions to prevent and mitigate risks associated with
respiratory infections. Furthermore, can suggest the need
for increased public health policies, particularly in urban
planning and environmental regulations. Due to diverse
environmental conditions and lifestyles, the health impacts
of air pollution vary across different regions. Therefore,
it is essential to tailor air pollution policies according
to local circumstances to strike a balance between
economic costs and health benefits. Moreover, stricter
air pollution regulations should be implemented in areas
with severe pollution levels. Overall, the following
limitations of the study should be considered in
further research:

- Air pollution data obtained from environmental
monitoring stations may not precisely reflect an
individual's actual exposure level.

- This study is not representative of the entire
general population.

- This study did not account for potential con-
founding factors that could influence the relationship
between environmental factors and COVID-19, such
as age, gender, smoking status, alcohol consumption,
comorbidities, and vaccinations.
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