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Abstract

The decision support system to reservoir re—operation using Artificial Intelligence
has been broadly studied and proven in term of the operational performances for
both single and multiple reservoir system, this study applied Adaptive Neuro Fuzzy
Inference System (ANFIS) technique for reservoir re—operation in Chao Phraya

River Basin aiming to reduce water scarcity and flooding problems in the central KEYWORDS

region of Thailand. ANFIS is an integrated approach in which neural networks are Hybrid Neuro—Fuzzy

utilized to enhance the fuzzy inference system and create fuzzy “IF-Then” reservoir
operational guidelines with proper membership functions for reservoir re—
operation. In this study, ANFIS operating rules were trained using two different
datasets; long—term dataset (scenario 1) and water year—based dataset (scenario 2).

Technique;
Adaptive Neuro Fuzzy
Inference System

It is revealed that the extent of yearly water deficit in critical dry years are totally (ANFI,S);
. . . ) Bhumibol Dam;
reduced to nearly zero when re—operating with ANFIS operation rules, except in Sirikit D
irikit Dam;

the year 2012. However, the yearly water deficit in year 2012 is also substantially
reduced from 504 MCM by the current operation to 127 and 119 MCM for
scenario 1 and scenario 2, respectively when two scenarios of ANFIS—based reservoir

Water scarcity;
Flooding

re—operation model were performed. Moreover, considerable total amount of
spilled water from BB and SK Dams is definitely declined to 0 and 37 MCM in years
2002 and 2011, respectively when water year—based ANFIS model was implemented.
In addition, it is expressed that average water storages of two main dams obtained
from two scenarios of ANFIS model are substantially increased up to +6.08% and
+6.94% for BB Dam and +0.09% and +1.62% for SK Dam in comparison with the
current operation. This signifies that supplying water from dams to meet the target
water demand through adaptive fuzzy—rules can be well handled and flooded water
can be minimized.

Introduction

The effectiveness of dam and reservoir operation
systems has rationally supported the sustainable manage-
ment of water resources [1]. The issues on adaptive
water resources management by altering the reservoir
operation policy have been widely addressed due to

realization on the adverse impact of climate changes
and frequent occurrences of natural disasters in various
parts of the world [2-6]. Severe flood and intense and
prolonged drought have become an urgent threat to
economic development globally [7]. It is stated that
water crisis due to flood and drought could be solved
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effectively with adaptive and integrated reservoir
management approach [8]. Consequently, optimal long—
term reservoir management through modern Artificial
Intelligence (AI) technologies as well as the best
operational practice driven by up-to—date reservoir
operating policy have been proposed and brought into
action to cope fruitfully with natural disasters [9].

Nowadays, dam and reservoir re—operation has been
recognized as one of the most excellent approaches to alter
the existing operation and management procedures. It
can also maintain or maximize the multiple benefits
obtained from reservoir operation [10]. Accordingly,
the reservoir re—operation techniques have been broadly
adopted to achieve sustainable water allocation and
reduce flood and drought risks in various parts of the
world [11].

In the past few decades, great attention on enhanc-
ing benefits of existing dam operation through using
operational rule curve has been drawn to provide
guidance for decision of dam release. It is renowned that
rule curves have been commonly applied for reservoir
operation due to its simplicity for dam operators.
However, the conventional rule curve has been developed
specifically for a single reservoir by disregarding present
circumstances of climate and watershed conditions
[12]. Controlling releases by rule curves is made based
on the established bounds which depend on time of
year to maintain reservoir water level. Therefore,
achieving the ultimate goal in solving extreme flood
and drought problems and operational sustainability of
reservoir water by using traditional rule curve have
been hardly found.

In recent decades, computer—aided tools using Al
technologies have become more popular and advanced
in many fields, especially in water resources management
and planning system [13]. Al is one of the advanced
computer—based techniques for simulating systems
with human intellectual abilities [14—15]. In other
words, Al can be referred to as the capability of a
computer—controlled practice to accomplish tasks that
are generally linked to intelligent experiences [16]. In
computer science, Al is sometimes termed as Machine
Intelligence (MI) when it is demonstrated as intelligence
with machines against the natural intelligence exhibited
by either humans or other animals. Deep Learning (DL)
and Machine Learning (ML) are subspecialties of Al
which are very usable techniques particularly for
complex decision—making. ML algorithm includes logic
programming, decision tree analysis, clustering, rein-
forcement learning, and Bayesian networks [17]. DL
models originated from Artificial Neural Networks
(ANN) due to their learning ability from data. Along with
the various Al applications, ANN is one of the optimal

approaches commonly applied for operational reservoir
simulation in many parts of the world [18-19]. It is
proven that ANN has been successfully applied for
development of the reservoir inflow prediction and
reservoir operation simulations by learning from long—
term reservoir operation data and a large amount of
historical hydrological data [20-21]. After that, some
researchers linked the ANN algorithm with other
reasoning and optimization algorithms to increase the
ANN models' accuracy and investigated using the
upgraded ANN algorithm for reservoir strategic planning
[22]. For instance, ANN was combined with a genetic
algorithm (GA) optimization technique and proved the
suitability of the advanced GA—ANN algorithm in reservoir
operation systems [23]. For forecasting reservoir inflow,
ANN was connected with the evolutionary algorithm and
evaluated the performance of a novel Evolutionary—
ANN method [24].

In addition to the above two evolutionary ANN
algorithms, Adaptive Neuro Fuzzy Inference System
(ANFIS) was established as a novel hybrid approach of
ANN and Fuzzy Logic System (FLS) in the early 1990s
[25]. Many studies have proven that the ANFIS model
can create the reservoir operating model more effi-
ciently than the classical fuzzy rule-based model if the
informative data is sufficiently provided [26]. Importantly,
ANFIS-based reservoir operation model can extract the
long—term reservoir operational rules with increased
problem—solving and computerized simulation algorithms
[27-30].

In this study, ANFIS technique was selected to
evaluate the prospective performances of the reservoir
re—operation system and analyze its risk compared to
the current operation. ANFIS was established to provide
operational guidance for re—operation of the Bhumibol
(BB) and Sirikit (SK) Dams not only to guarantee flood
control safety but also to alleviate water scarcity in the
Chao Phraya River Basin (CPYRB).

Consequently, re—operating the BB and SK Dams
with ANFIS model through long—term and water—year—
based datasets were conducted in this study aiming to
minimize the water scarcity and flood problems in the
central region of Thailand. This envisages the current
water stress which calls attention to the establishment
of well-prepared preparatory and action plans for
climate change adaptation in the future.

Study area

The BB and SK Dams are large multiple purposes
dams constructed across Ping and Nan Rivers, res-
pectively which are two main tributaries contributing
flow to the Chao Phraya River as shown in Figure 1.
They have been used as the principal water supply
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source not only to supply water for agricultural and
non-agricultural needs but also to prevent hazardous
droughts and huge floods predominantly in the Chao
Phraya River Basin in the central region of Thailand. BB
Dam has been jointly operated with the Sirikit (SK),
Khwae Noi Bumrung Dan (KNB) and Pasak Cholasite
(PS) Dams by the Electricity Generating Authority of
Thailand (EGAT) and Royal Irrigation Department
(RID) under the regulatory framework established by
the Office of the National Water Resource (ONWR).
Operating these multiple dams has been traditionally
executed using the static rule curve corresponding to
the seasonal and yearly water allocation plan established.
It is analyses that more than 70% of water released from
dams has been supplied for agricultural water demand
in the Greater Chao Phraya Irrigation Scheme (GCPYIS)
covering the irrigation service area of 10 million rai along
the Chao Phraya, Lower Ping, and Lower Nan Rivers.

The central Thailand has frequently experienced
droughts in dry season (Nov.—Apr.) and flooding
particularly at the end of wet season (May—Oct.) due to
tropical monsoon rainfall. This has created huge
economic losses for the country due to impact of flood
and drought occurrences. It is reported that floods and
droughts have been common natural disasters in
CPYRB over the decades [31]. In 2011 and 2021, this
region suffered substantial economic and agricultural
losses caused by the huge floods that devastated vast
areas in the region. In the meantime, some irrigation
areas in CPYRB struggled with water deficits for a few
consecutive years from 2018 to 2020 leading to a sub-
stantial decrease in crop yield production. Since floods
and droughts have frequently occurred in this region,
the weaknesses of existing operations of these major
reservoirs were reported and intensively analyzed to
draw a lesson [32].
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Materials and methods
1) Data collection

The requirement of vital data for this study includes
reservoir water balance—based data, water demand data,
and hydrological data in CPYRB. These required data
were collected from two main offices; (1) Royal Irrigation
Department (RID) and (2) Electricity Generating Autho-
rity of Thailand (EGAT). To create the reservoir re—
operation model applying the water balance—based
approach, the daily reservoir data including reservoir
inflow, initial water storage, evaporation losses, and water
released from BB and SK Dams were gathered from
2000 to 2020. The total water released from BB and SK
Dams were considered as the primary water supply
sources to satisfy the water demand in CPYRB. To
describe the downstream flow conditions for reservoir
operation, the downstream water discharge from the
Khwae Noi Bumrung Dan (KNB) Dam was collected at
gauged station N.22A on the Khwae Noi River to
potentially supply the water demand in CPYRB. In this
study, the potential downstream side flow was only
considered about 25% of the downstream water dis-
charge from KNB Dam to supply for the water demand
in CPYRB. Therefore, 25% of total water demand can
be partially satisfied by the potential side flow and the
remaining will be supplied by BB and SK Dams.
Therefore, some amount of water can be saved and
stored in reservoirs for later use in the subsequent dry
season period. The target water demand in CPYRB was
generated over the same time period in association with
the monthly water allocation plans established by RID
and EGAT from 2000 and 2020. Water supplied to the
target demand nodes was shared by BB and SK Dams
in the proportion of 0.44:0.56 which was analyzed from
the historical long—term record of dam releases [33].
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Figure 1 Map of study area and river schematic diagram in the Chao Phraya River Basin.
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To collect and interpret long—term reservoir data,
statistical analysis was examined to uncover patterns
and trends. For an assessment of climate variability of
CPYRB, classification of wet, normal, and dry years
based on volume of yearly reservoir inflow from 2000
to 2020 was conducted as shown in Figure 2. The long—
term yearly reservoir inflows of BB and SK Dams were
evaluated using normal probability distribution function
which is considered as the best fitting model. The
period in which yearly total inflow is more than 80%
probability of normal distribution is considered as wet
year. In contrast, period with yearly inflow less than
20% probability of normal distribution is regarded as
dry year. In addition, periods with yearly inflow lying
between 20% and 80% probability of normal distribution
is considered as normal year.

In this study, ANFIS-based reservoir re—operating
rules were developed through two scenarios by chang-
ing the input dataset of the ANFIS variables.

Scenario 1 (ANFIS-LT): ANFIS “IF-Then” reservoir
re—operating rules were developed by using the conti-
nuous long—term reservoir data from 2000 to 2020.
Therefore, this scenario can be said that the ANFIS re—
operating rules were created by only considering the
inflow and outflow relationship of the current reservoir
operating system. This can get one set of ANFIS “IF—
Then” reservoir re—operating rules for the entire
simulation time periods.

Scenario 2 (ANFIS-WY): ANFIS “IF-Then” reservoir
re—operating rules were developed using the water—
year—based dataset which were classified based on the
variability of yearly reservoir inflow from 2000 to 2020.
Therefore, ANFIS operating rules with water—year—
based dataset was separately created for a specific water
year, namely, wet year, dry year, and normal year. This
can get three sets of ANFIS “IF-Then” reservoir re—
operating rules varying with wet year, dry year, and
normal year.

2) Development of ANFIS—based reservoir re—operation
model

The hybrid neuro—fuzzy-based reservoir re—operation
model was developed by aiming to assist the reservoir
operating system of BB and SK Dams in CPYRB. The
optimal reservoir re—operation rules were solved to ac-
complish these research goals in terms of water scarcity
alleviation and flood moderation by two reservoirs using
the Adaptive Neuro—Fuzzy Inference System (ANFIS).

The ANFIS-based reservoir re—operation rules were then
applied to the water balance—based reservoir operation
model developed by MATLAB R2020a version Simulink
Toolbox to re—operate the long—term reservoir operation
of BB and SK Dams. In addition, the maximum and
minimum water releases constrained by the dam and
reservoir systems in CPYRB were also assigned in the
model as expressed in Table 1. The operational analysis
regarding water supply, potential in increasing the re-
servoir storages, and the amount of spilled water released
from the reservoirs was evaluated and also compared
with the current operation.

ANFIS is a novel hybrid approach of ANN and
Fuzzy Logic System (FLS), which was developed based
on the Takagi—Sugeno fuzzy inference system [34]. It is
a multi-layer feedforward backpropagation neural
network (FFBNN) that can generate a set of fuzzy “IF-
Then” rules by identifying the input and output
training dataset with appropriate membership functions
through a hybrid learning rule. It is also the dissi-
milarity and advanced learning technique apart from
the concept of the conventional fuzzy rule-based model
[35]. Through the capability of merging the learning
ability to a deep neural network with the transparent
linguistic representation of FLS, the ANFIS technique
was applied as a powerful tool to ensure more efficient
operation of the reservoir system than the classical
model based on a rule curve if the informative data was
sufficiently provided [36]. Once data entry in the
ANFIS model is completed, it could be run for daily
simulation and report the daily water release rules as
the output result. Therefore, optimal reservoir water
release operational rules for BB and SK Dams were
generated by ANFIS technique using the MATLAB’s
Neuro—Fuzzy Designer Toolbox. The flow chart of the
modelling process is shown in Figure 3.

To set up the ANFIS structures for this study, three
main variables, namely reservoir inflow, reservoir water
storage, and target water demand, were determined as
input variables. The current dam release was specified
as the output variable for the ANFIS model of BB and
SK Dams. 80% of the dataset was used for model
training to establish the ANFIS rules, and 20% of the
dataset was used for model testing to verify the model
performances [37]. By doing this, the optimal reservoir
operational rules of BB and SK Dams were solved as
shown in Table 1.
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Figure 2 Normal, wet, and dry years classified in the Chao Phraya River Basin.
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Figure 3 Flow diagram of ANFIS—based reservoir re—operation model of the Bhumibol and Sirikit Dams.

Table 1 ANFIS-based reservoir re—operation model of the Bhumibol and Sirikit Dams

Fuzzification stage

Model setting Number and type of MF with labelling

Input variables (MCM)

Reservoir water storage

v

Three numbers with trapezoidal MF

- v
Reservoir inflow labelling into Low, Medium, and High.
Target water demand v

Output variables (MCM)

Reservoir water release v Constant

Fuzzy inference processing stage

Takagi—Sugeno method

Defuzzification stage Weighted mean principle

Network type Feedforward backpropagation

Logical operations AND

Training epochs set 1,000

Training error tolerance Zero

Model constraints BB SK
Minimum daily water release (MCM) 2.50 3.00
Maximum daily water release (MCM) 69.76 63.24
Minimum water storage (MCM) 3,800 2,850
Maximum water storage (MCM) 13,462 9,510
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There are three stages of the controller process in the
architecture of ANFIS, namely fuzzification stage, fuzzy
inference processing stage, and output defuzzification
stage [38], as shown in Figure 4. ANFIS tool is embedded
now in MATLAB, therefore, users have to type the
command “anfisedit” in the MATLAB’s command
window to use this valuable tool called MATLAB’s Neural
Fuzzy Designer Toolbox.

The fuzzification stage is the process of changing the
real scalar inputs called fuzzy variables to transform the
input data of FLS (fuzzy form) based on the observed
information values. It involves two processes; (1)
Membership Function (MF) and (2) Labels [39]. The
number and type of MF are incredibly varied with the
fuzzy input and output data [40]. The various types of
MEF are triangular MF, trapezoidal MF, Gussion MF,
Generalized Bell MF, and so on [41]. And then, labels
of FLS can be modified based on either fuzzy variables
or expert operation concepts. In this study, the input
fuzzy MF was identified into three numbers with
trapezoidal type, labelling with low, medium, and high
to resemble the existing operation of BB and SK
Reservoirs. The output fuzzy MF was identified as a
constant membership function. After assigning the
membership functions of the fuzzy variables using
MATLAB’s Neural Fuzzy Designer Toolbox, the
fuzzification stage was automatically generated. MF
with the smallest range of input fuzzy variable was
labelled as “Low” among the three trapezoidal MF. MF
with medium range was labelled into “Medium” and
the highest range was labelled into “High”.

In the fuzzy inference processing stage, the input
signals may be involved in one or more variable condi-
tions. This is based on a conditional operation pattern

Input Input-MF

Reservoir water storage

Reservoir inflow

Target water demand

Fuzzification

SRS SN
RBRR
I
S
.

Fuzzy inference

like the “If something occurs, and then something will
happen” operator. For instance, whether it is involved
in the combination concept of two fuzzy sunsets, then
MF will be maximum digit calculating based on mathe-
matical rules. There are two standard inference methods,
(1) Mamdani’s fuzzy inference method and (2) Takagi
Sugeno’s fuzzy inference method. ANFIS is based on
the Takagi—Sugeno fuzzy inference method, which is
closer to human brain thinking than conventional
Mamdani’s fuzzy inference logical systems.

After assigning the fuzzy variables along with the
membership function, the defuzzification stage is
expressed as the output variable resulting from ANFIS.
There are three categories of defining the output
defuzzification progression; (1) centroid principle, (2)
maximum membership principle, and (3) weighted
mean principle. In this study, weighted mean principle
which is one of the simplest and widely used defuzzi-
fication technique with high accuracy, was selected for
output defuzzification of ANFIS model to calculate the
mean values for the input variables according to their
related membership function. The ANFIS-based reservoir
release rules were derived after the number of training
epochs of 1,000 was reached. Zero error tolerance was
set in the model through a hybrid learning rule com-
bining the backpropagation gradient descent and a least
squares method. After that, the statistical performance
metrics were evaluated to assess the ANFIS-based
reservoir re—operation performances for both model
calibration and validation. Finally, optimal reservoir
operational rules of BB and SK Dams were generated.
There were 27 “IF-Then” optimal reservoir operational
rules for both long—term and water—year—based dataset
scenarios performed by ANFIS technique.

at

Aggregate all
outputs

Defuzzification

processing stage stage

Figure 4 ANFIS structure for reservoir re—operation of the Bhumibol and Sirikit Dams.
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Results and discussions
1) Performance assessment of model calibration and
validation of the ANFIS-based reservoir re—operation
model

To evaluate the performance of the model calibration
and validation obtained from ANFIS model, the statistical
parameters, namely, Correlation Coefficient (R), Coeffi-
cient of Determination (R%), Mean Squared Error (MSE),
and Root Mean Square Error (RMSE) were used to
measure correlation between observed and simulated
releases of two main dams. The statistical performances
for the training dataset (2000-2015) and testing dataset
(2016-2020) accomplished by ANFIS model is presented
in Table 2. It is found that the training performances of
BB and SK Dams reach highest with R values of 0.84 for
scenario 1, and 0.85 for scenario 2, respectively. Similarly,
the statistical training performances measured in terms
of R? of BB and SK Dams are equal to 0.70 for scenario
1. The values of R? for BB and SK Dams are between
0.70-0.72 for scenario 2 when the water year—based
dataset was trained by ANFIS model. It is also revealed
that testing performances for two scenarios done by
ANFIS model are slightly decreased than those perfor-
mances evaluated using training data. However, R and
R? values lie above 0.76 and 0.57, respectively, which
can be considered as strong correlation. Moreover, the
smaller values of MSE and RMSE for both the model
training and testing are found for both scenarios
indicating that model fits the observed data well. This
can be concluded that ANFIS model can establish rea-
sonable operation rules representing existing operation
of BB and SK Dams as it can provide strong correlation
between observed and simulated water releases by
ANFIS rules.

2) Daily dam releases and water storages accomplished
by the ANFIS—based reservoir re—operation model

As previously mentioned, to achieve the ultimate
purpose of reducing the water scarcity and flooding
problems in the basin, two scenarios of reservoir re—
operation models of BB and SK Dams in CPYRB were
established through the long—term and water year—

based ANFIS operating rules. The comparative results
of daily reservoir releases accomplished by the ANFIS
model are compared to the current operation from 2000
to 2020 as graphically shown in Figure 5. It is exhibited
that the release patterns obtained from both scenarios
of ANFIS-based reservoir re—operation model conform
well with the current releases of BB and SK Dams. The
reservoir water storages performed by long—term—based
ANFIS rules is likely close to the current operation.
However, it is slightly lower than that obtained by water
year—based ANFIS rules in the initial period from 2000
to 2008 and considerably higher in the period from
2009 to 2012. The water storages for both scenarios are
gradually increased since 2009 and reached the highest
in 2011. After 2012, the reservoir storages for both
scenarios are marginally lowered. This is because of the
variability of reservoir inflows after 2012, which are much
lower than the average long—term record as illustrated
in Figure 6.

3) Assessment of water scarcity accomplished by the
ANFIS-based reservoir re—operation model

To assess the severity of water scarcity as a result of
reservoir re—operation, the daily Total Water Supply
(TWS) by two scenarios were computed and compared
with the Target Water Demand (TWD). In this study,
TWS was defined as the combination of water released
from BB and SK Dams and potential downstream side
flow. The coefficient of determination (R2) was used to
describe how much TWD closely matches TWS which
was accomplished by ANFIS model. The comparative
results are illustrated in Figure 7. For the current
operation, R? value is 0.7288, indicating that TWS is
72.88% linearly related to TWD. However, when ANFIS
re—operation models were applied, the R? values for
both scenarios are considerably increased above the
desirable range of 0.8373 and 0.9226 for scenario 1 and
scenario 2, respectively which are higher than current
operation. This indicates that supplying potential water
to meet TWD by ANFIS models can be well handled to
alleviate water scarcity in the basin.

Table 2 Statistical performance measurement for model calibration and validation of the ANFIS-based reservoir re—

operation model

Statistical BB Dam SK Dam
performances R R2 MSE RMSE R R2 MSE RMSE

Model training (80% of the total simulation time steps)

S1: ANFIS-LT 0.84 0.70 42.60 6.53 0.84 0.70 45.54 6.75

S2: ANFIS-WY 0.85 0.72 39.91 6.32 0.84 0.70 47.07 6.86
Model testing (20% of the total simulation time steps)

S1: ANFIS-LT 0.76 0.57 29.52 5.43 0.76 0.57 29.28 5.41

S2: ANFIS-WY 0.81 0.65 22.34 4.73 0.76 0.57 29.24 5.40
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Figure 7 Correlation between target water demand and total water supply by ANFIS model.

In this study, the water deficit is considered non-
existent when TWD is fully met by TWS. Meanwhile,
the amount of water deficit is quantified when the TWS
is less than TWD. It is illustrated from the results that
the water deficit for the current operation is occurred
in the critically dry years in 2010, 2012, 2016, 2017, and
2020 which amounts to 1,480, 504, 410, 918, and 22
MCM, respectively. This is because the inflows into BB
and SK reservoirs are predominantly low during the
critical dry years, but water demand is anticipated to rise
intensely. However, when two scenarios of the ANFIS—
based reservoir re—operation model were performed,
the extent of yearly water deficit in these critical dry years
are substantially reduced to 0-127 and 0-119 MCM for
scenario 1 and scenario 2, respectively as can be seen in
Figure 8. It is reflected that the ANFIS—based reservoir
re—operation models seek to ascertain the amount of
water to be released to satisfy the target water demand
at all reasonable time steps. They use a series of fuzzy
if-then rules developed based on current reservoir
operation to determine the amount of dam release at
each time step. In addition, the water year—based ANFIS
rules can perform well in reducing the extent of water
deficit volume particularly in the critical dry years, which
is better than those applied by long—term—based ANFIS
rules. This is due to the fact that the water year-based
ANFIS rules were generated corresponding to historical
reservoir management practice to extreme drought events.

Therefore, magnitude of water deficit during drawdown
periods of reservoirs performed by water year—based
ANFIS rules is smaller than those obtained by ANFIS
rules established using long—term dataset.

4) Potential for increasing water storages by the ANFIS
—based reservoir re—operation model

The potential for increasing water storages of BB
and SK Dams was investigated to describe capacity in
supplying water over the dry season and coping with
water deficit for the next coming years by the ANFIS—
based re—operation model. The comparative results of
average vearly water storages of two main dams are
summarized in Table 3. As the average yearly amount
of reservoir water released from 2000 to 2020 by the
ANFIS-based reservoir re—operation models are definitely
lower than the current operation by —1.67% and —0.22%
for scenario 1 and scenario 2, respectively, this leads to
a substantial increase in reservoir storages of BB and SK
Dams. In comparison to current operation, the water
storages of BB and SK Dams accomplished by the ANFIS
model are increased up to +6.94% and +1.62%, respect-
tively for scenario 1, and +6.08% and +0.09%, respectively
for scenario 2. For the seasonal analysis, it is revealed
that the potential for increasing water storages of BB
and SK Dams in wet season is continually higher than
in dry season for both scenarios. This is because the
considerable amount of dam releases in the rainy season
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from BB and SK Dams delivered to the target demand
points in CPYRB are reduced due to potential down-
stream flow conditions and local rainfall. Consequently,
some amount of savable water can be stored in reser-
voirs before the dry season starts. This envisages that
ensuring efficient and equitable water supplies to the
water demand sectors by dam-reservoir system can be
well operated to moderate the extent of water scarcity
especially in El Nino episodes.

5) Assessment of reservoir spilled water accomplished
by the ANFIS-based reservoir re—operation model

In the reservoir operation system, the spillway
structure is controlled to discard the surplus water from
areservoir after filling up to its maximum capacity. The
Maximum High—Water Level (MHWL) is a design level
to maintain the maximum reservoir storage; therefore,
the water above MHWL is overflowed as the spilled
water and discharged into downstream river. In this
manner, hydroelectric power cannot be potentially
produced. Moreover, it reflects the sign of flooding
downstream when the amount of spilled water exceeds
the river capacity. Figure 9 shows volume of spilled water
in the historical wet years when re—operating with the
ANFIS operation rules through long—term and water—
year—based datasets. It is illustrated that the ANFIS—
based reservoir re—operation model can considerably
lower the amount of spilled water from BB and SK Dams
compared to the current operation. The yearly volume

of spilled water from BB Dam for the current operation
is found to be 195 and 342 MCM which are occurred
during the late rainy season in extreme flood years 2002
and 2011, respectively. By re—operating with the ANFIS—
based reservoir re—operation model, non—spilled water
from BB Dam is definitely existed in 2002 for both
scenarios. In addition, yearly volume of spilled water of
BB Dam can be radically reduced to 94 and 32 MCM by
scenario 1 and scenario 2, respectively. Similarly, releasing
water of SK Dam through the controlled spillway is
found in the 2011 Thailand Flood with the total spilled
water of 184 MCM. By re—operating with the ANFIS—
based reservoir re—operation model, volume of spilled
water of SK Dam can be reduced to 14 and 5 MCM by
scenario 1 and scenario 2, respectively. This signifies
that the extent of spilled water occurred in the lower
CPYRB as a result of dam-reservoir re—operation by
the ANFIS model can be reduced. As ANFIS operation
rules of scenario 2 were generated from water year—
based datasets, this means that determining specific
reservoir release rules in dry, normal and wet years is
made based on their distinct hydrological conditions
and operational characteristics. Therefore, water year—
based ANFIS rules specifies higher amount of reservoir
release than the long—term—based ANFIS rules during
the refilled periods. Consequently, the available water
storage in reservoirs can be depleted leading to the
reduction of spilled water in severe flood events.
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Figure 8 Yearly water deficit in the historical dry years when re—operating with

the ANFIS operation rules through long—term and water—year—based datasets.

Table 3 Potential of increasing reservoir water storage accomplished by ANFIS model

] BB Dam SK Dam
Scenario DS WS Yearly DS WS Yearly
Avg. water release (MCM)
Current operation 3,424 1,780 5,203 3,687 2,285 5,972
S1: ANFIS-LT 3,283 1,786 5,069 3,623 2,296 5,919
S2: ANFIS-WY 3,280 1,923 5,203 3,585 2,362 5,948
Increased water storage (A%)

Current operation - - - - - -
S1: ANFIS-LT +5.98 +8.08 +6.94 +1.17 +2.14 +1.62
S2: ANFIS-WY +5.22 +7.09 +6.08 —-0.88 +1.21 +0.09

Remark: A is the different values compared to the current operation, DS is dry season, and WS is wet season
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Conclusions

Re—operating the Bhumibol and Sirikit Dams with
Adaptive Neuro—Fuzzy Inference System (ANFIS)
approaches as well as modelling exercises to generate
the series of reservoir operational release rules were
conducted in this study. The ANFIS-based reservoir
re—operation modelling is a state—of-the—art technology
and self-learning approach between the input and
output linguistic variables that resembles the current
operation in controlling complex reservoir operating
systems. The main finding of this study indicates that,
in comparison to the current operation, changing the
operating policy for reservoir re—operation with ANFIS
can help reduce water scarcity and flooded water in
extreme weather events. It is also assured that re—
operating with ANFIS model can help stabilize the
water availability from BB and SK Dams, particularly at
the end of wet season when the reservoir water storage
is substantially increased. This indicates a higher possi-
bility in satisfying the water requirements during dry
season in this region. In addition, ANFIS can help
envisage more transparent operating rules by extracting
the release features of the system from the historical
dataset representing extreme weather and climate events
and tendency in water demand patterns. This enables
the dam operators to make a wide range of decisions
based on certain release rules to moderate operational
risk in this region. However, certain limitation of ANFIS
model for reservoir operation is that high computerized
time is spent with larger input variables. In addition,
setting up the input and output structures of ANFIS
model for multi-reservoir operation is made based on the
systemic concept of single reservoir system to separately
train the ANFIS model for each dam. Moreover, to
extract specific operational rules during critical events
and to reduce loss of interpretability using long—term
dataset, water year—based ANFIS model is highly
recommended for flood and drought mitigation.
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