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Abstract

This study evaluated the effects of arbuscular mycorrhizal fungi (AMF) on
plant growth, nutrient uptake, and heavy metal accumulation on polluted land
using a meta-analysis approach. Data from 33 relevant studies were selected based
on inclusion criteria, specifically articles in English, observational research, and
investigating the role of AMF in plant growth and productivity on polluted land.

KEYWORDS
The results showed that plants inoculated with AMF experienced significant }
. . . Arbuscullar mycorrhizal
accumulation of heavy metals in roots, such as Pb (p<0.01), Ni (p<0.01), Cr fune
_ ungi;
<0.01), M <0.05), F <0.05), and A <0.05). The AMF ficantl
(p<0.01), Mn (p<0.05), Fe (p<0.05), and As (p<0.05). The SIMTCATEY Heavy metal uptake;

reduced the accumulation of heavy metals such as Cr, Ni, Fe, and Cu on the upper
part of fodder forage (p<0.01). Forage growth was also enhanced due to AMF. The
AMEF greatly increased the fresh weight, length, and phosphorus (P) content of
fodder forage roots (p<0.01). It also increased the plant's biomass, fresh weight,
dry weight, height, nitrogen (N), phosphorus (P), and potassium (K) contents
(p<0.01). In conclusion, AMF is important in increasing plant growth, nutrient

Meta-analysis

uptake and reducing heavy metal accumulation in forage on polluted land.

Introduction

The development of forage as animal feed is a
challenge given the limited fertile land. In this context,
utilization of marginal land is an attractive alternative
for forage development [1]. Marginal lands include
mined land or land contaminated by heavy metals [2].
However, growth can be impaired by heavy metals that
accumulate in plant tissues [3]. Heavy metals such as
arsenic (As), chromium (Cr), nickel (Ni), iron (Fe),
manganese (Mn), and lead (Pb) can damage and conta-
minate plants [4], damages the root physiological system
[5-6]. Therefore, efforts are needed to reduce heavy metal
accumulation in forage grown on polluted land [7].

One promising approach is the use AMF. AMF is a
symbiotic relationship between fungi and plant roots,
which can enhance plant growth and assist in nutrient

uptake [8]. In addition, AMF is also known to have the
potential to reduce heavy metal accumulation in plants
[9]. However, other studies have shown that AMF can
increase heavy metal uptake in bermudagrasses
(Cynodon dactylon (L.) [10]. To understand the impact
of AMF on forage growth, nutrient uptake, and feed
safety evaluation on polluted land, a systematic review
is needed that combines and analyzes data from
relevant studies. Meta-analysis is an appropriate
approach to integrate and analyze data from relevant
studies [11].

The meta-analysis review plays an important role in
this study. In agriculture and animal husbandry, AMF
have been recognized as a beneficial plant symbiosis.
[12-14]. However, research on the impact of AMF on
fodder forage growth, nutrient uptake in polluted soils
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still has significant variation in results. By collecting
data from multiple relevant studies, meta-analysis can
provide a more comprehensive and objective picture of
the impact of AMF on forage. Through thorough
analysis of the collected data, meta-analysis can reveal
common patterns, identify consistent trends, and reduce
the bias of individual study results [13].

This study therefore aimed to evaluate the effects of
AMEF on plant growth, nutrient uptake, and heavy metal
accumulation on polluted land by using a meta-analysis
approach.

Methods
1) Search strategy, inclusion criteria and data extraction

A comprehensive search strategy was implemented
to gather relevant articles from multiple sources,
including Scopus (https://www.scopus.com/) databases
and Google Scholar. The search was conducted between
2017 and 2022 using a predefined set of keywords,
which included "arbuscular mycorrhizal fungi," "nutrient
uptake," "heavy metals," "contaminated,” "polluted,”
and "soil." Following the article search, a meticulous
evaluation of the title and abstract of each article was
performed. This review process involved the selection
of articles that met specific inclusion criteria, with a
focus on English-language observational research
exploring the role of AMF in plant growth and
productivity on polluted land.

During the article screening phase, a total of 850
articles were excluded as they were not relevant to the
research theme. After this screening process, the number
of articles was reduced to 50. Thoroughly reading the
abstracts of these 50 articles allowed for a detailed
evaluation of their alignment with the research para-
meters. As a result, a further 38 articles were eliminated
as they did not meet the predetermined criteria. These
criteria included 20 articles not pertaining to polluted
land, 10 articles not aligning with the research para-
meters, and 8 articles lacking sufficient data for analysis.

After the rigorous screening and evaluation processes,
a total of 12 articles were identified that closely aligned
with the research criteria. These 12 articles were selected
for further analysis, and their details are provided in
Table 1 of this study. By employing this systematic
research methodology, it ensures that relevant and
high-quality articles addressing the impact of AMF on
plant growth, nutrient uptake, and heavy metal
accumulation in polluted land have been carefully
analyzed and selected. This rigorous approach ensures
the reliability and comprehensiveness of the research
findings.

2) Statistical analysis

The Hedges' d effect size was used to measure the
difference between the use of AMF and not using AMF
(control). This method was chosen because it can account
for variation in sample size, measurement units, and
statistical test outcomes, and is suitable for evaluating
paired treatments [25]. The group that does not use
AMF is considered the control group (C), while the
group that uses AMF forms the experimental group
(E). Effect size (d) is calculated using the formula;

Xe—Xc
S

d =

Ji (Eq. 1)

Where Xe is the mean of the experiment (with the
use of arbuscular mycorrhizal fungi) and Xc is the mean
of the control (without the use of arbuscular my-
corrhizal fungi), the difference between the means of E
and C is divided by the pooled standard deviation (8S).
A positive effect size indicates higher values in the group
that uses arbuscular mycorrhizal fungi, while a negative
effect size indicates the opposite. The correction factor (J)
adjusts for small sample size, which is;

3
- (4(Nc+Ne—-2)-1)

J=1 (Eq. 2)

and S is the pooled standard deviation, defined as:

(Eq.3)

. \/(Nf S0 4 (N 1)((59)?)
- (NE+NE—2)

where NE is the sample size of the experimental
group, N¢ is the sample size of the control group, S is
the standard deviation of the experimental group and
SC is the standard deviation of the control group. The
variance of Hedges’ d (vd) is described as follows:

(N +N) &?
(NCENE) ~ (2(NC + NE))
The cumulative effect size (d++) was formulated
as follows:

= (Eq. 4)

(S5 Widh)

e Eq. 5
der = 55w (Eq-5)

where Wi is the inverse of the sampling variance: W
i = Y 1/vd. The precision of the effect size was described
using a 95% confidence interval (CI), i.e. d£(1.96sd).
All the above equations were derived from the study of
Sanchez-Meca and Marin-Martinez [25]. The
calculated effect size was statistically significant if CI
did not reach a null effect size. A fail-safe number (Nfs)
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was calculated to identify publication bias caused by
non-significant studies which were not included in the
analysis. Nfs (fail-safe number), which is more than five
times of sample size (N) and plus ten, was considered to
provide evidence of a robust meta-analysis model. Nfs
(fail-safe number) was calculated using the method of
Rosenthal [26]. The smallest sample size from indi-

Table 1 Studies selected for the meta-analysis

vidual studies was applied as N. Cohen’s benchmarks
were used as standard judgement borders for effect size
assessment. These benchmarks were: 0.2 for small, 0.5
for medium and 0.8 for large effect size. All of the above
effect size-related calculations were performed using
OpenMEE 2.0.

Study Country AMEF species Host plant Soil type *AMEF doses  References
@)
1 China Rhizophagus irregularis Panicum virgatum Cadmium- 5 [14]
contaminated soil
2 China Rhizophagus irregularis Panicum virgatum Cadmium- 5 [14]
contaminated soil
3 China Funneliformis mosseae Cynodon dactylon L. Lead—zinc mine 10 [10]
wasteland
4 China Diversispora spurcum Cynodon dactylon L. Lead—zinc mine 10 [10]
wasteland
5 Indonesia Glomus manihotis Pennisetum purpureum cv Gold mine tailings 5 [15]
Mott
6 Indonesia Glomus manihotis Pennisetum purpureum cv Gold mine tailings 10 [15]
Mott
7 Indonesia Glomus manihotis Pennisetum purpureum cv Gold mine tailings 15 [15]
Mott
8 Portugal Glomus manihotis S. melongena Heavy metal(loid) 10 [16]
contaminated soil
9 Portugal Glomus manihotis S. melongena Heavy metal(loid) 10 [16]
contaminated soil
10 Bulgaria Claroideoglomus Origanum majorana L. Heavy metal polluted 5 [17]
claroideum soil
11 Bulgaria Rhizophagus clarum Origanum majorana L. Heavy metal polluted 5 [17]
soil
12 Bulgaria Claroideo-glomus Origanum majorana L. Heavy metal polluted 5 [17]
claroideum soil
13 Bulgaria Funneliformis mosseae Origanum majorana L. Heavy metal polluted 5 [17]
soil
14 China Funneliformis mosseae Zea mays Cadmium and lead 15 [18]
contaminated soils
15 China Glomus versiforme Zea mays Cadmium and lead 15 [18]
contaminated soils
16 China Rhizophagus intraradices Zea mays Cadmium and lead 15 [18]
contaminated soils
17 China Funneliformis mosseae Zea mays Heavy metal polluted 15 [19]
soils
18 China Diversispora spurcum Zea mays Heavy metal polluted 15 [19]
soils
19 India Rhizophagus fasciculatus Zea mays Heavy metal rich 10 [20]
tannery sludge
20 India Rhizophagus intraradices Zea mays Heavy metal rich 10 [20]
tannery sludge
21 India Funneliformis mosseae Zea mays Heavy metal rich 10 [20]
tannery sludge
22 India Glomus aggregatum Zea mays Heavy metal rich 10 [20]
tannery sludge
23 Taiwan Glomus mosseae Ipomoea aquatica Forsk Heavy metal 10 [21]
contaminated
24 Taiwan Glomus mosseae Ipomoea aquatica Forsk. Heavy metal 15 [21]
contaminated
25 China Funneliformis mosseae Zea mays Lead-zinc mine 10 [22]
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Table 1 Studies selected for the meta-analysis (continued)

P
Study Country AMTF species Host plant Soil type AMF References
doses (g)
26 India Glomus macrocarpum Lufta aegyptiaca Cadmium 5 [23]
contaminated soil
27 India Glomus monosporum Lufta aegyptiaca Cadmium 10 [23]
contaminated soil
28 India Glomus macrocarpum Lufia aegyptiaca Cadmium and nickel 5 [23]
contaminated soil
29 India Glomus monosporum Lufia aegyptiaca Cadmium and nickel 10 [23]
contaminated soil
30 India Glomus macrocarpum Lufia aegyptiaca Nickel contaminated 5 [23]
soil
31 India Glomus monosporum Lufia aegyptiaca Nickel contaminated 10 [23]
soil
32 China Glomus intraradices Arachis Cadmium 5 [24]
hypogaea L. cv. Huayu contaminated soil
33 China Glomus intraradices Arachis Cadmium 10 [24]

hypogaea L. cv. Huayu

contaminated soil

Remark: * The weight of AMF in Table 1 represents the combined weight of spores and the carrier material.

[ Identification of studies via databases and registers ]

Records removed before screening: n = 1890

Duplicate records removed (n =810)

Records marked as ineligible by automation tools (n =430)
Records were removed for other reasons (n = 650).

Records excluded: n =70

Not on contaminated land, n= 30

Not appropriate for the parameter, n=20
Another reason, n=20

Reports not retrieved
(n=38)

Out of 12 documents (n=12),
studies were reviewed

Figure 1 Flow chart of the literature selection process according to PRISMA protocols.
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Results

1) Profile of selected studies

Not all findings can be considered reliable due to
conflicting research results and small sample sizes, which
may indicate the presence of publication bias. The fail-
safe number (Nfs) plays a crucial role in determining the
inclusion of studies for robust conclusions. It represents
the minimum number of additional studies needed to
render the initial effect size statistically insignificant.
Suppose the Nfs value exceeds five times the sample size
(N) plus 10, where N represents the sample size used to
calculate the initial effect size. In that case, it is reasonable

to assume that the result is reliable and subject to
publication bias [26]. According to these fail-safe number
rules, robust parameters included were: Ni root, Cr
root, BCF (bioconcentration factor) root Pb, Pb shoot,
Cu shoot, Fe shoot, Ni shoot, Cr shoot, TF (transfer
factor) of Pb and TF of Cd, P root, fresh weight root,
dry weight root, K shoot, P shoot, plant height, shoot
length, shoot dry weight, and biomass. Figure 2 shows
the detailed meta-analysis results tested according to
Cohen’s methodology for root heavy metals (ten
parameters), shoot heavy metals (ten parameters), and
plant growth and nutrient elements (15 parameters).
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Figure 2 Forest plot of cumulative effect size (d++) and 95% confidence interval (CI) of AMF on heavy metal
uptake (a), plant growth, and nutrient elements (b) in contaminated soil. Robust evidence of a meta-analysis model

was identified using a fail-safe number (Nfs). A value o
publication bias. Conversely, if the fail-safe number wa
meta-ana

2) The effects of AMF on plant growth, nutrient uptake,
and heavy metal uptake in contaminated soil

The forest plot of Figure 2 (a and b) shows the cumu-
lative effect size (d++) which referred to as the overall
effect size. If the horizontal interval line of parameters
crosses the zero vertical line, then there is no significant
difference between AMF and non-AMF in contaminated
soil. Inoculation of AMF was able to increase the
accumulation of heavy metals in plant roots, especially Pb
(p<0.01), Mn (p<0.05), Fe (p<0.05), Ni (p<0.01), Cr
(p<0.01), As (p<0.05), bioconcentration of Pb
(p<0.05), and bioconcentration of Pb (p<0.05). In
addition, AMF can inhibit the uptake of heavy metals

f Nfs > 5N + 10 was considered to indicate the absence of
s not robust, it suggested potential publication bias in the
lysis model.

in plant shoots, especially Cd (p<0.05), Cu (p<0.01), Fe
(p<0.05), Ni (p<0.01), Cr (p<0.01), TF Pb (p<0.01),
and TF Cd (p<0.01). However, there was no significant
difference between AMF and non-AMF in the accumu-
lation of Cd and Cu in plant roots or Mn and As in
plant shoots.

On the parameters of nutrient content in plant
shoots (Figure 2(b)), it can be seen that the inoculation
of AMF can increase the accumulation of P root
(p<0.01), K shoot (p<0.01), fresh weight root (p<0.01),
root dry weight (p<0.01), shoot N (p<0.01), shoot P
(p<0.01), plant height (p<0.01), shoot length (p<0.01),
leaf number (p<0.01), shoot fresh weight (p<0.01),
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shoot dry weight (p<0.01), and biomass (p<0.05).
However, there was no difference between AMF and
non-AMEF (p > 0.05) on root Zn and shoot Zn.

Based on Cohen’s benchmarks, the parameters of
root heavy metals, i.e., Pb, Cu, Mn, Fe, Ni, Cr, and BCF
Pb, are in the large effect size category, but in the small
category in Cd and BCF Cd. Meanwhile, parameters of
shoot heavy metal, i.e., Pb, Cu, Fe, Ni, Cr, TF Pb, and
TF Cd, have medium effect sizes in As and small effect
sizes in Mn. All parameters of growth and nutrient
content of plants are in the large effect size category
except Zn shoot, which is in the small category.

3) The effect of AMF species subgroups on the uptake
of heavy metals in plants, growth, and nutrient uptake

Several species of AMF show a significant positive
influence on enhancing the uptake of heavy metals in
shoots (Figure 3), such as G. mosseae, G. constrictum,
F. mosseae, G. versiforme, R. irregularis, and R.
intraradicesfor Pb uptake; and G. monosporumand G.
macrocarpum for Cd uptake. However, some species
exhibit a negative (inhibitory) effect on the uptake of
heavy metals in shoots, such as R irregularis, D.
spurcum, R. fasciculatus, G. aggregatum, and G.
Intraradices for Cd; G. constrictum, R. fasciculatus, R.
intraradices, F. mosseae, and G. aggregatum for Cu; R.
fasciculatus, R. intraradices, F. mosseae, and G.
aggregatum for Ni; R. fasciculatus, R. intraradices, F.
mosseae, and G. aggregatum for Cr. Meanwhile, species
that show no significant effect include G. coronatum
and G. intraradices for Pb; G. coronatum for Cu; G.
mosseae for Ni; G. mosseae for Cr; G. manihotis; F.
mosseae; and D. spurcum for As.

In the root parameter, several species of AMF
exhibit a significant positive effect on enhancing the
uptake of heavy metals in roots (Figure 4), such as R.
fasciculatus and G. aggregatum for Cd; G. manihotis
for Pb; R. fasciculatus, R. intraradices, F. mosseae, and
G. aggregatum for Cu; R. fasciculatus, R. intraradices,
F. mosseae, and G. aggregatum for Ni; R. fasciculatus,

R. intraradices, F. mosseae, and G. aggregatum for Cr;
G. manihotis, R. fasciculatus, R. intraradices, G.
aggregatum, and R. clarum for BCF Root Pb; R.
intraradices and G. aggregatum for BCF Root Cd.
However, some species show a negative (inhibitory)
effect on the uptake of heavy metals in roots, such as G.
versiforme for Cd; G. macrocarpum and G
monosporum for Cd; F. mosseaeand D. spurcum for Pb;
C.  dlaroideum, R clarum, Claroideoglomus
claroideum, R. fasciculatus, R. intraradices, and G.
aggregatum for Pb; and G. constrictum for Cu.
Meanwhile, species that exhibit non-significant effects
are R. rrregularis, F. mosseae, D. spurcum, G. manihotis,
C. claroideum, R. clarum, R. intraradices, G. mosseae,
G. intraradices, and Claroideo-glomus claroideum for
Cd; G. mosseaefor Ni; G. manihotisand G. mosseaefor
Cr; G. manihotis, F. mosseae, and D. spurcum for As.

In terms of plant growth parameters (Figure 5(a)),
several arbuscular mycorrhizal fungal species exhibit a
significant positive influence. Arbuscular mycorrhizal
species like C. claroideum, R. clarum, Claroideo-glomus
claroideum, F. mosseae, F. etunicatum, G. macrocarpum,
and G. monosporum can help plants gain dry weight.
Some arbuscular mycorrhizal species, like G. constrictum,
F. mosseae, G. manihotis, and F. mosseae, also make
plants much heavier when they are fresh. Some species,
like G. constrictum, C. claroideum, F. etunicatum, G.
intraradices, and R. clarum, can greatly increase the dry
weight of roots.

Several types of AMF have a big effect on helping
plants take in more N, P, and K (Figure 5(b)). Such as
G. constrictum, G. mosseae, F. mosseae, and G.
coronatum enhance K wuptake signi-ficantly. G
constrictum and G. mosseae contribute to N uptake. R.
irregularis, G. constrictum, F. mosseae, and G.
versiforme affect P uptake in roots significantly, while
R. irregularis, G. constrictum, F. mosseae, G.
versiforme, R. intraradices, and G. mosseae impact P
uptake in shoots significantly.
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Figure 3 Forest plot of the effects of AMF species on the uptake of heavy metals in shoots in contaminated soil. A
negative value (-) on the graph indicates that the AMF species inhibits the absorption of heavy metals by the host
plants. Conversely, a positive value (+) signifies that the AMF species enhances the absorption of heavy metals by
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Figure 4 Forest plot of the effects of AMF species on the uptake of heavy metals in roots in contaminated soil. A
negative value (-) on the graph indicates that the AMF species inhibits the absorption of heavy metals by the host
plants. Conversely, a positive value (+) signifies that the AMF species enhances the absorption of heavy metals by

the host plants.
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Figure 5 A forest plot of the effects of AMF species on plant growth (a) and nutrient (N, P, and K) uptake (b) in
contaminated soil the central line (horizontal bar) in this plot represents the average estimate of the impact of
fungal species on the measured plant growth parameter. In the blue bars (significant), the central line reflects a

significant impact. In the gray bars (non-significant), the central line represents a non-significant impact that is still
measurable. This helps to understand the magnitude of the fungal species' influence on plant growth, whether it is
significant or not.

Discussion

1) The effect of AMF on heavy metal content in roots
Meta-analysis studies indicate that AMF have a

significant influence on the uptake or accumulation of

specific heavy metals in roots. The following are the

results of scientific studies related to the influence of

AMEF on heavy metal content in roots, with heavy metal

parameters such as Cd, Pb, Cu, Mn, Fe, Ni, Cr, As, BCF
root Pb (bioconcentration factor of lead in roots), and
BCF root Cd (bio-concentration factor of cadmium in
roots). The meta-analysis study found that AMF play a
highly effective role in the uptake and accumulation of
these heavy metals in roots. In this context, 'effective’
refers to the ability of AMF to reduce the levels of heavy
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metals in the soil by absorbing and storing them within
the root tissues of the plants infected by these fungi.

In this study, several heavy metal parameters such as
Pb, Mn, Fe, Ni, Cr, and As have been investigated. The
results indicate that AMF can significantly enhance the
accumulation of these heavy metals in infected plant
roots [20]. Thus, plants that have a symbiotic relation-
ship with AMF have a better ability to accumulate and
store heavy metals in their roots compared to non-
infected plants. This finding aligns with the research
results [29-30], which indicate that AMF can enhance
the uptake of heavy metals in plant roots. Numerous
studies have demonstrated that AMF are one of the
approaches for the remediation of heavy metal-
contaminated soil through phytoremediation [29, 31,
34].

Furthermore, the study also evaluated the BCF of
heavy metals Pb and Cd in roots. BCF is a measure of
the relative concentration of heavy metals in plant root
tissues compared to the concentration of heavy metals
in the soil where the plants grow. The research results
indicate that AMF have a significant influence on
increasing the value of BCF root Pb (p<0.01), indi-
cating their ability to accumulate Pb in plant roots. [17]
also reported that AMF were able to increase the BCF
values in plants grown in heavy metal-contaminated
soil. However, AMF did not have a significant effect on
BCF root Cd. [31] reported that F. mosseae was able to
decrease the BCF value of Cd and was suitable for use
in Cd phytostabilization. The results of this study
contrast with those indicating that AMF were able to
enhance Cd accumulation in maize roots [32],
Cannabis sativaL. [33].

Overall, this meta-analysis study supports the
important role of AMF in reducing the concentration
of heavy metals in soil by accumulating them in
infected plant roots. With the help of arbuscular
mycorrhizal fungi, this finding could help scientists
come up with better ways to clean up heavy metal-
contaminated soil.

2) The effect of AMF on the content of heavy metals in
shoots

The meta-analysis study on the effect of AMF on the
content of heavy metals in plant shoots in conta-
minated soil shows that these fungi have a positive
effect on reducing the uptake of heavy metals by plant
shoots. This study involves the following parameters:
Cd shoot, Pb shoot, Cu shoot, Mn shoot, Fe shoot, Ni
shoot, Cr shoot, As shoot, TF Pb, and TF Cd. The
results of this study indicate that AMF have a positive
effect on reducing the uptake of heavy metals in plant
shoots grown in contaminated soil. This means that

when plant shoots are infected with arbuscular
mycorrhizal fungi, the plant's ability to absorb and
accumulate heavy metals such as Cd, Pb, Cu, Mn, Fe,
Ni, Cr, and As in its shoots decreases. Several recent
researchers have also reported that AMF have the
ability to inhibit the translocation of heavy metals to the
shoots [28, 34-35].

Furthermore, this study also analyzed the trans-
location factor (TF) of the heavy metals Pb and Cd in
plant shoots. TF is a measure of the plant's ability to
transfer heavy metals from the roots to the above-
ground parts of the plant, particularly the shoots. The
meta-analysis results show that AMF have a positive
effect on reducing TF Pb and TF Cd, indicating that
these fungi help inhibit the transfer of heavy metals
from the roots to the plant shoots. This suggests that
AMF can reduce the accumulation of heavy metals in
plant shoots grown in contaminated soil. Putra etal. [15]
reported that AMF are highly effective in reducing the
TF values of Cd and Pb.

Overall, this meta-analysis study reveals that AMF
have a significant positive effect on reducing the uptake
of heavy metals in plant shoots growing in contaminated
soil. These findings indicate the potential of AMF as an
effective tool in reducing the risk of heavy metal accu-
mulation in plant shoots and can serve as a valuable
strategy in efforts to remediate heavy metal-contaminated
soil.

3) The effect AMF on plant growth and productivity
in heavy metal-contaminated soil

The analysis results indicate that AMF have a significant
effect on enhancing certain plant growth parameters
but do not affect other parameters. The study demonstrates
that the presence of AMF has a positive impact on plant
biomass. Plant biomass is a measure of the total weight
of organic material produced by plants, and an increase
in biomass indicates that AMF can enhance plant
productivity in heavy metal-contaminated soil [36].
Furthermore, both plant dry weight and root dry
weight were positively influenced by arbuscular
mycorrhizal fungi. This indicates that the fungi are
capable of strengthening the plant's root system and
enhancing the uptake of nutrients required for plant
growth [37].

The study indicates that AMF may have a positive
impact on the fresh weight of plants and roots. Fresh
weight measurements in plants provide insights into
water content within plant tissues, while the fresh weight
of roots is indicative of the growth and development of
the plant's root system. It is important to exercise caution
in making definitive claims about plant productivity.
To better establish the benefits of AMF on plant growth,
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a comparison of key plant performance factors between
plants grown without AMF and those subjected to AMF
inoculation is recommended [38]. Additionally, the
presence of AMF appears to positively influence the
number of leaves, shoot length, and plant height. An
increased leaf count suggests an enhanced capacity for
plant photosynthesis, which could contribute to
improved plant productivity. Moreover, greater shoot
length and plant height are indicative of robust plant
growth, suggesting the potential for higher yields.

The meta-analysis study revealed that AMF play a
significant role in influencing the nutrient content of
plants, particularly P, N, and K. These nutrients are
vital for plant growth, and the study by Wu et al. [39]
demonstrated that AMF can enhance nutrient uptake
and utilization, even in heavy metal-contaminated soil.

In terms of nutrient content, the meta-analysis
study found that AMF influence the levels of P, N, and K
in plants. These nutrients are essential components for
plant growth, and the increased levels of P, N, and K
indicate that AMF can enhance nutrient uptake and
utilization by plants in heavy metal-contaminated soil
[39].

However, the study results also indicate that AMF
do not have a significant impact on chlorophyll content,
Zn in shoots, or Zn in plant roots. Chlorophyll content
serves as a primary indicator of plant photosynthetic
capacity, and the lack of influence by AMF on
chlorophyll suggests that these fungi may not directly
affect the photosynthesis process [40]. The findings of
this study differ from those of the previous studies [41-42]
which demonstrated that AMF can enhance plant
chlorophyll content. Furthermore, in contrast to those
findings, plants growing in heavy metal-contaminated
soil often experience the accumulation of heavy metals
such as Zn, but AMF do not have a significant impact on
zinc accumulation in plants.

Overall, this meta-analysis study provides strong
evidence that AMF have a positive effect on root growth
and plant productivity in heavy metal-contaminated
soil. These fungi are capable of enhancing plant
biomass, dry weight of plants and roots, fresh weight of
plants and roots, leaf count, shoot length, plant height,
as well as the content of P, N, and K in plants. Although
they do not have a significant impact on chlorophyll
content and zinc accumulation in plants, the role of
AMF in improving the quality of heavy metal-
contaminated soil and enhancing plant productivity is
crucial in the context of environmental management
and sustainable agriculture.

Conclusion

AMF plays a significant role in enhancing forage
growth, nutrient uptake, and reducing heavy metal
accumulation in shoots on contaminated land. AMF
are interesting because they can help clean up heavy
metal-contaminated soils through phytoremediation by
storing heavy metals in plant roots. However, further
monitoring is needed regarding the accumulation of Pb
by AMF. In the context of assessing the potential safety
of livestock feed, monitoring should be conducted to
ensure that forage inoculated with AMF on
contaminated land is safe for animal consumption.
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