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Abstract 
Laplae, Mueang Uttaradit, and Tha Pla district, Uttaradit province, Thailand are 

considered as high potential landslide areas. Still, this disaster is difficult to address 
because of complex factors controlling its occurrence. Therefore, the prediction of 
the potential landslide area using a landslide susceptibility map has been able to 
accomplish as a great strategy for the disaster. A landslide susceptibility map was 
produced by the geographic information system (GIS) data. The methods were 
initially conducted by the selection of potential factors related to landslides, which 
were lithology, slope, aspect, plan curvature, profile curvature, distance to stream, 
land use, and rainfall. All factors were assigned coefficients weight, and analyses 
frequency ratio (FR). Then, the weighted variables have been combined and ranked 
into five different susceptibility levels, which were very low, low, medium, high, and 
very high. Finally, the produced landslide susceptibility map has been validated by 
the success rate and prediction rate. After the analysis, the high and the very high 
landslide susceptibility area were dominantly covered in the northern and northwest 
parts of the study area; and the factor of slope, land use, and lithology potentially 
caused the landslide risk indicated by high frequency ratio values. In addition, the 
produced landslide susceptibility map had high accuracy, about 90% of success rate 
and prediction rate, calculated from the area under the curve (AUC), this map would 
be beneficial for geological hazard management and land use planning. The 
landslide susceptibility map and the GIS-based methods can be applied to the 
regional area with additional benefits to well-being, society, and the environment. 
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Introduction 
 Climate change contributes to more disasters in the 
future since it relates to meteorological variability 
including precipitation, rainfall, temperature, wind speed, 
vegetation, and terrestrial alterations [1–3]. Especially, the 
latter alteration is a common consequence of natural 
processes; it is indeed vicious because of anthropogenic 
activities [4]. For example, a stream carves its channel 
during the wet season and then the change of land use 
from vegetation causes sudden alteration of drainage 
movements and exogenous earth’s processes. Both factors 
contribute to the increasing of natural worldwide 

disasters, especially landslides. Landslide is one of the vital 
signs of vegetation and terrestrial alteration and it is a 
severe geological hazard [5] that occurred from a mass of 
rock, debris, or earth movement down a slope under the 
influence of gravity [6–7]. Landslides are an incalculable 
disaster because it was controlled by complex factors. This 
issue leads to difficulty in addressing and preventing [8-
9]. To face the catastrophe, spatial assessment and 
landslides susceptibility are often preliminary evaluations 
to forecast the potential landslide [10], which is crucial in 
landslide risk management, policy supporting, and 
sustainable land use planning [11–12]. 
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 Landslides have significant multi-dimensional 
impacts, including fatal damage, economic, social, and 
environmental impacts. In Thailand, landslides have 
recurrently occurred and they cover widespread more 
than fifty-two provinces, approximately more than 5 
million rai [13]. From 1788 to 2007, there was reported 
that landslides killed more than 534 people and the 
estimated property damage was over 4,585.6 million 
Thai Baht [14]. To date, there are continuous reports 
that landslides had been recurring, yet the destruction 
had not been appraised. This mass wasting caused not 
only death and financial impacts, but also natural and 
environmental impacts, such as decreasing the number 
of vegetation areas and wildlife, unbalancing of 
ecosystems, drought problems, and soil erosion [15].  
 In Thailand, three districts in Uttaradit Province: 
Laplae, Mueang Uttaradit, and Tha Pla, can be considered 
as a crucial area in the northern part that affected by 
landslide disasters. This study area was found a great 
number of landslide scars or traces from the satellite 
images more than 9,000 scars, which is one potential 
landslide recurrence area [16]. This problem can be noticed 
in that landslide susceptibility maps are compulsory 
analyses for landslide prevention and risk mitigation.  
 Landslide susceptibility mapping has been proven 
to benefit from the development of computer-based 
technologies [1]. Especially, analyzing landslide risk can 
be assisted by the geographic information system (GIS) 
that is possible to detect sensitivity and accuracy based 
on model predictions in such landslide risk areas. Several 
models were taken into consideration using a large 
number of factors, which can include geomorphic [17] 
lithology [9] and anthropogenic elements [18] such as rock 
groups [19], physical slope aspects [9], risk map [10], 
local weather information [20], hydrographical networks 
[9], land use maps [21], and vegetation types [9]. The 
models of landslide risk can be verified using various 
techniques, for example, analytic hierarchy process (AHP), 
bivariate, multivariate, logistics, regression, fuzzy logic, or 
artificial neural network (ANN) [22]. Apart from these 
variables, the performance of the model can be evaluated 
using the FR and logistic regression methods to test 
analysis performance [23]. Thus, landslide susceptibility 
maps can be produced by many GIS-based models that 
will be utilized for landslide inventories and map 
creation in the future. Therefore, a plan to mitigate the 
effects of a probable landslide to find the potential 
factors of landslides. 
 The frequency ratio (FR) method is widely 
recognized as a reliable technique for landslide 
susceptibility mapping. Previous comparative studies 
consistently demonstrated the superior performance of 
the FR method. In a study conducted in Selangor State, 

Malaysia, different techniques, including FR and logistic 
regression model, were compared for landslide suscep-
tibility mapping and this finding confirmed that higher 
accuracy of the FR method in estimating landslide area 
[24]. Similar to another study conducted in northwest 
Ethiopia for community-level landslide susceptibility 
mapping, the FR method was compared to the weight 
of evidence method that the former could produce more 
efficient and accurate landslide susceptibility maps than 
the weight of evidence method [25]. In Mae Phun, 
Uttaradit, Thailand, the FR method exhibited the highest 
prediction rate among the evaluated methods and this 
finding emphasized the effectiveness of the FR method 
in predicting landslide susceptibility [26]. 
 This study aims to ensure the performance of FR in 
landslide susceptibility modeling at the local study and 
spot the potential risk of landslides where shallow 
landslides could occur in the future. To reach the 
objective, spatial information has been utilized to 
create the landslide susceptibility map in three districts 
of Uttaradit Province. Eight natural and anthropogenic 
factors have been selected, assigned the coefficients weight 
of each of the factors, and analyzed the FR. Then, the 
weighted variables have been combined and ranked 
into five different susceptibility levels. Finally, the 
resulting landslide susceptibility map has been validated 
by a success rate curve, prediction rate curve, and 
landslide density index, which also show the potential 
factors causing landslides. 
 
Materials and methods 
1) The study area 
 The study site covers the districts of Laplae, 
Mueang Uttaradit, and Tha Pla in Uttaradit Province, 
the northern part of Thailand (Figure 1). The area is 
approximately 2,580 km2 or 33.0% of Uttaradit Province 
[27]. It bounds between 99° 53’ 48’’ E to 100° 46’ 46’’ E 
longitudes, and 17° 28’ 50’’ N to 18° 02’ 56’’ N latitudes. 
The elevation of the study area ranges from 400 to 1,000 
m above mean sea level [27]. 
 The area can be classified into three main regions, 
which are the watershed area, the narrow plain between 
valleys, and the hillside. The watershed area, which covers 
some parts of Laplae and Mueang Uttaradit district, 
spans across Nan River and its tributaries. The narrow 
plain between valleys is in the other parts of Laplae and 
Mueang Uttaradit Districts. The hillside area or the 
mountain range partly distributes in all three districts 
and the slope gradient ranges from 0° to 72°. These 
three districts had the numbers of population about 
246,847 people [28]. In 2022, the average annual 
rainfall is 1,400 mm, specifically reaching 1,500 mm 
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during the rainy season [28]. The average temperature 
is from 15°C to 35°C [27]. 
 
2) Data processing  
 Landslide susceptibility map was created in 
ArcMap 10.8 software. Prior to processing, spatial data 
and landslide scar from Google Earth image are collected. 
All of factor data was converted into raster files, that 

were produced landslide susceptibility map using 
frequency ratio analysis from 80.0% of landslide 
inventory map (Google Earth image). Lastly, the model 
was validated by 20.0% of landslide inventory map 
using the area under the curve (AUC) and landslide 
density index.  The flowchart of the research work is 
shown in Figure 2.

 

 
Figure 1 Pictures showing (a) the location of Uttaradit Province in Thailand, (b) Laplae, Mueang Uttaradit,  

and Tha Pla districts in Uttaradit Province and (c) the boundary of three districts with their elevation. 
 

 
Figure 2 A schematic diagram of the research work. 
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2.1) Data collection and preparation  
In this study, eight factors have been used, including 

lithology, slope, aspect, plan curvature, profile curvature, 
distance to stream, land use, and rainfall (Table 1). The 
input data for all factors were collected from various 
sources (Table 1).  

The geological map of Thailand has a scale of 
1:250,000 and it has shown nine lithological units namely 
granitic rocks, limestone-dominated rocks, fluvial 
deposits, terrace deposits, shale, slate, phyllite and 
schist, clastic rocks, ultramafic rocks, volcanic and 
tuffaceous rocks, and water bodies [29, 34–35] (Figure 
3a). All rock units in shapefiles were rasterized to 30-m 
spatial resolution; however, the water bodies were excluded 
in the processing step. 

Slope and aspect were produced using the Advanced 
Land Observing Satellite Phased Array Type L-band 
Synthetic Aperture Radar Digital Elevation Model 
(ALOS-PALSAR DEM) with 30-m spatial resolution.  
For the slope, the degrees were classified into five classes 
including 0°–5°, 5°–12°, 12°–30°, 30°–45° and more 
than 45° (Figure 3b) [30]. The aspect was divided into 
nine classes namely flat, which is defined as flat areas 
having no direction of downslope, north (337.5° –360°, 
0°–22.5°), northeast (22.5°–67.5°), east (67.5°– 112.5°), 
southeast (112.5°–157.5°), south (157.5°–202.5°), southwest 
(202.5°–247.5°), west (247.5°–292.5°) and northwest 
(292.5°–337.5°) [25, 36–37] (Figure 3c). 

The plan and profile curvature were also derived from 
ALOS-PALSAR DEM with 30-m spatial resolution, 
using the reclassify tool in ArcMap 10.8 [30, 38–39] 
(Figure 3d and 3e). The plan curvature was divided into 
three classes of curvature namely concave, flat, and 
convex, which have values of -32.850 to -0.001, -0.001 
to 0.001, and 0.001 to 39.870, respectively. For the 

profile curvature was classed into three classes that 
represent three types of curvature: convex, flat, and 
concave (-58.690 to -0.001, -0.001 to 0.001, and 0.001 
to 38.640, respectively). 

For distance to stream, the shapefile of stream 
networks was analyzed by Euclidean distances in 
ArcMap 10.8. The buffer distance was classified into 
five classes (0–100, 100–200, 200–300, 300–400, 400– 
500, and more than 500 meters) [25, 31, 40–41] (Figure 
3f), then it was rasterized with 30-m spatial resolution. 

 The land use map in level 2 was reclassified into six 
classes, namely agricultural areas, evergreen forests, 
other forest land areas, rangeland and miscellaneous 
areas, urban and built-up areas, and water bodies [26, 
31, 39, 42] (Figure 3g). Then, all reclassified classes 
were rasterized into TIF format with 30-m spatial 
resolution. 

The rainfall intensity map was generated using the 
inverse distance weighted (IDW) technique as one of 
the interpolation toolsets. The analysis incorporated 
data from nine rainfall stations, which are from 
Uttaradit, Phrae, Nan and Phitsanulok, and Sukhothai 
Provinces, Thailand: Tha Pla (Code 700151, N.12A, in 
Uttaradit), Tron (Code 700221, N.60, in Uttaradit), 
Mueang Phrae (Code 400013 in Phrae), Sung Men 
(Code 400022 in Phrae), Huai Rai Khao Phlung Forest 
Plantation (Code 400072 in Phrae), Den Chai (Code 
400092 in Phrae),  Na Muen (Code 280312 in Nan), 
Wat Bot (Code 390161, N.40, in Phitsanulok), and Si 
Satchanalai (Code 590121, Y.6, in Sukhothai). The 
natural breaks method was employed to divide the 
ranges of rainfall intensity into five classes: 1,112–1,149, 
1,149–1,175, 1,175–1,201, 1,201–1,228, and 1,228–
1,266 mm per year [25, 26, 33] (Figure 3h).

 
Table 1 The data sources of each factor 

Input data Sources (year) Factors Original formats 
Geological map of Thailand 
(Scale 1:250,000) 

Department of Mineral Resources 
(2015) [29] 

Lithology Vector 
(Shapefile) 

ALOS-PALSAR DEM Alaska Satellite Facility 
(2009) [30] 

Slope, aspect,  
plan curvature, 

and profile curvature 

Raster 
(TIFF, resolution 12.5 m) 

The data layer of water  Department of Water Resources 
(2020) [31] 

Distance to stream Vector 

(Shapefile) 
Land use map Land Development Department 

(2018) [32] 
Land use Vector 

(Shapefile) 
Monthly rainfall in millimeter Royal Irrigation Department 

(2008-2018) [33] 
Rainfall Spreadsheet 
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Figure 3 Input maps for landslide susceptibility model including (a) lithology, (b) slope, (c) aspect,  

(d) plan curvature, (e) profile curvature, (f) distance to stream, (g) land use, and (h) rainfall. 
 

2.2) Preparation data from landslide inventory map 
The inventory map of the landslide was used for 

training and validation processes. The landslide scars were 
carried out by Mineral Resources Region 1, Department 
of Mineral Resources, Thailand, using manually 
digitized based on the Google Earth imagery producing 
total of 10,204 polygons between 1984 and 2020 [43]. 
Afterward, the landslide inventory map was rasterized 

to 30-m spatial resolution. There was a total of 24,834 
landslide pixels in the study area, which accounted for 
22.350 km2. For training and validation data, landslide 
pixels were randomly distributed. The data set of 20,151 
landslide pixels (80.0%) was used as training and the 
other 4,683 landslide pixels (20.0%) were used as 
validation datasets (Figure 4).
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Figure 4 Pictures showing (a) all landslide scars in the study area and(b) example of polygons of landslide scars  

for validation and training. 
 

2.3) Bivariate statistical analysis using frequency ration 
(FR) 

To calculate the FR value of each factor for landslide 
susceptibility analysis, each thematic map was separately 
matched with the training datasets, and then the FR value 
was computed for each class in the ratio as Eq. 1 [25]. 

 

            𝐹𝐹𝐹𝐹𝑖𝑖= 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝑖𝑖 / 𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝐿𝐿𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 / 𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝑁𝑁𝑖𝑖

                          (Eq. 1)    

 
 Where FRi is the frequency ratio value of each class of 

the causative factor; NpixLi is the number of landslide 
pixels in class i; ΣNpixLi is the total number of landslide 
pixels in the study area; NpixNi is the number of pixels 
in class i; ΣNpixNi is the total number of the study area.  

 
If the FRi value is more than 1, it indicates a high 

probability of landslide. There is a low probability when 
FRi value is less than 1. If the FRi value is equal to 1, there 
is a moderate chance of landslides [40]. The summation 
of FR values of all factors indicates landslide suscep-
tibility index (LSI) as shown in Eq. 2 [25] that will be used 
to produce a landslide susceptibility map. 

 
 LSI = FR1 + FR2 + FR3 + … + FRn                (Eq. 2) 
 
 Where LSI is the landslide susceptibility index; FR is 

the frequency ratio value; n is the total number of causative 
factors used.  

 
 For the current study, the initial step was rasterized 

all the factors and landslide scars into raster format with 
30-m spatial resolution. Then, landslide training datasets 

and all factors were used to compute the FR values of 
each factor class by the method of calculation in Eq. 1 
[25]. Afterward, the FR value of each factor was summed 
by Eq. 2 [25] using the raster calculator of the spatial 
analyst tool in ArcMap 10.8 and the result of this process 
is the LSI map that was forward reclassified into five 
classes of landslide susceptibility ranking from very low, 
low, moderate, high, and very high. 

 
3) Validation processes 
3.1) Area under the curve (AUC) 

The training landslide dataset (80.0%) and validation 
landslide dataset (20.0%) (from 2.2) were used for 
generation success rate curve and prediction rate curve, 
respectively. Landslide susceptibility index (LSI) values 
were divided into one-hundred classes by quantile 
reclassify method in ArcMap 10.8 and all class was 
sorted into descending order from high to low landslide 
susceptibility index. The training data (80.0%) was plotted 
with 100-classed landslide susceptibility index producing 
the AUC of success rate and the plotted graph between 
the validation data sets and landslide susceptibility 
index were calculated the AUC representing the 
prediction rate [26]. The success rate explains the 
capacity of landslide susceptibility model to reliably 
classify the occurrence of existing landslides and the 
prediction rate indicates the potential of the current 
landslide susceptibility model [44]. If the AUC value is 
lower than 50.00%, the model is rejected. The AUC 
values can be divided into 3 ranges; less than 70.0%, 
70.0%–80.0%, and greater than 80.0% which represent 
sub-optimal performance, good performance, and 
excellent performance model respectively [45]. 
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3.2) Landslide density index (LDI) 
The validation landslide dataset (20.0%) which has 

not been used for building the model, can be considered 
as the future landslide area and was used to calculate 
LDI.  Landslide density index is the ratio between the 
percentage of validation landslide pixels in each landslide 
susceptibility class and the percentage of each class pixel 
in the landslide susceptibility map. LDI can be calculated 
using the formulae in Eq. 3 [25]. 

 

 LDI = 
𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒐𝒐𝒐𝒐 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒐𝒐𝒐𝒐 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
    (Eq. 3) 

 
    The suitability of any susceptibility map can be 
validated if a higher percentage of landslides occur in 
the high and very high susceptibility zones as compared 
to other zones. 
 
Results and discussions  
1) Frequency ratio (FR) values    

The relationship between the probability of landslides 
and causative factors was examined by FR. The greater 
number of FR values indicates that factor supporting 
higher susceptibility of landslide occurrence; similarly, 
the small number of FR identifies as the high resistance 
for landslide susceptibility. The FR of all factors is in 
Table 2.  

Considering each factor as shown in Table 2, the most 
significant factors are slope, land use, and lithology 
respectively.  The largest number of FR is slope higher 
than 45°. The second and third important factors are other 
forest land areas (4.522), and lithology of volcanic and 
tuffaceous rock (3.091), respectively (Table 2). 

In terms of land use, the agricultural areas have a 
lower FR value, while it is higher in other forest land 
areas (4.522) (Table 2). Although some previous studies 
found different consequences [37, 50] and they said 
that dense forests can protect the topsoil failure due to 
binding soil particles by plant root systems, but the 
forests as dense forests can impede runoff. Consequently, 
the runoffs permeated into soil pores that could result 
in increasing of water pressure and finally causes 
landslides [39, 42, 48, 51]. 

The third important factors, lithology shows that 
volcanic and tuffaceous rocks have the greatest number 
of FR (3.901), followed by granitic rocks (1.392), and 
clastic rock (0.943). The other categories of rock showed 

extremely low values that are less than 0.1 (Table 2). 
The influence of lithology on landslides is discussed in 
various ways and specific to the different study areas. 
The most favorable rocks, which tend to possess land-
slides, are volcanic and tuffaceous rocks (Table 2). The 
instability of volcanic and tuffaceous rocks was proved 
in the laboratory scale, and it was found that weathered 
volcanic tuffs produce clay minerals known as 
montmorillonite, which have a significant ability to 
swell and decrease of slope stability [52–53].  

Moreover, our results suggest that slope has the 
most influence on the spatial distribution of landslides 
as well as each slope class considerably increases with 
the rising angle of slope gradient. This study correlated 
to other previous studies [25, 46], specifically one study 
of landslides susceptibility map in Mae Phun, Uttaradit, 
Thailand [26]; the research explained that shear stress 
of soil or other unconsolidated materials typically 
increases as the slope angle increases, indicating that 
high slope gradient is the important factor contributing 
to landslides [26]. However, there were some previous 
studies [47–49] argued that the slopes greater than 45° 
have a low landslide impact when the lithology is 
bedrock outcroppings or non-completely weathered 
rock. Therefore, lithology should be considered as a 
combination of the slope.  

FR calculation of eight factors suggested that the 
landslides in the districts of Laplae, Mueang Uttaradit, 
and Tha Pla in Uttaradit Province, the northern part of 
Thailand significantly controlled by slope, land use 
(other forest land areas), and lithology. Indeed, the 
consideration among the three main factors (slope, 
land use, and lithology), it can explicit that some area 
exhibits slope greater than 30 degrees and exceeding 
45°, but it shows a relatively low to moderate risk of 
landslides, since lithology is the presence of shale, slate, 
phyllite, and schist rock units, which exhibit an 
extremely low FR value of just 0.001. For instance, in 
Nang Phaya Subdistrict located at the northwestern the 
of Sirikit Dam, this case can be highlighted that 
although the slope has highest FR, a single factor may 
not always result to the good prediction. This could be 
from the combined factors in analysis of the landslide 
susceptibility map. Our study emphasizes that not only 
slope is the important factor, but also land use and 
lithology are the significant factors in this study area.
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Table 2 Frequency ratio value in each factor class of the landslide causative factors 
Factor and class 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑳𝑳𝒊𝒊 % 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑳𝑳𝒊𝒊 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝒊𝒊 % 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝒊𝒊 𝑭𝑭𝑭𝑭𝒊𝒊 

Lithology      

Granitic rocks  1,036 5.14 123,052 3.69 1.392 
Limestone-dominated rocks  8 0.04 35,258 1.06 0.038 
Fluvial deposits  0 0.00 479,004 14.38 0.000 
Terrace deposits  26 0.13 300,297 9.01 0.014 
Shale, slate, phyllite and schist  2 0.01 593,560 17.81 0.001 
Clastic rocks  3,582 17.78 628,293 18.86 0.943 
Ultramafic rocks  62 0.31 120,898 3.63 0.085 
Volcanic and tuffaceous rocks  15,435 76.60 825,719 24.78 3.091 
Water area  0 0.00 226,033 6.78 0.000 

Slope (degree)       
0–5 164 0.81 1,199,526 36.00 0.023 
5–12 1,092 5.42 703,796 21.12 0.257 
12–30 11,374 56.44 1,295,889 38.89 1.451 
30–45 7,236 35.91 130,415 3.91 9.175 
> 45 285 1.41 2,488 0.07 18.942 

Aspect      
Flat 35 0.17 259,165 7.78 0.022 
North 2,028 10.06 325,027 9.75 1.032 
Northeast 3,362 16.68 358,599 10.76 1.550 
East 3,234 16.05 373,241 11.20 1.433 
Southeast 3,320 16.48 417,538 12.53 1.315 
South 2,284 11.33 406,086 12.19 0.930 
Southwest 2,492 12.37 420,810 12.63 0.979 
West 2,043 10.14 393,700 11.82 0.858 
Northwest 1,353 6.71 377,948 11.34 0.592 

Plan curvature      
Concave 10,767 53.43 1,271,349 40.59 1.316 
Flat 99 0.49 487,905 15.58 0.032 
Convex 9,285 46.08 1,372,860 43.83 1.051 

Profile curvature      
Convex 9,895 49.10 1,322,097 42.21 1.163 
Flat 84 0.42 363,649 11.61 0.036 
Concave 10,172 50.48 1,446,368 46.18 1.093 

Distance to stream (m)       
0–100 537 2.66 195,723 5.87 0.454 
100–200 576 2.86 193,034 5.79 0.493 
200–300 748 3.71 189,571 5.69 0.652 
300–400 794 3.94 186,709 5.60 0.703 
400–500 925 4.59 182,623 5.48 0.838 
> 500  16,571 82.23 2,384,454 71.56 1.149 

Land use      
Agricultural areas 5,427 26.93 1,065,643 31.98 0.842 
Evergreen forests 799 3.97 1,202,970 36.10 0.110 
Other forest land areas 13,908 69.02 508,535 15.26 4.522 
Rangeland and miscellaneous areas 0 0.00 38,605 1.16 0.000 
Urban and built-up areas 2 0.01 183,111 5.50 0.002 
Water bodies 15 0.07 333,250 10.00 0.007 

Annual rainfall (mm)      
1,112–1,149 0 0.00 133,318 4.00 0.000 
1,149–1,175 19,561 97.07 2,441,096 73.26 1.325 
1,175–1,201 136 0.67 400,060 12.01 0.056 
1,201–1,228 2 0.01 204,151 6.13 0.002 
1,228–1,266 452 2.24 153,489 4.61 0.487 

Remark:  NpixLi is the number of landslide pixels in class, %NpixLi is the percentage of landslide pixels in class,  
NpixNi is the number of pixels in class, and %NpixNi is the percentage of landslide in class.     

 
2) Landslide susceptibility index (LSI) and landslides 
susceptibility classes 
  The FR value of each selected factor class was 
combined to develop the LSI map. The LSI values 
ranged from 0.567 to 32.878 (Figure 5), and they were 

reclassified by the natural breaks method. The results of 
LSI values presented five susceptibility classes: very low 
(0.567–7.409), low (7.409–11.717), moderate (11.717–
17.293), high (17.293–25.782), and very high (25.782–
32.878) (Figure 6). Besides, the percentage of area values 
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presented in five susceptibility classes: very low (9.03%), 
low (32.17%), moderate (30.85%), high (17.25%), and 
very high (10.71%), respectively (Table 3).  The high and 
very high susceptibility classes, which should be in high 
inspection, were covered in the northern and north-
western parts (Figure 6). 
 

 
Figure 5 Landslide susceptibility index map of 

the study area using frequency ratio. 
 

 
Figure 6 Landslide susceptibility map of the study area 

using frequency ratio. 
 

 These areas dominantly were high and very high 
risk, and they can be highlighted as more vulnerable 
because the landslide susceptibility map in high and 
very high risk can contribute to disaster planning. 
 

3) Validation of the model 
3.1) Area under the curve (AUC) 
 Model validation is an essential procedure to validate 
the landslide susceptibility maps. In this study, the 
landslide susceptibility maps evaluated the performance 
of the model using area under the curve of the predict-
ion rate curve and the success rate curve [46]. The AUC 
of the prediction rate curve was produced by plotting 
the cumulative landslide susceptibility index values of 
all pixels on the x-axis and the cumulative validation 
landslide dataset (20.0%) on the y-axis. While the AUC 
of the success rate curve was plotted between the 
landslide susceptibility index values of all pixels the 
cumulative training landslide dataset (80.0%) was plotted 
on the y-axis instead. Regarding FR, the model using 
the bivariate statistical method has a high quality [25, 
26, 54–56]. As can be seen in Figure 7a, the AUC value 
for the success rate was found at 90.3% and the 
prediction rate was found at 90.1% (Figure 7b) suggesting 
high performances of the landslide susceptibility model. 
The FR model can be applied to various sizes of area, 
including small areas covering from 100 to 997 km2 
with 77.8%–80.8% of AUC of prediction rate values 
[26], and large areas covering from 1,900 to 12,050 km2 
with 80.0%–87.3% of the area under the curve value 
[47, 49, 57]. In our case, the study covers 2,983.210 km2 
showing the highest area under the curve of the 
prediction rate, which is 90.1%. 
 
3.2) Landslide density index (LDI) 
 Aside from the area under the curve of the success 
rate and prediction rate curves that are representative 
of overall simulation performance, the landslide density 
index is also one of the validation tests linking the 
consistency of the model. The landslide susceptibility 
model is valid when the LDI increases from very low to 
very high classes [46].  The LDI from the validation 
(64.2%, Table 3) showed that the very high susceptibility 
class was the majority of the landslide distribution 
followed by high, moderate, low, and very low, 
respectively. Besides, 63.9% for the training landslide 
dataset also shows the same pattern as the validated 
LDI. The LDI value for very high susceptibility class was 
6.000 which is remarkably higher than the other classes 
(Table 3). This behavior is the same as that observed in 
the performed experiments [34, 58–61] that landslide 
density index increases from very low to very high class, 
but previous research gained the landslide density 
index value in the highest susceptibility class about 
80.0%–87.3%; whereas, our study was found the 
prediction rate at 90.1% (Figure 7b). The results indicate 
that the landslide susceptibility map produced from the 
frequency ratio analysis is reliable. 
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Figure 7 Plots of (a) area under the curves of success rate and (b) area under the curves of prediction rate curves. 

 
Table 3 The relation between landslide susceptibility class and landslide density index (LDI) 

Landslide susceptibility 
class 

Validation landslide pixels Area pixels Area  
(km2) 

LDI 
 Number % Number % 

Very low 0 0.00 299,220 9.03 269.300 0.000 

Low 19 0.41 1,066,242 32.17 959.620 0.013 

Moderate 140 2.99 1,022,581 30.85 920.320 0.097 

High 1,515 32.37 571,767 17.25 514.590 1.877 

Very high 3,006 64.23 354,865 10.71 319.380 6.000 

Total 4,680 100.00 3,314,675 100.00 2,983.210 
 

 
 As it can be noticed from high rank of AUC and 
LDI, this research has confirmed the reliability of 
landslides susceptibility maps using the databases and 
factual landslide scar maps. 
 
3.3) Application of landslide susceptibility map and model 
 It is beneficial for residents to understand the most 
updated landslide susceptibility map. Especially in a 
high-risk landslide area, the organization can make plans 
to transfer knowledge about geohazard management 
and prevention. In this way, the updated or different 
landslide susceptibility models can be used for planning 
on bigger scales. For example, in a landslide-prone area, 
policymakers should limit in village settlement area to 
mitigate the landslide risk. Moreover, local governments 
or organizations can use the updated landslide 
susceptibility map to install observation devices and 
warning systems, prepare evacuation plans and build 
emergency assembly points. Furthermore, the model of 
landslides can help with sustainable forest management 
showing some parts of forest areas are vulnerable where 
landslides potentially occur. This can make plans to 
conserve that forest site and recover that forest area in 
a time when landslides happen. 
 
Conclusion  
 The landslide risk is currently interpreted based on 
basic GIS and map data. The landslide analysis gains the 

advantage of receiving reliable data. In this case, the 
landslide susceptibility map was already validated and 
showed very high landslide occurrences in the study site 
areas that could cause disaster in the future. The methods 
used in this research can be applied on a regional scale, 
especially in the northern part of Thailand or Laos. Still, 
the effectiveness of the results must be tested in the local 
communities. Fortunately, local organizations and 
related governmental departments could use this 
landslide susceptibility map for further implementation 
since this data could promote people's well-being as in 
the sustainable development goals (SDGs).  
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