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Abstract

Laplae, Mueang Uttaradit, and Tha Pla district, Uttaradit province, Thailand are
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considered as high potential landslide areas. Still, this disaster is difficult to address
because of complex factors controlling its occurrence. Therefore, the prediction of
the potential landslide area using a landslide susceptibility map has been able to
accomplish as a great strategy for the disaster. A landslide susceptibility map was
produced by the geographic information system (GIS) data. The methods were
initially conducted by the selection of potential factors related to landslides, which
were lithology, slope, aspect, plan curvature, profile curvature, distance to stream,
land use, and rainfall. All factors were assigned coefficients weight, and analyses
frequency ratio (FR). Then, the weighted variables have been combined and ranked
into five different susceptibility levels, which were very low, low, medium, high, and
very high. Finally, the produced landslide susceptibility map has been validated by
the success rate and prediction rate. After the analysis, the high and the very high
landslide susceptibility area were dominantly covered in the northern and northwest
parts of the study area; and the factor of slope, land use, and lithology potentially
caused the landslide risk indicated by high frequency ratio values. In addition, the
produced landslide susceptibility map had high accuracy, about 90% of success rate
and prediction rate, calculated from the area under the curve (AUC), this map would
be beneficial for geological hazard management and land use planning. The
landslide susceptibility map and the GIS-based methods can be applied to the
regional area with additional benefits to well-being, society, and the environment.
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Introduction
Climate change contributes to more disasters in the

future since it relates to meteorological variability
including precipitation, rainfall, temperature, wind speed,
vegetation, and terrestrial alterations [ 1-3]. Especially, the
latter alteration is a common consequence of natural
processes; it is indeed vicious because of anthropogenic
activities [4]. For example, a stream carves its channel
during the wet season and then the change of land use
from vegetation causes sudden alteration of drainage
movements and exogenous earth’s processes. Both factors
contribute to the increasing of natural worldwide

disasters, especially landslides. Landslide is one of the vital
signs of vegetation and terrestrial alteration and it is a
severe geological hazard [5] that occurred from a mass of
rock, debris, or earth movement down a slope under the
influence of gravity [6—7]. Landslides are an incalculable
disaster because it was controlled by complex factors. This
issue leads to difficulty in addressing and preventing [8-
9]. To face the catastrophe, spatial assessment and
landslides susceptibility are often preliminary evaluations
to forecast the potential landslide [10], which is crucial in
landslide risk management, policy supporting, and
sustainable land use planning [11-12].
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Landslides have significant multi-dimensional
impacts, including fatal damage, economic, social, and
environmental impacts. In Thailand, landslides have
recurrently occurred and they cover widespread more
than fifty-two provinces, approximately more than 5
million rai [13]. From 1788 to 2007, there was reported
that landslides killed more than 534 people and the
estimated property damage was over 4,585.6 million
Thai Baht [14]. To date, there are continuous reports
that landslides had been recurring, yet the destruction
had not been appraised. This mass wasting caused not
only death and financial impacts, but also natural and
environmental impacts, such as decreasing the number
of vegetation areas and wildlife, unbalancing of
ecosystems, drought problems, and soil erosion [15].

In Thailand, three districts in Uttaradit Province:
Laplae, Mueang Uttaradit, and Tha Pla, can be considered
as a crucial area in the northern part that affected by
landslide disasters. This study area was found a great
number of landslide scars or traces from the satellite
images more than 9,000 scars, which is one potential
landslide recurrence area [16]. This problem can be noticed
in that landslide susceptibility maps are compulsory
analyses for landslide prevention and risk mitigation.

Landslide susceptibility mapping has been proven
to benefit from the development of computer-based
technologies [1]. Especially, analyzing landslide risk can
be assisted by the geographic information system (GIS)
that is possible to detect sensitivity and accuracy based
on model predictions in such landslide risk areas. Several
models were taken into consideration using a large
number of factors, which can include geomorphic [17]
lithology [9] and anthropogenic elements [18] such as rock
groups [19], physical slope aspects [9], risk map [10],
local weather information [20], hydrographical networks
[9], land use maps [21], and vegetation types [9]. The
models of landslide risk can be verified using various
techniques, for example, analytic hierarchy process (AHP),
bivariate, multivariate, logistics, regression, fuzzy logic, or
artificial neural network (ANN) [22]. Apart from these
variables, the performance of the model can be evaluated
using the FR and logistic regression methods to test
analysis performance [23]. Thus, landslide susceptibility
maps can be produced by many GIS-based models that
will be utilized for landslide inventories and map
creation in the future. Therefore, a plan to mitigate the
effects of a probable landslide to find the potential
factors of landslides.

The frequency ratio (FR) method is widely
recognized as a reliable technique for landslide
susceptibility mapping. Previous comparative studies
consistently demonstrated the superior performance of
the FR method. In a study conducted in Selangor State,

Malaysia, different techniques, including FR and logistic
regression model, were compared for landslide suscep-
tibility mapping and this finding confirmed that higher
accuracy of the FR method in estimating landslide area
[24]. Similar to another study conducted in northwest
Ethiopia for community-level landslide susceptibility
mapping, the FR method was compared to the weight
of evidence method that the former could produce more
efficient and accurate landslide susceptibility maps than
the weight of evidence method [25]. In Mae Phun,
Uttaradit, Thailand, the FR method exhibited the highest
prediction rate among the evaluated methods and this
finding emphasized the effectiveness of the FR method
in predicting landslide susceptibility [26].

This study aims to ensure the performance of FR in
landslide susceptibility modeling at the local study and
spot the potential risk of landslides where shallow
landslides could occur in the future. To reach the
objective, spatial information has been utilized to
create the landslide susceptibility map in three districts
of Uttaradit Province. Eight natural and anthropogenic
factors have been selected, assigned the coefficients weight
of each of the factors, and analyzed the FR. Then, the
weighted variables have been combined and ranked
into five different susceptibility levels. Finally, the
resulting landslide susceptibility map has been validated
by a success rate curve, prediction rate curve, and
landslide density index, which also show the potential
factors causing landslides.

Materials and methods
1) The study area

The study site covers the districts of Laplae,
Mueang Uttaradit, and Tha Pla in Uttaradit Province,
the northern part of Thailand (Figure 1). The area is
approximately 2,580 km? or 33.0% of Uttaradit Province
[27]. It bounds between 99° 53’ 48 E to 100° 46’ 46” E
longitudes, and 17° 28’ 50” N to 18°02’ 56 N latitudes.
The elevation of the study area ranges from 400 to 1,000
m above mean sea level [27].

The area can be classified into three main regions,
which are the watershed area, the narrow plain between
valleys, and the hillside. The watershed area, which covers
some parts of Laplae and Mueang Uttaradit district,
spans across Nan River and its tributaries. The narrow
plain between valleys is in the other parts of Laplae and
Mueang Uttaradit Districts. The hillside area or the
mountain range partly distributes in all three districts
and the slope gradient ranges from 0° to 72°. These
three districts had the numbers of population about
246,847 people [28]. In 2022, the average annual
rainfall is 1,400 mm, specifically reaching 1,500 mm
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during the rainy season [28]. The average temperature
is from 15°C to 35°C [27].

2) Data processing

Landslide susceptibility map was created in
ArcMap 10.8 software. Prior to processing, spatial data
and landslide scar from Google Earth image are collected.
All of factor data was converted into raster files, that

were produced landslide susceptibility map using
frequency ratio analysis from 80.0% of landslide
inventory map (Google Earth image). Lastly, the model
was validated by 20.0% of landslide inventory map
using the area under the curve (AUC) and landslide
density index. The flowchart of the research work is
shown in Figure 2.
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Figure 1 Pictures showing (a) the location of Uttaradit Province in Thailand, (b) Laplae, Mueang Uttaradit,
and Tha Pla districts in Uttaradit Province and (c) the boundary of three districts with their elevation.
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Figure 2 A schematic diagram of the research work.
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2.1) Data collection and preparation

In this study, eight factors have been used, including
lithology, slope, aspect, plan curvature, profile curvature,
distance to stream, land use, and rainfall (Table 1). The
input data for all factors were collected from various
sources (Table 1).

The geological map of Thailand has a scale of
1:250,000 and it has shown nine lithological units namely
granitic rocks, limestone-dominated rocks, fluvial
deposits, terrace deposits, shale, slate, phyllite and
schist, clastic rocks, ultramafic rocks, volcanic and
tuffaceous rocks, and water bodies [29, 34-35] (Figure
3a). All rock units in shapefiles were rasterized to 30-m
spatial resolution; however, the water bodies were excluded
in the processing step.

Slope and aspect were produced using the Advanced
Land Observing Satellite Phased Array Type L-band
Synthetic Aperture Radar Digital Elevation Model
(ALOS-PALSAR DEM) with 30-m spatial resolution.
For the slope, the degrees were classified into five classes
including 0°-5°, 5°-12°, 12°-30° 30°-45° and more
than 45° (Figure 3b) [30]. The aspect was divided into
nine classes namely flat, which is defined as flat areas
having no direction of downslope, north (337.5° -360°,
0°-22.5°), northeast (22.5°—67.5°), east (67.5°— 112.5°),
southeast (112.5°-157.5°), south (157.5°-202.5°), southwest
(202.5°-247.5°), west (247.5°-292.5°) and northwest
(292.5°-337.5°) [25, 36-37] (Figure 3c).

The plan and profile curvature were also derived from
ALOS-PALSAR DEM with 30-m spatial resolution,
using the reclassify tool in ArcMap 10.8 [30, 38-39]
(Figure 3d and 3e). The plan curvature was divided into
three classes of curvature namely concave, flat, and
convex, which have values of -32.850 to -0.001, -0.001
to 0.001, and 0.001 to 39.870, respectively. For the

Table 1 The data sources of each factor

profile curvature was classed into three classes that
represent three types of curvature: convex, flat, and
concave (-58.690 to -0.001, -0.001 to 0.001, and 0.001
to 38.640, respectively).

For distance to stream, the shapefile of stream
networks was analyzed by Euclidean distances in
ArcMap 10.8. The buffer distance was classified into
five classes (0-100, 100-200, 200-300, 300-400, 400—
500, and more than 500 meters) [25, 31, 40—41] (Figure
3f), then it was rasterized with 30-m spatial resolution.

The land use map in level 2 was reclassified into six
classes, namely agricultural areas, evergreen forests,
other forest land areas, rangeland and miscellaneous
areas, urban and built-up areas, and water bodies [26,
31, 39, 42] (Figure 3g). Then, all reclassified classes
were rasterized into TIF format with 30-m spatial
resolution.

The rainfall intensity map was generated using the
inverse distance weighted (IDW) technique as one of
the interpolation toolsets. The analysis incorporated
data from nine rainfall stations, which are from
Uttaradit, Phrae, Nan and Phitsanulok, and Sukhothai
Provinces, Thailand: Tha Pla (Code 700151, N.12A, in
Uttaradit), Tron (Code 700221, N.60, in Uttaradit),
Mueang Phrae (Code 400013 in Phrae), Sung Men
(Code 400022 in Phrae), Huai Rai Khao Phlung Forest
Plantation (Code 400072 in Phrae), Den Chai (Code
400092 in Phrae), Na Muen (Code 280312 in Nan),
Wat Bot (Code 390161, N.40, in Phitsanulok), and Si
Satchanalai (Code 590121, Y.6, in Sukhothai). The
natural breaks method was employed to divide the
ranges of rainfall intensity into five classes: 1,112—1,149,
1,149-1,175, 1,175-1,201, 1,201-1,228, and 1,228-
1,266 mm per year 25, 26, 33] (Figure 3h).

Input data Sources (year) Factors Original formats
Geological map of Thailand Department of Mineral Resources Lithology Vector
(Scale 1:250,000) (2015) [29] (Shapefile)
ALOS-PALSAR DEM Alaska Satellite Facility Slope, aspect, Raster

(2009) [30]

plan curvature, (TIFF, resolution 12.5 m)

and profile curvature

The data layer of water Department of Water Resources Distance to stream Vector
(2020) [31] (Shapefile)

Land use map Land Development Department Land use Vector
(2018) [32] (Shapefile)

Monthly rainfall in millimeter Royal Irrigation Department Rainfall Spreadsheet

(2008-2018) [33]
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Figure 3 Input maps for landslide susceptibility model including (a) lithology, (b) slope, (c) aspect,
(d) plan curvature, (e) profile curvature, (f) distance to stream, (g) land use, and (h) rainfall.

2.2) Preparation data from landslide inventory map
The inventory map of the landslide was used for
training and validation processes. The landslide scars were
carried out by Mineral Resources Region 1, Department
of Mineral Resources, Thailand, using manually
digitized based on the Google Earth imagery producing
total of 10,204 polygons between 1984 and 2020 [43].
Afterward, the landslide inventory map was rasterized

to 30-m spatial resolution. There was a total of 24,834
landslide pixels in the study area, which accounted for
22.350 km?2. For training and validation data, landslide
pixels were randomly distributed. The data set of 20,151
landslide pixels (80.0%) was used as training and the
other 4,683 landslide pixels (20.0%) were used as
validation datasets (Figure 4).
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Figure 4 Pictures showing (a) all landslide scars in the study area and(b) example of polygons of landslide scars
for validation and training.

2.3) Bivariate statistical analysis using frequency ration
(FR)

To calculate the FR value of each factor for landslide
susceptibility analysis, each thematic map was separately
matched with the training datasets, and then the FR value
was computed for each class in the ratio as Eq. 1 [25].

_ NpixL; / XNpixL;
"~ NpixN; / ENpixN;

(Eq. 1)

i

Where FRi is the frequency ratio value of each class of
the causative factor; NpixLi is the number of landslide
pixelsin class i; NpixLiis the total number of landslide
pixels in the study area; NpixNi is the number of pixels
in classi; NpixNi is the total number of the study area.

If the FRi value is more than 1, it indicates a high
probability of landslide. There is a low probability when
FRj value is less than 1. If the FRi value is equal to 1, there
is a moderate chance of landslides [40]. The summation
of FR values of all factors indicates landslide suscep-
tibility index (LSI) as shown in Eq. 2 [25] that will be used
to produce a landslide susceptibility map.

LSI=FRi1+ FR2+ FR3+ ... + FRn (Eq.2)

Where LSI is the landslide susceptibility index; FR is
the frequency ratio value; n is the total number of causative
factors used.

For the current study, the initial step was rasterized
all the factors and landslide scars into raster format with
30-m spatial resolution. Then, landslide training datasets

and all factors were used to compute the FR values of
each factor class by the method of calculation in Eq. 1
[25]. Afterward, the FR value of each factor was summed
by Eq. 2 [25] using the raster calculator of the spatial
analyst tool in ArcMap 10.8 and the result of this process
is the LSI map that was forward reclassified into five
classes of landslide susceptibility ranking from very low,
low, moderate, high, and very high.

3) Validation processes
3.1) Area under the curve (AUC)

The training landslide dataset (80.0%) and validation
landslide dataset (20.0%) (from 2.2) were used for
generation success rate curve and prediction rate curve,
respectively. Landslide susceptibility index (LSI) values
were divided into one-hundred classes by quantile
reclassify method in ArcMap 10.8 and all class was
sorted into descending order from high to low landslide
susceptibility index. The training data (80.0%) was plotted
with 100-classed landslide susceptibility index producing
the AUC of success rate and the plotted graph between
the validation data sets and landslide susceptibility
index were calculated the AUC representing the
prediction rate [26]. The success rate explains the
capacity of landslide susceptibility model to reliably
classify the occurrence of existing landslides and the
prediction rate indicates the potential of the current
landslide susceptibility model [44]. If the AUC value is
lower than 50.00%, the model is rejected. The AUC
values can be divided into 3 ranges; less than 70.0%,
70.0%-80.0%, and greater than 80.0% which represent
sub-optimal performance, good performance, and
excellent performance model respectively [45].
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3.2) Landslide density index (LDI)

The validation landslide dataset (20.0%) which has
not been used for building the model, can be considered
as the future landslide area and was used to calculate
LDI. Landslide density index is the ratio between the
percentage of validation landslide pixels in each landslide
susceptibility class and the percentage of each class pixel
in the landslide susceptibility map. LDI can be calculated
using the formulae in Eq. 3 [25].

percentage of validation landslide pixels

LDI (Eq.3)

percentage of area pixel

The suitability of any susceptibility map can be
validated if a higher percentage of landslides occur in
the high and very high susceptibility zones as compared
to other zones.

Results and discussions
1) Frequency ratio (FR) values

The relationship between the probability of landslides
and causative factors was examined by FR. The greater
number of FR values indicates that factor supporting
higher susceptibility of landslide occurrence; similarly,
the small number of FR identifies as the high resistance
for landslide susceptibility. The FR of all factors is in
Table 2.

Considering each factor as shown in Table 2, the most
significant factors are slope, land use, and lithology
respectively. The largest number of FR is slope higher
than 45°. The second and third important factors are other
forest land areas (4.522), and lithology of volcanic and
tuffaceous rock (3.091), respectively (Table 2).

In terms of land use, the agricultural areas have a
lower FR value, while it is higher in other forest land
areas (4.522) (Table 2). Although some previous studies
found different consequences [37, 50] and they said
that dense forests can protect the topsoil failure due to
binding soil particles by plant root systems, but the
forests as dense forests can impede runoff. Consequently,
the runoffs permeated into soil pores that could result
in increasing of water pressure and finally causes
landslides [39, 42, 48, 51].

The third important factors, lithology shows that
volcanic and tuffaceous rocks have the greatest number
of FR (3.901), followed by granitic rocks (1.392), and
clastic rock (0.943). The other categories of rock showed

extremely low values that are less than 0.1 (Table 2).
The influence of lithology on landslides is discussed in
various ways and specific to the different study areas.
The most favorable rocks, which tend to possess land-
slides, are volcanic and tuffaceous rocks (Table 2). The
instability of volcanic and tuffaceous rocks was proved
in the laboratory scale, and it was found that weathered
volcanic tuffs produce clay minerals known as
montmorillonite, which have a significant ability to
swell and decrease of slope stability [52-53].

Moreover, our results suggest that slope has the
most influence on the spatial distribution of landslides
as well as each slope class considerably increases with
the rising angle of slope gradient. This study correlated
to other previous studies [25, 46], specifically one study
of landslides susceptibility map in Mae Phun, Uttaradit,
Thailand [26]; the research explained that shear stress
of soil or other unconsolidated materials typically
increases as the slope angle increases, indicating that
high slope gradient is the important factor contributing
to landslides [26]. However, there were some previous
studies [47—49] argued that the slopes greater than 45°
have a low landslide impact when the lithology is
bedrock outcroppings or non-completely weathered
rock. Therefore, lithology should be considered as a
combination of the slope.

FR calculation of eight factors suggested that the
landslides in the districts of Laplae, Mueang Uttaradit,
and Tha Pla in Uttaradit Province, the northern part of
Thailand significantly controlled by slope, land use
(other forest land areas), and lithology. Indeed, the
consideration among the three main factors (slope,
land use, and lithology), it can explicit that some area
exhibits slope greater than 30 degrees and exceeding
45° but it shows a relatively low to moderate risk of
landslides, since lithology is the presence of shale, slate,
phyllite, and schist rock units, which exhibit an
extremely low FR value of just 0.001. For instance, in
Nang Phaya Subdistrict located at the northwestern the
of Sirikit Dam, this case can be highlighted that
although the slope has highest FR, a single factor may
not always result to the good prediction. This could be
from the combined factors in analysis of the landslide
susceptibility map. Our study emphasizes that not only
slope is the important factor, but also land use and
lithology are the significant factors in this study area.
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Table 2 Frequency ratio value in each factor class of the landslide causative factors

Factor and class NpixL; % NpixL; NpixN; % NpixN; FR;
Lithology
Granitic rocks 1,036 5.14 123,052 3.69 1.392
Limestone-dominated rocks 8 0.04 35,258 1.06 0.038
Fluvial deposits 0 0.00 479,004 14.38 0.000
Terrace deposits 26 0.13 300,297 9.01 0.014
Shale, slate, phyllite and schist 2 0.01 593,560 17.81 0.001
Clastic rocks 3,582 17.78 628,293 18.86 0.943
Ultramafic rocks 62 0.31 120,898 3.63 0.085
Volcanic and tuffaceous rocks 15,435 76.60 825,719 24.78 3.091
Water area 0 0.00 226,033 6.78 0.000
Slope (degree)
0-5 164 0.81 1,199,526 36.00 0.023
5-12 1,092 5.42 703,796 21.12 0.257
12-30 11,374 56.44 1,295,889 38.89 1.451
30-45 7,236 3591 130,415 391 9.175
> 45 285 1.41 2,488 0.07 18.942
Aspect
Flat 35 0.17 259,165 7.78 0.022
North 2,028 10.06 325,027 9.75 1.032
Northeast 3,362 16.68 358,599 10.76 1.550
East 3,234 16.05 373,241 11.20 1.433
Southeast 3,320 16.48 417,538 12.53 1.315
South 2,284 11.33 406,086 12.19 0.930
Southwest 2,492 12.37 420,810 12.63 0.979
West 2,043 10.14 393,700 11.82 0.858
Northwest 1,353 6.71 377,948 11.34 0.592
Plan curvature
Concave 10,767 53.43 1,271,349 40.59 1.316
Flat 99 0.49 487,905 15.58 0.032
Convex 9,285 46.08 1,372,860 43.83 1.051
Profile curvature
Convex 9,895 49.10 1,322,097 42.21 1.163
Flat 84 0.42 363,649 11.61 0.036
Concave 10,172 50.48 1,446,368 46.18 1.093
Distance to stream (m)
0-100 537 2.66 195,723 5.87 0.454
100-200 576 2.86 193,034 5.79 0.493
200-300 748 3.71 189,571 5.69 0.652
300—400 794 3.94 186,709 5.60 0.703
400-500 925 4.59 182,623 5.48 0.838
> 500 16,571 82.23 2,384,454 71.56 1.149
Land use
Agricultural areas 5,427 26.93 1,065,643 31.98 0.842
Evergreen forests 799 3.97 1,202,970 36.10 0.110
Other forest land areas 13,908 69.02 508,535 15.26 4.522
Rangeland and miscellaneous areas 0 0.00 38,605 1.16 0.000
Urban and built-up areas 2 0.01 183,111 5.50 0.002
Water bodies 15 0.07 333,250 10.00 0.007
Annual rainfall (mm)
1,112-1,149 0 0.00 133,318 4.00 0.000
1,149-1,175 19,561 97.07 2,441,096 73.26 1.325
1,175-1,201 136 0.67 400,060 12.01 0.056
1,201-1,228 2 0.01 204,151 6.13 0.002
1,228-1,266 452 2.24 153,489 4.61 0.487

Remark: NpixLiis the number of landslide pixels in class, % NpixLiis the percentage of landslide pixels in class,
NpixNiis the number of pixels in class, and % Npix/V;is the percentage of landslide in class.

2) Landslide susceptibility index (LSI) and landslides
susceptibility classes

The FR value of each selected factor class was
combined to develop the LSI map. The LSI values
ranged from 0.567 to 32.878 (Figure 5), and they were

reclassified by the natural breaks method. The results of
LSI values presented five susceptibility classes: very low
(0.567-7.409), low (7.409-11.717), moderate (11.717—
17.293), high (17.293-25.782), and very high (25.782-
32.878) (Figure 6). Besides, the percentage of area values
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presented in five susceptibility classes: very low (9.03%),
low (32.17%), moderate (30.85%), high (17.25%), and
very high (10.71%), respectively (Table 3). The high and
very high susceptibility classes, which should be in high
inspection, were covered in the northern and north-
western parts (Figure 6).
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Figure 5 Landslide susceptibility index map of
the study area using frequency ratio.
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Figure 6 Landslide susceptibility map of the study area
using frequency ratio.

These areas dominantly were high and very high
risk, and they can be highlighted as more vulnerable
because the landslide susceptibility map in high and
very high risk can contribute to disaster planning.

3) Validation of the model
3.1) Area under the curve (AUC)

Model validation is an essential procedure to validate
the landslide susceptibility maps. In this study, the
landslide susceptibility maps evaluated the performance
of the model using area under the curve of the predict-
ion rate curve and the success rate curve [46]. The AUC
of the prediction rate curve was produced by plotting
the cumulative landslide susceptibility index values of
all pixels on the x-axis and the cumulative validation
landslide dataset (20.0%) on the y-axis. While the AUC
of the success rate curve was plotted between the
landslide susceptibility index values of all pixels the
cumulative training landslide dataset (80.0%) was plotted
on the y-axis instead. Regarding FR, the model using
the bivariate statistical method has a high quality [25,
26, 54-56]. As can be seen in Figure 7a, the AUC value
for the success rate was found at 90.3% and the
prediction rate was found at 90.1% (Figure 7b) suggesting
high performances of the landslide susceptibility model.
The FR model can be applied to various sizes of area,
including small areas covering from 100 to 997 km?
with 77.8%-80.8% of AUC of prediction rate values
[26], and large areas covering from 1,900 to 12,050 km?
with 80.0%-87.3% of the area under the curve value
(47,49, 57]. In our case, the study covers 2,983.210 km?
showing the highest area under the curve of the
prediction rate, which is 90.1%.

3.2) Landslide density index (LDI)

Aside from the area under the curve of the success
rate and prediction rate curves that are representative
of overall simulation performance, the landslide density
index is also one of the validation tests linking the
consistency of the model. The landslide susceptibility
model is valid when the LDI increases from very low to
very high classes [46]. The LDI from the validation
(64.2%, Table 3) showed that the very high susceptibility
class was the majority of the landslide distribution
followed by high, moderate, low, and very low,
respectively. Besides, 63.9% for the training landslide
dataset also shows the same pattern as the validated
LDI. The LDI value for very high susceptibility class was
6.000 which is remarkably higher than the other classes
(Table 3). This behavior is the same as that observed in
the performed experiments [34, 58—61] that landslide
density index increases from very low to very high class,
but previous research gained the landslide density
index value in the highest susceptibility class about
80.0%—87.3%; whereas, our study was found the
prediction rate at 90.1% (Figure 7b). The results indicate
that the landslide susceptibility map produced from the
frequency ratio analysis is reliable.

https://doi.org/10.35762/AER.2023016



App. Envi. Res. 45(3) (2023): 016

S 100

=] @

Z

e

=1

=

o 80 -

g

=)

E

4 60 A

[=]

(]

=N}

8

=]

g 40

[

o

L

2 20

= Success rate (AUC = 90.31%)
= , . . . . ,
=

3 0 20 40 60 80 100

Cumulative percentage of map area

Cumulative percentage of validation landslides

1001 (b)
80 -
60
40 -
20 4 Prediction rate (AUC = 90.10%)
: " " 50 30 100

Cumulative percentage of map arca
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Table 3 The relation between landslide susceptibility class and landslide density index (LDI)

Landslide susceptibility Validation landslide pixels Area pixels Area LDI
class Number % Number % (em?)

Very low 0 0.00 299,220 9.03 269.300 0.000
Low 19 0.41 1,066,242 32.17 959.620 0.013
Moderate 140 2.99 1,022,581 30.85 920.320 0.097
High 1,515 32.37 571,767 17.25 514.590 1.877
Very high 3,006 64.23 354,865 10.71 319.380 6.000
Total 4,680 100.00 3,314,675 100.00 2,983.210

As it can be noticed from high rank of AUC and
LDI, this research has confirmed the reliability of
landslides susceptibility maps using the databases and
factual landslide scar maps.

3.3) Application of landslide susceptibility map and model

It is beneficial for residents to understand the most
updated landslide susceptibility map. Especially in a
high-risk landslide area, the organization can make plans
to transfer knowledge about geohazard management
and prevention. In this way, the updated or different
landslide susceptibility models can be used for planning
on bigger scales. For example, in a landslide-prone area,
policymakers should limit in village settlement area to
mitigate the landslide risk. Moreover, local governments
or organizations can use the updated landslide
susceptibility map to install observation devices and
warning systems, prepare evacuation plans and build
emergency assembly points. Furthermore, the model of
landslides can help with sustainable forest management
showing some parts of forest areas are vulnerable where
landslides potentially occur. This can make plans to
conserve that forest site and recover that forest area in
a time when landslides happen.

Conclusion
The landslide risk is currently interpreted based on
basic GIS and map data. The landslide analysis gains the

advantage of receiving reliable data. In this case, the
landslide susceptibility map was already validated and
showed very high landslide occurrences in the study site
areas that could cause disaster in the future. The methods
used in this research can be applied on a regional scale,
especially in the northern part of Thailand or Laos. Still,
the effectiveness of the results must be tested in the local
communities. Fortunately, local organizations and
related governmental departments could use this
landslide susceptibility map for further implementation
since this data could promote people's well-being as in
the sustainable development goals (SDGs).
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