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Abstract 
The findings showed that several types of bacteria can help biodegrade organic 

pollutants, such as Comamonadacea, which can biodegrade volatile fatty acids and 
aromatic compounds. Proteobacteria, Bacteroidetes, and Actinobacteria can biodegrade 
ammonium. Burkholderiales can biodegrade ferric ions and hydrogen. Comamonas 
testosteroni is able to biodegrade nitrates. Pseudomonas taiwanensis, Acinetobacter 
guillouiae, and Klebsiella pneumoniae can reduce copper, chromium and zinc levels. 
Azolla biomass reduces strontium. Rhodospirillum sp. can biodegrade cadmium, 
mercury, lead, and nickel. Gallionella ferruginea and Leptothrix sp. can biodegrade 
arsenic and manganese. Gracilaria sp. can biodegrade aluminum, chromium, and 
zinc. Desulfovibrio sp. can biodegrade copper, zinc, nickel, iron, and arsenic. 
Thiomonas sp. can biodegrade arsenic and iron. Thauera selenatis can biodegrade 
copper, zinc, cadmium, nickel, lead, cobalt, chromium, and mercury. Thiobacillus 
thiooxidans can degrade both zinc and copper. Sargassum filipendula biodegrades 
copper and nickel. Meanwhile, in the findings of the factors that affected 
biofiltration, it was identified that there were four that played a significant role such 
as temperature, dissolved oxygen, hydraulic retention time, organic loading rate, 
biological organisms, and supply nutrients. In conclusion, several types of bacteria 
grow and help biodegrade in biofilter reactors. This is inseparable from the 
supporting factors that increase the efficiency of pollutant reduction in biofilter 
reactors. 
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Introduction 
 Water scarcity that occurs throughout the world is 
caused by the depletion of freshwater sources due to 
liquid waste pollution, which mostly occurs in poor 
and developing countries. However, several developed 
countries have reported similar problems [1–2]. Many 
recent cases of eutrophication have had detrimental 
impacts on the environment and have received tremendous 
attention worldwide [3]. The increasing problem of lack 
of clean water and polluted sources has increased the 
paradigm of renewable water treatment by attempting 

to treat water directly from the source [4], reuse [5], 
and decentralization [6].  Therefore, it does not pollute 
the environment. Wastewater treatment techniques, both 
physical, chemical, and biological, have been introduced 
to prevent damage to clean water sources from harmful 
pollutant contamination. Physicochemical treatments 
include coagulation-flocculation, aeration, chemical 
oxidation, filtration, and biofiltration [7–9]. Although 
chemical processing has some drawbacks, such as high 
sludge production, the relatively high investment capital 
[10] does not make this processing difficult to implement. 
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 Processing using biofiltration is indeed more preferred 
than other biological treatments that have been 
introduced, this is of course because the potential for 
reducing pollutants produced is quite high compared 
to the others, however, processing using biofiltration is 
still used as a third or tertiary treatment which is 
capable of significantly reducing pollutants in wastewater 
[11]. Processing with biofiltration involves the utiliza-
tion of bacteria as a breakdown of pollutant elements 
that enter the liquid waste; later, these bacteria will be 
mobilized into the biofilm that has been formed, and 
the presence of biofilm and bacteria in the media will 
attract pollutants, which are in charge of breaking down 
pollutant elements into elements that are safer to release 
into the environment [12]. Several studies have shown 
that biofiltration can also be used to reduce pollutants 
in industrial gas waste and eliminate odor disturbances 
that may arise from gases containing harmful pollutants 
[13–17]. This is because biofiltration is known can 
remove volatile organic compounds [18]. 
 In several municipal WWTP, biofilters were applied 
to remove nitrogenous pollutants and organic matter 
that are harmful to the environment. This is because 
the findings show that biofilters can be used to treat 
various types of pollutant problems in conventional 
drinking water treatment [19], gas and oil [20], raw waste 
[20–21], domestic wastewater [22–23], and groundwater 
[24]. Several studies have also developed biofilter 
operating conditions, including differential dissolved 
oxygen concentration, temperature, and filter media, 
which in general can affect the ability of biofilters to 
reduce pollutants in wastewater [25–27]. The layer of 
the biofilter media is very important for understanding 
the number of microbial structures that appear during 
the operation of the biofilter. Fungi, microbial activity, 
and bacterial viability greatly determine the effectiveness 
of a biofiltration reactor for reducing existing pollutants 
[28]. To maximize the formation of biofilms on the 
media, it is important to pay attention to the type of 
media used in the biofiltration reactor because it greatly 
affects the formation of aerobic and anaerobic zones, 
which can affect the distribution of dissolved oxygen in 
wastewater. [13]. However, many bio-filtration designers 
currently focus only on the absorption properties of 
biofilters rather than the formation of bacterial colonies, 
which will later break down pollutant elements into 
elements that are harmless to the environment [29–32]. 
The lack of information about the performance of 
biofilter reactors on technical and semi-technical scales 
is an obstacle in the development of this science because 
most of the previous research was carried out at the 
laboratory scale [15, 17, 28, 30, 33]. 

 Energy saving is one of the reasons why many 
biological treatment processes are carried out compared 
to others, and flexibility, environmental friendliness, 
and lower costs also encourage other researchers to be 
more active in researching biological waste treatment. 
[10, 34–43]. Several studies related to biofilters are also 
interested in developing alternative media to further 
improve the performance efficiency of biofilms and 
bacteria, including wood, straw, and other fibers [44–
46]. This was done to replace media that are often used, 
such as sand and gravel. Many pollutants in wastewater 
are known to occur in the scrubber system, which are 
then broken down by bacteria into compounds that are 
safer to be discharged into the environment [14, 47–48]. 
In the nitrification process, the microbial population in 
the biofilm is considered a nitrifier community whose 
function is to convert nitrite compounds into gases that 
are safely disposed of in the environment [49]. In this 
process, the nitrification process involves autotrophic 
bacteria, which convert ammonium to nitrite, and 
bacteria convert nitrile to nitrate [50]. 
 Although research [51–55] has discussed several 
information of biofilter information have been 
discussed, a review of the role of microorganisms and 
factors that influence the effectiveness of biofiltration 
has not been found. The main objective was to answer 
the following questions:1. Which bacteria appear during 
biofiltration?, 2. What factors affect microorganism-
assisted biofiltration?, and 3. How does the abundance 
of bacteria occur in a medium biofilter? This article 
specifically examines the above and explains it in detail 
by presenting data and tables from previous studies. 
The novelty of this research is that there has never been 
a study that thoroughly discusses the types of bacteria, 
factors that influence bacteria to appear in biofilms, 
and how the abundance of bacteria can occur in 
biofilters. In this review, article data were developed 
from reputable sources from SCOPUS, EBSCO, and 
Proquest. The data obtained were then poured into 
tables and analyzed in depth to find links to the research 
questions. 
 
Material and method 
 Supporting data for this review were obtained from 
articles that had been published by previous studies of 
reputable categories, such as Scopus, EBSCO, and 
Proquest. These data were then synthesized based on 
research needs by dividing them into several para-
meters that will be discussed, namely, the types of 
microorganisms that assist in the biofiltration process 
and the pollutants removed, and how the temperature 
factor, organic loading rate, dissolved oxygen, and 
retention time affect the biofiltration process in reducing 
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pollutants in liquid waste. Data that have been separated 
based on parameters are then entered into tables and 
analyzed, and then poured into the results and discussion 
in this study, supported by related theories. 
 
Results and discussion 
1) Types of bacteria that play important role in the 
biofilter 
 Several type of bacteria are found in the biofilter 
reactor and most of them are known for their benefits 
and existence, for more details can be seen in Table 1. 
 The pollutants that appear in the table above are 
very harmful to the environment, and their pollution 
occurs in wastewater samples, biotrickling filters, and 
biofilms, which has encouraged the development of 

processing methods to remove both organic matter and 
heavy metals. Biofiltration is an alternative method for 
removing organic matter and heavy metals [76].  This 
is because in the biofiltration reactor there is a medium 
where bacteria can grow and assist in the process of 
reducing existing pollutants [77]. In summary, pollutants 
present in liquid waste pass through the media [78] and 
are degraded by existing microorganisms [79, 80]. 
Microorganisms that grow on media degrade and 
develop biofilms. Good media have good surface area 
[81–82], water retention for biofilms to live on [83], 
and pollutant homogeneity [84]. These conditions 
provide space for microorganisms to reduce pollutants 
in liquid waste [47].

 
Table 1 Types of bacteria and their role in the biofilter reactor 

No. Bacterial type Pollutans removal Existence References 

1 Comamonadacea Volatile fatty acids and 
aromatic compounds 

Wastewater sample from 
biotrickling filter 

[56] 

2 Proteobacteria, Bacteroidetes, and 
Actinobacteria 

Ammonium  More in biotrickling filter 
water samples than in biofilms 

[57–58] 

3 Burkholderiales Ferric ions and hydrogen - [59] 

4 Comamonas testosteroni Nitrate Biofilm [58, 60] 

5 Comamonas nitrativorans Nitrate, nitrite and nitrous 
oxide 

Wastewater sample from 
biotrickling filter 

[61] 

6 Flavobacteriaceae, Alcaligenaceae, 
Cytophagaceae, Cryomorphaceae, 
Piscirickettsiaceae and Trueperaceae 

- Wastewater sample from 
biotrickling filter 

[62] 

7 Proteobacteria, Bacteroidetes dan 
Actinobacteria 

- More in biotrickling filter 
water samples than in biofilms 

[63–64] 

8 
 

Pseudomonas taiwanensis, 
Acinetobacter guillouiae, Klebsiella 
pneumoniae 

Chromium, copper and 
zinc 

Wastewater sample [65] 

9 Azolla Strontium Wastewater sample [66] 

10 Rhodospirillum s sp. Cadmium, mercury, lead 
and nickel 

Wastewater sample [67] 

11 Eichhornia crassipes Lead, chromium, xinc, 
manganese and copper 

Wastewater sample [68] 

12 Gallionella ferruginea, Leptothrix sp.  Arsenic and manganese Wastewater sample [69] 

13 Gracilaria sp. Aluminum, chromium and 
zinc 

Wastewater sample [70] 

14 Desulfovibrio sp. Zinc, copper, iron, arsenic 
and nickel 

Wastewater sample [71] 

15 Thiomonas sp. Arsenic and iron Wastewater sample [72] 

16 Thauera selenatis Zinc, copper, cadmium, 
nickel, mercury, lead, cobalt 
and chromium 

Wastewater sample [73] 

17 Sargassum filipendula Nickel and Copper Wastewater sample [74] 

18 Thiobacillus thiooxidans Zinc and copper Wastewater sample [75] 

 
 
 
 
 



App. Envi. Res. 45(4) (2023): 020 

 
https://doi.org/10.35762/AER.2023020 

1.1) Organic pollutants removal 
Comamonadacea can remove volatile fatty acid 

pollutants and aromatic compounds in a biotrickling 
filter [56] under both aerobic and anaerobic conditions. 
Proteobacteria, Bacteroidetes, and Actinobacteria are 
known to be able to remove ammonium, and their 
presence is higher in water samples than in biofilms 
[56–58]. In other studies, Burkholderiales were shown 
to be able to remove ferric ions, and it is also known 
that Burkholderiales have aerobic and anaerobic genera, 
and these bacteria are also able to oxidize hydrogen. 
Interestingly, these bacteria are also known as fermen-
tative bacteria in the solution fermentation process 
[59]. In subsequent studies, it was found that the 
Comamonas testosterone bacterium is present in 
biofilms and is known to be able to reduce nitrate; in 
general, these bacteria are abundant in biofilms, so the 
presence of these bacteria will accelerate nitrate reduction 
in wastewater [60]. In addition, it is also known that 
Comamonas testosterone in bulk in an aerobic 
environment appears in both aerobic and anaerobic 
condition in biofilms [58]. 

Furthermore, Comamonas nitrativorans bacteria 
found in biotrickling filter water samples are known to 
reduce nitrite, nitrate and nitrous oxide [61]. Several 
bacteria, such as Alcaligenaceae, Cryomorphaceae, 
Cytophagaceae, Piscirickettsiaceae, Flavobacteriaceae 
and Trueperaceae, were identified to be present in the 
filter wastewater. Several bacteria exist in two places, 
namely biotrickling filters and biofilms, but the number 
is greater in biotrickling filters, including Bacteroidetes, 
Proteobacteria, and Actinobacteria [63–64].  Alcaligenaceae, 
Cryomorphaceae, Cytophagaceae, Piscirickettsiaceae, 
Flavobacteriaceae, and Trueperaceae bacteria in natural 
conditions have also been found in leachate waste in 
landfills [85–86]. 

 
1.2) Heavy metal pollutans removal 

All heavy metals that enter the biofilter reactor are 
removed by biodegradation by bacteria previously 
attached to the biofilm [65, 87]. Several media have been 
found to reduce heavy metals because ion exchange 
occurs during biofiltration [88–89]. All heavy metals 
enter the biofilter reactor and are degraded by bacteria 
that grow on the biofilm to produce compounds that are 
insoluble and less toxic to the environment. This process 
is called adsorption, precipitation, bio-remediation, or 
absorption [90–92]. Heavy metals that pass through a 
biofilter reactor are converted into water and biomass, 
which can be safely discharged. Heavy metal methylation 
is another alternative that occurs in biofilter reactors, 
which are supported by bacteria present in biofilms 
[93–94]. 

Bacteria that can biodegrade heavy metals using 
biofiltration have been identified to be numerous, 
including Pseudomonas taiwanensis, Acinetobacter 
guillouiae, Klebsiella pneumoniae which are capable of 
reducing heavy metals of chromium, copper, and zinc 
types [65], Azolla which reduces strontium [66]. 

It is known also that Rhodospirillum sp. reduces 
mercury, cadmium, lead and nickel [67], Thauera selenatis 
reduces zinc, copper, cadmium, nickel, mercury, lead, 
cobalt and chromium [73],  Eichhornia crassipes reduces 
chromium, manganese, lead, zinc and cadmium [68], 
Leptothrix sp. and Gallionella ferruginea reduce 
manganese and arsenic [69], Sargassum filipendula 
reduces copper and nickel [74], Gracilaria sp. reduces 
aluminum, zinc and chromium [70], Thiobacillus 
thiooxidans reduces zinc and copper [75], Desulfovibrio 
sp. reduces zinc, copper, iron, nickel and arsenic [71], 
Thiomonas sp. reduces arsenic and iron [72]. 

 
2) Several Factors affecting biofiltration effectiveness and 
efficiency  

In a biofilter reactor, a complex procedure called 
biological filtration uses bacteria to break down the 
contaminants. Environmental factors affect biological 
aspects of wastewater remediation [95–97]. Temperature, 
dissolved oxygen, pH, and hydraulic retention time (HRT) 
have been measured in particular [98–101], nutrient 
supply, and biological organisms [102–103]. 

 
2.1) Temperature 

By changing the temperature in the biofilter reactor, 
which impacts how well microorganisms develop on 
the formed biofilm, the performance of the biofilter can 
be controlled. Low temperatures are not ideal for the 
development of microorganisms, because some bacteria 
cannot endure them. Therefore, when low temperatures 
are present, bacteria that have already attached to the 
biofilm or are currently doing so will die [104–105]. Low 
temperatures are also known to contribute to long 
acclimatization [106] and low nitrification rates [107] 
Additionally, it has been stated that 18°C is the ideal 
temperature for producing effective biofilter performance 
[107]. 

According to Brown et al. [108] temperature stimu-
lation of biofilms has a significant effect on the metabolism 
and growth of bacteria. Thus, relatively warm temperatures 
may cause bacteria in the biomass and biofilms to 
multiply. Some studies have suggested that increasing 
temps may encourage the development of bacteria in 
biofilms [109–111]. Every living entity in the reactor 
experiences an increase in metabolism as the temperature 
increases. The composition of the bacteria residing in 
the reactor is known to vary with temperature [112–
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113]. Ciliates are microorganisms that can thrive in 
reactors [114–115]. Instead of causing an increase in 
the quantity of microbial populations or the rate of 
photosynthesis, an increase in temperature may also 
result in a change in taxonomy [116–117]. Despite the 
notion that temperature is beneficial for the activity of 
photosynthetic enzymes [118–119], low nutrient amounts 
can prevent bacterial growth [120– 121]. 

In the three-dimensional biofilm framework, the 
microbial communities were closely packed. The reaction 
of the biofilm to heat microbes adhering to the biofilm 
is modulated by the interactions between microbial 
groups [122–123]. Increasing temperatures can result 
in community changes when microbial species interact, 
which cannot be anticipated from the reactions of a 
single species [124]. Bacteria in biofilms fight one another 
for nutrients [125] while also taking advantage of one 
another [126]. 

 
2.2) Hydraulic retention time 

The retention time must be considered if biofilter 
units are to be used over an extended period where 
retention duration has an impact on cost effectiveness 
as a direct result of how much substrate is handled 
[127–129].  Faster heterotrophic growth results from a 
prolonged retention time [130]. However, because it 
maintains a long retention time, extended retention also 
has some drawbacks such as cost consumption. [131]. 

According to [132–133], nitrite and nitrate effluents 
increase with a shorter hydraulic retention period. 
Based on the research conducted by [134], increased 
organic loading rate, hydraulic loading, and fluid shift 
as a result of hydraulic retention time aided bacterial 
development and biofilm formation. The bacterial 
community can degrade organic materials, and organic 
matter removal is more effective when the hydraulic 
retention time increases [135]. Thus, the reduction in 
organic matter during the pollutant degradation 
process can be influenced by the proper hydraulic 
retention time. A longer contact time between the 
wastewater and sedimentation rate of the treatment 
reactor can improve pollutant removal capacity [136–
137]. 

 
2.3) Organic loading rate 

Owing to the capacity of bacteria to disseminate 
organic processes beneath the flow of organic matter 
for the formation and refinement of biofilms that have 
been and will be created, the organic loading rate factor 
may have an effect on the rate at which biofilms grow 
[138]. The accumulation of biomass, biofilm develop-
ment, and denitrification processes are all affected by 
the organic loading rate [139]. Excessive wastewater foam, 

which prevents the development of biofilms, is a 
drawback of increasing the organic loading rate [138, 
140–141] and decreasing the number of potential 
adsorption sites [142]. The gas formation rate remained 
constant as the organic loading rate increased, but the 
percentage of the effluent increased [143]. 

 
2.4) Dissolved oxygen 

Dissolved oxygen is essential for cellular activity and 
pollutant biodegradation. The growth of the microbial 
community depended on the quantity of dissolved 
oxygen in the wastewater. This is due to the fact that 
many aerobic microorganisms rely on dissolved oxygen 
for life and growth [144]. Additionally, adequate air can 
promote biofilm development [145]. Low dissolved 
levels result in ineffective contaminant abatement [146]. 

As dissolved oxygen is used to oxidize ammonium, 
iron, and manganese, it has a major impact on the 
treatment of biological systems. Additionally, energy is 
typically required when oxygen is dissolved in water; as 
a result, the higher the dissolved oxygen in the water, 
the higher the energy intake that takes place. The 
increased energy of the biofilter reactor enables greater 
pollutant reduction [147]. 

 
2.5) Biological organisms 

Biological organisms that serve as catalysts for 
biofiltration are the primary ingredients. Biofilms are 
frequently created by microorganisms, such as bacteria, 
protozoa, invertebrates, and fungi. Bacteria and fungi 
are thought to be beneficial for the growth of microbial 
populations in media. To complete the process of pollutant 
breakdown, heterotrophic microbes were immobilized. 
The cells initially adhered to the biofilter material on 
the reactor surface. Subsequently, microbial cells colonize 
the surface to create an active layer that can absorb 
pollutants [12]. Another method is to affix synthetic 
microorganisms to biofilter materials. Microencapsu-
lation, membranes, cross-linking, carrier bonding, and 
trapping have been used to immobilize cells artificially 
[12]. These microorganisms grow on bioreactor substrates 
and are responsible for odor control and pollutant 
degradation [148–149]. 

 
2.6) Supply nutrient 

Nutrition is crucial for assessing the effectiveness of 
biofiltration. Pollutants provide energy to microbes by 
serving as carbon sources. The primary macronutrients 
are potassium, sulfur, nitrogen, and phosphorus, while 
metals and vitamins constitute the majority of the 
micronutrients [102]. These minerals were added to the 
medium in either the liquid or solid form. In aqueous 
solutions, most mineral compounds are dissolved and 
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used as nutrient solutions in the biofilters. FeSO4, 
CaCl2, KNO3, (NH4)2SO4, KH2PO4, MnSO4, MgSO4, 
NH4HCO3, and NH4Cl are frequently used mineral 
ions [150–151]. Numerous studies have shown that 
nutrient availability promotes microbial development 
[102, 152]. 

 
Conclusion 

Thus, bacteria play an important role in bio-
filtration. Several types of bacteria were identified in the 
biofilter reactor in both biofilm and wastewater 
samples. In this process, bacteria are mobilized into the 
media and attached to the media so that the pollutants 
that pass through the media are broken down and 
degraded by microorganisms. These microorganisms 
behave like biocatalysts and also directly develop 
biofilms where they attach so that the biofilm will be 
wider, and the more area these microorganisms can 
occupy for growth. Some factors that affect the growth 
of biofilms also have a direct effect on the attached 
bacteria, such as the symbiosis of mutualism, where one 
organism and the other will need each other. Factors 
that support the symbiosis of mutualism between 
biofilms and bacteria include the type of media (area, 
size, and surface roughness), pollutant homogeneity, and 
water retention, which help biofilms to remain alive. In 
addition to helping in the process of organic pollutant 
degradation, these bacteria are known to help degrade 
heavy metals. The following types of bacteria can help 
biodegrade organic and heavy metal pollutants such as 
Comamonadacea, which can biodegrade volatile fatty 
acids and aromatic compounds.  Proteobacteria, 
Bacteroidetes, and Actinobacteria can biodegrade 
ammonium. Burkholderiales can biodegrade ferric ions 
and hydrogen. Comamonas testosteroni is able to 
biodegrade nitrates. Pseudomonas taiwanensis, 
Acinetobacter guillouiae, and Klebsiella pneumoniae 

can reduce copper, chromium and zinc levels. Azolla 
biomass reduces strontium. Rhodospirillum sp. can 
biodegrade cadmium, mercury, lead, and nickel. 
Gallionella ferruginea and Leptothrix sp. can biodegrade 
arsenic and manganese. Gracilaria sp. can biodegrade 
aluminum, chromium, and zinc. Desulfovibrio sp. can 
biodegrade copper, zinc, nickel, iron, and arsenic. 
Thiomonas sp. can biodegrade arsenic and iron. 
Thauera selenatis can biodegrade copper, zinc, 
cadmium, nickel, lead, cobalt, chromium, and 
mercury. Thiobacillus thiooxidans can degrade both 
zinc and copper. Sargassum filipendula biodegrades 
copper and nickel. 

Meanwhile, in the findings of the factors that 
affected biofiltration, it was identified that there were 
four that played an important role such as temperature, 
dissolved oxygen, hydraulic retention time and organic 
loading rate, biological organisms, and supply nutrients. 
Temperature functions to control the performance of 
biofilms and bacteria in biofilms, where low temperatures 
will be very dangerous for the survival of bacteria that 
function to break down pollutants because it will 
reduce nutrient intake from wastewater for bacteria, so 
that they cannot develop and fall to the bottom of the 
bioreactor and are not replaced by other bacteria. Many 
bacteria that play an important role in biofilter reactors 
cannot survive at low temperatures. Retention time is 
also a key factor in biofilter performance because a 
longer contact time between bacteria and wastewater 
will further increase the number of bacteria that can 
adhere to the media, considering the roughness and 
breadth of the media. The rate of entry of the pollutant 
load is a key factor in biofilters because the rate of 
organic loading enhances the growth of existing 
bacterial biofilms. To summarize the conclusions, refer 
to the following Figure 1. 
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Figure 1 Summary conclusion. 
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