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Abstract 
This study aims to develop efficient management strategies and assess the 

spatiotemporal dynamics of land use and land cover (LULC) on surface runoff 
modeling response dynamics for the long-term sustainability of watersheds. The 
soil and water assessment tool (SWAT) model was used to evaluate the LULC 
dynamics on GRSR in the Mae Wong Watershed (MWW) of Thailand. Using 
Landsat images, three different LULC maps (2011, 2021, and 2031) were created 
using the cellular automata markov chain (CA-Markov) model, and TerrSet 2020 
geospatial monitoring and modeling software. In the overall MWW, the forestland 
has undergone deforestation and decreased by 2.10% of the total area and 2.72% 
of the total area has been transformed into agricultural lands due to human activity 
and population growth. The soil, LULC, weather, and the digital elevation model 
(DEM) were all used in the SWAT simulation procedure. To understand the 
groundwater recharge and surface runoff (GRSR) responses of each hydrologic 
response units (HRUs), the SWAT model was calibrated and verified using 
streamflow and the sequential uncertainty fitting (SUFI-2) technique from the 
SWAT calibration and uncertainty program (SWAT-CUP). The results indicate 
that there is a good agreement for both the calibration and validation phases of all 
LULC simulations. The study indicated that groundwater recharge has decreased 
over the last two decades while surface runoff has increased due to the forest area 
being converted to agricultural land. Thus, the study can support maximizing 
water management and strategies for systematically attaining sustainability. 
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Introduction 
 Uncertainties around climate change and changes in 
LULC dynamically impede land and water supplies, 
exacerbating the global water crisis. Land and water 
resources are being threatened by improper exploitation 
and inadequate management practices, which are 
transforming the natural landscapes for human use [1]. 
To effectively manage the available resources, it is 
necessary to examine the potential implications of 
LULC change on the hydrologic cycle under both 
natural and human activity [2–3]. Groundwater is the 

primary source of fresh water in several climate regions, 
and its use and management are closely tied to 
sustainable development goals [4–5]. In contrast, the 
extensive use of groundwater for home and agricultural 
reasons negatively affects groundwater recharge and 
food security in the majority of countries [1–2, 6]. The 
LULC has a considerably greater impact than climate 
change. Awareness of the abstraction possibilities of 
water management requires an understanding of the 
spatiotemporal variability of groundwater recharge and 
streamflow [7–8]. While high inter-annual rainfall changes 
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put a strain on the availability of surface water, ground-
water is a more desirable source of water than surface 
water. In developing countries, estimating GRSR is 
challenging because there aren't many sources of 
pertinent data [8]. Thailand has abundant water and 
land resources; however, these advantages have had 
little impact on the growth of the country's economy in 
regard to increased agricultural output for food security 
[1], it is being impacted by a variety of environmental 
concerns. A substantial LULC change has been docu-
mented during the previous few decades, primarily due 
to man-made and natural influences [9–11]. Water 
stress caused by anthropogenic and natural activities 
changes ecosystem biodiversity by negatively affecting 
watershed hydrology. This has a negative impact on the 
environment's fundamental elements, geomorphologic 
patterns, the fragmentation of flora and fauna habitats, 
the loss of biodiversity, and climatic changes. The most 
important thing is to minimize the effects of LULC change 
on groundwater recharge. Differences in evapotran-
spiration, surface runoff, groundwater recharge, and 
LULC change have an impact on the spatiotemporal 
scales of land surfaces [1, 12–14]. However, major water 
stress has been experienced in most developing nations, 
including Thailand, because of information gaps in the 
decision-making process. Planning and making use of 
water resources requires an under-standing of the 
hydrologic cycle in order to create an appropriate 
watershed model. In order to address a broad range of 
environmental issues, watershed models have been 
employed as a dynamic mechanism, improving the 
prediction accuracy of estimates [3, 15–16]. A powerful 
hydrologic model for estimating hydrologic fluxes in 
addressing water scarcity issues is the SWAT [17]. 
Multiple ecological processes are integrated into the 
model to assist management and decision-making 
scenarios across the globe change through time [3, 5, 
18–22]. 
 For watershed management to remain sustainable, 
using the geographical data and modeling process are 
crucial to categorize and evaluate the spatiotemporal 
changes in groundwater recharge [8, 23]. However, 
while water and food security are major concerns, basic 
knowledge of the spatiotemporal patterns of LULC 
change and its impact on GRSR in Thailand is 
infrequently recognized. Due to significant changes in 
numerous anthropogenic activities, GRSR is difficult. 
Furthermore, groundwater recharge could be negatively 
impacted by sediment deposition if surface runoff is not 
appropriately controlled because it is the energy source 

for soil erosion that leads to reservoirs [24]. Therefore, 
groundwater recharge and surface runoff modeling 
studies are essential for creating water infrastructure that 
supports sustainable watershed management techniques 
in regions with little data. For the sustainable manage-
ment of water resources, a thorough comprehension of 
the results and implications of LULC and watershed 
monitoring systems is required. The SWAT model was 
effectively used to evaluate the unique effects of LULC 
variations on GRSR in order to confirm the practicality 
of predicting streamflow. The study's goal is to 
ascertain, in situations with limited data, how changes 
in land use and land cover affect surface runoff and 
groundwater recharge. This study will help spread 
strategies for resource development and watershed 
management that are sustainable. 
 
Methodology 
1) Study area 
 The Mae Wong Watershed (MWW) area is in 
northern Thailand, between latitudes 99°06′36.05′′E and 
99°34′51.79′′E, and longitudes 16°18′29.82′′N and 
15°66′31.56′′N, covering an area of 199.96 km2, and is 
the part of the Ping Watershed (34,499 km2). It flows 
from west to east, covering the lower parts of 
Kamphaeng Phet Province (Figure 1A). The LULC of 
MWW were classified into 14 classes: cassava, corn, 
deciduous forest, evergreen forest, field crop, mixed 
forest, orchard, other, paddy field, pasture, rubber 
trees, sugarcane, urban or built-over area, and water, 
respectively (Figure 1B). The land west of the MWW 
area is predominantly evergreen forest and deciduous 
forest, of which half of the area is mostly cassava, paddy 
field, and urban or built-over area, respectively. The 
total stream flow from the upper to the outlet consists 
of forests, valleys, and agricultural lands with an urban 
or built-over area long of approximately 96.39 km. The 
percentage of the land covered by slope is 0–2 (22.41%), 
2–5 (17.10%), 5–12 (16.76%), 12–35 (21.65%), and 
22.08% for slopes above 35 percent (Figure 1C). The 
geological structures are joints in igneous rock and 
sedimentary and metamorphic rock. The area reveals 
Tertiary rocks, including Cambrian, Jurassic, Pre-
Cambrian, Qua-ternary, Silurian-Devonian, and Triassic, 
as in Figure 2A. The west MWW consists of high 
elevation surrounded by mountains with the DEM 
ranging between 73 and 1,230 mean sea-level (MSL) 
(Figure 2B), and a contour line ranging between 100 
and 1,200 MSL (Figure 2C).
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Figure 1 Location (A), LULC (B), and Slope (C) of Mae Wong Watershed. 

 

 
Figure 2 Geology (A), Digital Elevation Model (B), and Contour line (C). 

 
2) The SWAT model 
 The SWAT model can simulate water management 
environments since it is continuous, physically based, 
and The Mae Wong Watershed (MWW) of hydrological 
and meteorological processes). With easily accessible 
input data, the model is created to mimic runoff and 
nutrient losses in order to evaluate management 
techniques [25]. Typically, the SWAT has been used to 
assess the effects and implications of LULC change on 
the hydrology of watersheds [3, 11, 13, 26-27]. It 
mimics both a shallow unconfined aquifer that 
provides water to the main-stream and a deep limited 
aquifer that reaches the sub-watershed [28]. This 
improves the water balance's accuracy and gives it a 
strong physical meaning. Additionally, SWAT uses the 
water balance Equation to mimic the hydrological cycle 
[28-30], shown in Eq. 1. 
 

SWt   =   SW0 + ∑ (Rday - Qsurf - Ea - Wseep - Qgw)   (Eq. 1) 

 Eq. 1 SWt is the final soil water content (mm H2O), 
SW0 is the initial soil water content (mm H2O), t is the 
time (days), Rday is the amount of precipitation on the 
day (mm H2O), Qsurf is the amount of surface runoff 
on the day (mm H2O), Ea is the amount of 
evapotranspiration on the day (mm H2O), Wseep is the 
amount of percolation and bypass flow exiting the soil 
profile bottom on the day (mm H2O), Qgw is the amount 
of return flow on the day (mm H2O) [28]. 
 
3) Model input data preparation 
 To simulate hydrologic processes, the SWAT model 
requires topography, LULC data, soil data, and daily 
weather data. A lookup table links the input soil map, 
soil class, and SWAT model database. This study 
considered LULC changes in the context of this study, 
Google Earth Engine employed satellite data search 
images. Landsat 8 images in the year 2011, as in Figure 
3A, and 2021 as in Figure 3B, are used to the LULC 
scenario by 2031, as in Figure 3C. This study used the 
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supervised classification of the support vector machine 
(SVM) for the pre-identification of precisely targeted 
categorization after the images were transferred using 
the ENVI application and cellular automata markov 
chain (CA-Markov) model [27]. The images were 
categorized using supervised classification using 
maximum likelihood estimation, which produced a 
pixel-by-pixel land use map of the MWW. As a result, 
it is thought that the integrated cellular automata 
markov chain (CA-Markov) model is a capable 
estimator [27]. In order to predict the change of LULC 
in MWW over the next 10 years, the Markov chain 
model and the CA-Markov model [31–34] were 
combined with the processed spatial inspection and 

modeling software TerrSet 2020 [35–36]. A good agree-
ment is one with a kappa distribution rate greater than 
zero [37]. The comparison between the classification 
outcomes and values chosen at random is gauged by the 
Kappa coefficient. The categorized and ground truth 
images are identical if the kappa coefficient equals one. 
Subsequently, to boost confidence for test applications, the 
accuracy of LULC maps was examined. These codes 
allow the studied watershed's LULC to be linked to the 
SWAT land use database via the SWAT model. Finally, 
a user lookup table was prepared that identifies the 
SWAT code for each LULC category (2011, 2021, and 
2031) to simulate the SWAT model (Table 1).

 

 
Figure 3 The LULC maps of the year 2011 (A), 2021 (B), and 2031 (C). 

 
Table 1 SWAT model code of the land use and land cover of the MWW 

No. LULC classes SWAT 
code 

Year 2011 Year 2021 Year 2031 

(km2) % (km2) % (km2) % 

1 Cassava CASV 225.83 24.55 231.60 25.18 237.43 25.81 

2 Corn CORN 11.35 1.23 13.55 1.47 15.76 1.71 

3 Deciduous forest FRSD 141.53 15.38 139.65 15.18 137.69 14.97 

4 Evergreen forest FRSE 268.16 29.15 261.47 28.42 255.65 27.79 

5 Field crop FCRP 0.67 0.07 0.82 0.09 0.95 0.10 

6 Mixed forest FRST 14.85 1.61 13.05 1.42 11.89 1.29 

7 Orchard ORCD 16.69 1.81 15.26 1.66 13.84 1.50 

8 Other OTHR 47.07 5.12 44.99 4.89 42.87 4.66 

9 Paddy field PDDY 126.89 13.79 128.98 14.02 130.23 14.16 

10 Pasture PAST 1.33 0.14 1.46 0.16 1.59 0.17 

11 Rubber trees RBBR 5.92 0.64 5.41 0.59 4.96 0.54 

12 Sugarcane SUGC 14.07 1.53 17.01 1.85 19.17 2.08 

13 Urban or built-over area URBN 37.13 4.04 38.24 4.16 39.47 4.29 

14 Water WATR 8.48 0.92 8.47 0.92 8.46 0.92 

Total 919.96 100.00 919.96 100.00 919.96 100.00 
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4) Model setup and simulation 
 The structure of the model was created to replicate 
the hydrological process of the watershed and assess 
GRSR. First, the threshold necessary for the formation 
of streams was carefully chosen to establish the stream 
definition. The slope map used in this investigation was 
created using a 30-meter spatial resolution DEM from 
the Shuttle Radar Topographic Mission database. To 
generate HRUs the study established the multiple slope 
option, taking into account various slope classes. 
Following that, the LULC area was divided up into HRUs 
using unique data pertaining to various aspects of the 
LULC, management, and soil qualities. HRUs improve 
the precision of sub-watershed loading predictions. 
HRUs are defined by employing DEM, LULC, and soil 
data. Every component of the soil water balance is 
calculated using HRUs, and similar HRUs would have 
similar hydrologic characteristics [17, 25]. For the SWAT 
model simulation, specific weather data is an essential 
requirement. Meteorological stations are required by 
the SWAT model both inside and outside the watershed's 
buffer zone to record daily data on temperature (°C), 
precipitation (mm), wind speed (m s-1), relative humidity 
(percent), and solar radiation (MJ m-2). This study combines 
meteorological data from weather monitoring stations 
in Kamphaeng Phet Province to simulate the hydrology 
of the MWW. The streamflow data were collected from 
observed data during the year 2020 to 2021. After that, 
the LULC, soil, and slope layers were overlaid, watershed 
HRUs were created, meteorological data was specified, 
and the SWAT model was run for the duration of the 
simulation period. The general outline of the workflow 
structure used in this study is in Figure 4. 
 
 
 

5) Model calibration and validation 
 The tool for modeling watersheds is well-developed, 
reliable, and interdisciplinary. However, calibration and 
validation methods affect how effectively the hydrologic 
model predicts streamflow [25, 38–40]. Correct parameters 
speed up and improve model calibration, which results 
in lower prediction uncertainty [41], and describe com-
prehensive hydrological processes [42]. To quantify the 
calibration, validation, and sensitivity analysis of the SWAT 
models, the SWAT-CUP was created. The SWAT-CUP's 
capabilities include an automated method for doing 
performance analysis with greater rigor [39, 41]. The 
SWAT-CUP is an open-access application that links the 
output of the SWAT model to the SUFI-2 algorithm. 
The SUFI-2 accounts for all causes of uncertainty driving 
factors in hydrological processes [39, 43]. Sensitivity 
analysis establishes model output modifications in light 
of model modifications. This inquiry supported the 
automated SWAT-CUP and SUFI-2 analyses. To choose 
and fine-tune estimates, an auto-analysis produces 
suitable parameter estimates in accordance with previous 
data. Reflections that restrict output variations caused 
by input variability are provided by sensitivity analyses 
[39]. The p-values determine the implications while the 
t-stat evaluates the sensitivity [43]. Accordingly, a p-value 
that is close to zero is more significant while a higher t-
stat value indicates a more sensitive the parameter [39]. 
The relative error is minimized by the practically optimal 
value that falls within a certain bound. A model's ability 
to make accurate predictions without adjusting para-
meter values during calibration is known as model 
validation [44]. The observed and simulated annual 
streamflow was used to calibrate (2020), and validate 
(2021), the effects of LULC changes on GRSR. After 
calibration and validation, the modeling of LULC 
dynamics on GRSR has been analyzed.

 

 
Figure 4 The overall study approach workflow design. 
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6) The model sensitivity analysis 
 ArcGIS and the SWAT model were used for the 
simulation and modeling of the hydrologic system. The 
model was simulated after preparing all of the model's 
inputs. Then, the sensitivity analysis was performed at 
the water sampling station of the Mae Wong main-
stream. To improve the accuracy of results, the sensiti-
vity analysis finds the most sensitive hydrological 
factors that have a substantial impact on a given model 
output. The monthly streamflow data simulation was 
performed from January 2020 to December 2020. The 
SUFI-2 program t-stat and p-values were used to 
calculate the sensitivity. The relative sensitivity in these 
statistics increases as the t-stat values rise. The p-values 
were used to fix the sensitivity implication such that the 
parameters become more crucial the closer the p-values 
are to zero. The most sensitive parameters that control 
the creation of streamflow were found using many 
more parameters before calibration and validation. 
Then, based on sensitivity evaluation criteria, the 16 
most sensitive parameters were chosen to calibrate and 
validate the model's predictive abilities. In order to 
achieve the best simulation, the parameter values were 
changed one at a time while staying within reasonable 
limits [41]. The most sensitive parameters that were 
chosen and their roughly optimum values are shown 
with qualifications in Table 2. The extensions .hru, .gw, 
.mgt, .bsn, .rte, and .sol indicate the groundwater, 
basin, management, route, and soil HRUs that 
collectively make up the SWAT parameter family. 

 To assess model simulation performance in the 
watershed under changing environmental conditions 
brought on by numerous human-induced causes, the 
model was calibrated and verified. Hydrologic cycles 
are significantly impacted by LULC change uncertainty, 
which confounds the modeling results for groundwater 
recharge and surface runoff [5]. As for calibration, using 
the same parameters for calibration may not always be 
possible because they change when LULC changes. When 
LULC alterations have an impact on HRUs setups, the 
simulations change, this no longer has an impact on the 
new LULC simulation. The primary factors determining 
streamflow and other hydrologic components are HRUs 
characteristics. 
 In order to improve the values of sensitive para-
meters, simulations of each reference LULC period in 
the current study were calibrated using an auto-
calibration technique. In order to determine whether 
the previously applied parameter could accurately depict 
the hydrologic simulation process, new parameters were 
also added. Nevertheless, during the LULC simulation 
periods in 2020, optimal values and parameter sub-
stitutions were noted irrespective of the degree of 
parameter similarity. As a result, the calibration for the 
simulation of the LULC for the year 2020 shows that 
the best 16 sensitive parameters were replaced with the 
actual simulation results and multiplied. This could 
help solidify strategies for the development of land and 
water resources. 
 

 
Table 2 Optimized settings and sensitive model calibration parameters for the LULC 2020 simulation 

No. Parameter code Parameter name Input file Range Optimized value 
1 CANMX Maximum canopy storage .hru 10–100 48.651 

2 ESCO Soil evaporation compensation coefficient .hru 0–1 0.076 

3 EPCO Plant uptake compensation factor .hru, bsn 0–1 0.861 

4 SURLAG Surface runoff lag coefficient .bsn 0–24 13.854 

5 ALPHA_BF Base flow recession constant .gw 0.01–1 0.261 

6 SHALLST Initial depth of the shallow aquifer .gw 0–5000 412.852 

7 GWQMN Threshold depth of shallow water aquifer .gw 0–2 0.823 

8 GW_DELAY Delay time for aquifer recharge .gw 0–350 201.360 

9 GW_REVAP Revap coefficient .gw 0.02–0.2 0.081 

10 GW_SPYLD Specific yield of the shallow aquifer .gw 0-0.4 0.214 

11 CN2 Moisture condition II curve number .mgt −0.02–0.2 0.072 

11 CH_K2 Effective hydraulic conductivity in the main channel .rte 0.01–150 98.637 

13 CH_N(2) Manning’s “n” value for the main channel. .rte -0.01-0.3 0.117 

14 SOL_AWC Available water capacity .sol −0.5–0.5 0.378 

15 SOL_K Saturated hydraulic conductivity .sol −0.5–0.5 -0.419 

16 SOL_ZMX Maximum rooting depth in the soil .sol 0.5–1 0.788 
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7) Estimation of model predictive accuracy 
 The SWAT-CUP was used to assess statistical 
indications in order to determine the optimal parameter. 
The dependability of forecasts in comparison to 
experimental values of SWAT model performance was 
determined using the coefficient of determination (R2), 
NSE, and percent bias (PBIAS). The percentage of variance 
used by R2 shows correlations between predicted and 
actual values. R2 is a measure of how well or poorly data 
are presented, and values near 0 and 1 indicate the 
opposite. The NSE evaluates the hydro-graphs' overall 
agreement and prediction ability. The NSE should be 
close to 1 for satisfactory model performance. PBIAS 
measures the consistency between simulated and actual 
data. On the basis of a range of values for R2, NSE, and 
PBIAS, the model performance ratings were assessed. 
 
Results and discussion 
1) Evaluating the streamflow performance of hydrological 
models 
 The SWAT-CUP application with the SUFI-2 set of 
rules has been employed for calibration, validation, and 
uncertainty assessment of the SWAT output. The model 
was calibrated for this study's many independent 
calibration time steps to improve the realism of the 
simulation results. The statistically significant model 
performance over time intervals was evaluated using 
the R2, NSE, and PBIAS measures. If the statistical 
criteria R2, NSE, PBIAS, and graphic suitability are met, 
the hydrology is deemed to be accurately replicated and 
representative of the watershed. The calibration period 
of the SWAT model was in the year 2020, and its validation 
period was in the year 2021. The model's output demon-
strated that the R2, NSE, and PBIAS statistical values, 
which simulate monthly streamflow, were 0.97, 0.89, 

and 4.3%, respectively during the calibration time steps 
of the year 2020 land use simulation. The model was 
validated with observed streamflow data in the year 
2021 without further adjusting calibration parameters. 
A regular correlation between rainfall and runoff was 
observed, and the SWAT overall performance for the 
year 2021 LULC simulation during validation was 0.95, 
0.87, and -3.2% for R2, NSE, and PBIAS, respectively. 
As depicted in Figure 5, the results were in good agree-
ment with actual and simulated streamflow data, 
according to the hydrographs. The chosen statistical 
performance indicators demonstrate that the calibration 
and validation periods have a good agreement and are 
within acceptable ranges. According to the scattered 
plot of the observed and simulated streamflow, the best-
fit line’s correlation coefficient of 0.97 during calibration 
for the year 2020, in Figure 6A, and 0.95 during vali-
dation time steps is observed for the year 2021 land use 
periods, in Figure 6B, respectively. For each calibration 
and validation time step, the results of the statistical 
performance evaluation have been statistically accurate. 
According to the statistical results, objective functions 
were suitable for model evaluation and comparable to 
other worldwide studies for each calibration and 
validation time step [1, 20–22, 45–47]. Total pre-
cipitation, soil water storage, and evaporation all affect 
surface runoff. The most increased flows in September, 
August, and July were 132.45, 114.41, and 98.47 m3 s-1, 
and the lowest decreased flows in January, December, 
and February were 12.23, 23.01, and 24.36 m3 s-1, 
respectively. As a result, it was determined that the 
simulated SWAT model's applicability was reasonably 
acceptable in the MWW and agreed with regional and 
international studies.

          

                               
 

Figure 5 Hydrograph of measured and simulated flow during calibration 2020, and validation 2021. 
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Figure 6 Scatter plot of measured and simulated flow during calibration in the year 2020 (A), 
and validation in the year 2021 (B). 

 
2) Effects of LULC change  
 As improve the long-term viability of water resources 
in every basin, ongoing research and the creation of 
context-specific groundwater recharge models are vital. 
The understanding of LULC change will enable plan-
ners and policy-makers to lessen negative effects in 
watershed hydrology. In the overall watershed, the 
forest covers have undergone deforestation and decreased 
(evergreen, deciduous, and mixed forest), has been 
transformed into cassava, sugarcane, and paddy field, 
and have increased over the last two decades (2011, 
2021, and 2031). The corn, urban or built-over area, 
and field crop were augmented by 0.240%, 0.120%, and 
0.016% from the year 2011 to 2021 and 0.480%, 
0.254%, and 0.030% from the year 2011 to 2031. The 
other area, orchard, and rubber trees have proven to 
continuously decrease by 0.226%, 0.155%, and 0.055% 
from the year 2011 to 2021, 0.230%, 0.154%, and 
0.049% from the year 2021 to 2031, and 0.456%, 
0.309%, and 0.104% from the year 2011 to 2031. An 
increase in agricultural lands (sugarcane, cassava, corn, 
paddy field, field crop, and pasture), and urban or 
built-over area results in a reduction of decrease of 
most of the forested areas (Table 3). Assessment of 
LULC over a long time confirmed continuous agri-
cultural activity, numerous anthropogenic activities are 
associated with socioeconomic environments, and 
deforestation reduced forested areas. 
 The effects showed significant variations in LULC 
that occurred from the year 2011 to 2031. LULC dis-
turbs water yields by reducing infiltration and increasing 
surface runoff in the watershed. The goal of increasing 
cultivation is to produce a crop at the expense of forest 
areas. This makes the land more vulnerable to erosion 
and the sedimentation of waterways and reservoirs. 
This is due to decreasing plant-available water, loss of 
nutrients, deterioration of the soil, loss of rich topsoil, 
and fall in organic matter, which all result in lower 
agricultural yields. 

 The need for more agricultural lands grows along 
with population growth, which is why farming products 
are grown. Human activities have significantly changed 
the LULC changes in the MWW. Due to agriculture's 
impact on water bodies in the ecosystem and land 
surfaces, there is a change in vegetation and forest areas. 
The agricultural land use practice encourages more 
surface runoff than infiltration. Therefore, LULC change 
has a significant impact on spatiotemporal evaluation 
for socio-economic and environmental development. 
The findings are in agreement with studies conducted 
by [3, 9, 26, 48-51]. 
 
3)  Effects of the LULC change on surface runoff 
 In watershed hydrology, LULC modification typically 
causes large changes in flood peak and infiltration 
characteristics, affecting the watershed's total hydro-
logical condition. To estimate the water balance, it is 
crucial to evaluate the spatiotemporal variability, the 
impact, and the implications of LULC changes. With 
well-calibrated model simulation, the computational 
reliability of hydrological model simulation increases 
[1]. In the present study, the impact of LULC changes 
on GRSR, the SWAT model in the current study was 
first calibrated using the LULC map from the year 2011, 
and then updated to the year 2021 and the year 2031. 
For the first LULC in the year 2011 period, the watershed 
has a total mean annual value of actual evapotrans-
piration of 314.57 mm, surface runoff of 106.56 mm, 
groundwater of 201.63 mm, recharge of 189.31 mm, 
lateral flow of 85.78 mm, and water yield of 394.65 mm. 
The simulated annual water balances indicated that 
actual evapotranspiration loses 24.86% of the yearly 
precipitation and 75.41% of the rainfall in the 
watershed contributes to the streamflow during the 
simulation period. The average annual contribution of 
groundwater relative to rainfall is 35.54%. Therefore, 
39.61% of precipitation is lost as groundwater recharge. 
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Table 3 LULC change of MWW from the year 2011 to 2031 
LULC 
classes 

LULC 
2011 

LULC 
2021 

LULC change 
2011-2021 

LULC 
2031 

LULC change 
2021-2031 

LULC change 
2011-2031 

km2 % km2 % km2 % km2 % km2 % km2 % 

Cassava 225.83 24.55 231.60 25.18 5.775 0.628 237.43 25.81 5.830 0.634 11.605 1.261 

Corn 11.35 1.23 13.55 1.47 2.204 0.240 15.76 1.71 2.210 0.240 4.414 0.480 

Deciduous forest 141.53 15.38 139.65 15.18 -1.880 -0.204 137.69 14.97 -1.960 -0.213 -3.840 -0.417 

Evergreen forest 268.16 29.15 261.47 28.42 -6.689 -0.727 255.65 27.79 -5.820 -0.633 -12.509 -1.360 

Field crop 0.67 0.07 0.82 0.09 0.147 0.016 0.95 0.10 0.130 0.014 0.277 0.030 

Mixed forest 14.85 1.61 13.05 1.42 -1.798 -0.195 11.89 1.29 -1.160 -0.126 -2.958 -0.322 

Orchard 16.69 1.81 15.26 1.66 -1.425 -0.155 13.84 1.50 -1.420 -0.154 -2.845 -0.309 

Other area 47.07 5.12 44.99 4.89 -2.078 -0.226 5.00 4.66 -2.120 -0.230 -4.198 -0.456 

Paddy field 126.89 13.79 128.98 14.02 2.085 0.227 130.23 14.16 1.250 0.136 3.335 0.363 

Pasture 1.33 0.14 1.46 0.16 0.128 0.014 1.59 0.17 0.130 0.014 0.258 0.028 

Rubber trees 5.92 0.64 5.41 0.59 -0.506 -0.055 4.96 0.54 -0.450 -0.049 -0.956 -0.104 

Sugarcane 14.07 1.53 17.01 1.85 2.943 0.320 19.17 2.08 2.160 0.235 5.103 0.555 

Urban or built-over area 37.13 4.04 38.24 4.16 1.107 0.120 39.47 4.29 1.230 0.134 2.337 0.254 

Water 8.48 0.92 8.47 0.92 -0.009 -0.001 8.46 0.92 -0.010 -0.001 -0.019 -0.002 

Total 919.96 100.00 919.96 100.00 - - 919.96 100.00 - - - - 

 
 Surface runoff is the main component of streamflow 
and is crucial for determining the potential for ground-
water recharge. The LULC is an important aspect of the 
surface runoff process that influences groundwater 
flow, infiltration rate, soil water content, and water yield. 
Surface runoff is the main streamflow contributor to 
aquifers in watershed hydrology. The simulated total 
average surface runoff in the year 2011, 2021, and 2031 
was 106.65 mm, 145.66 mm, and 156.88 mm, respec-
tively. The results of the LULC transformation indicate 
that surface runoff tends to continue in-creasing. The 
excess water flows can be stored and used during low 
flow conditions. The simulated streamflow accounts 
for the LULC change scenarios classified into the wet 
period (July to October) and dry period (November to 
December, and January to March). Surface runoff as a 
result was quite high during the rainy season and 
relatively low during the dry period. This analysis 
demonstrated that the expansion of agricultural lands 
results in direct runoff during the wet period. If suitable 
control measures are not taken, the increase in runoff 
could have wide-ranging effects on rising soil erosion 
and sedimentation. Additionally, it degrades low-lying 
plains, natural riverbanks, and agricultural lands by 
removing the top layer of useful soil. These crop yields 
are decreased, which causes food insecurity and 
sediment to enter downstream, shortening the lifespan 
of service downstream systems. According to the surface 
runoff chart, sub-watersheds with heavy rainfall have 
an excessive runoff. The surface runoff map suggests 
that sub-watersheds with high rainfall correspond to 
extreme runoff, as in Figures 7A, 7B, and 7C, respectively. 
The sub-watershed numbers 5 in the year 2011, sub-

watershed numbers 4 and 5 in the year 2021, and sub-
watershed numbers 4, 5, and 7 in the year 2031, were 
highly attributed to the surface runoff of 107.07 mm to 
135.86 mm annually. The lowland elevation areas see 
high yearly surface runoff because water cannot 
penetrate the soil surface and most of the area is used 
for agriculture. In flat-sloping regions of lowlands, surface 
runoff is also higher on forestland, resulting in human 
activities in the watershed and significant driving 
factors for LULC change. These findings agree with 
other similar efforts [2, 7, 10, 13–14, 46]. 
 
4) Effects of land use and land cover (LULC) change on 
groundwater recharge 
 An essential hydrologic cycle for maintaining aquifers 
refilled by precipitation is groundwater recharge. 
Therefore, by boosting recharge and reducing surface 
runoff, the optimal management options could help 
preserve stream biotas within the ecosystems. The best 
management strategies decrease surface runoff and 
increase groundwater recharge, which lowers erosion as 
in-stream sediment loads decline. For example, surface 
runoff was reduced when agricultural land was returned 
to its natural state. Additionally, it lowered in-stream 
sediment loads as a result of less erosion. Furthermore, 
the LULC change had an impact on surface runoff, 
which increased as interception fell, and the amount of 
forest cover decreased. Poor land-use practices change 
the structure and porosity of the soil, lower the rate of 
infiltration, and increase surface runoff. Intensive 
agricultural methods, however, that exposed dense soils 
to erosion by eliminating plant covers, reduced ground-
water recharge in the aquifer.
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Figure 7 Spatiotemporal patterns of surface runoff during 2011 (A), 2021 (B), 

and 2031 LULC simulation periods (C). 
 

 
Figure 8 Spatiotemporal pattern of groundwater recharge in the year 2011 (A), 2021 (B), 

and 2031 reference LULC periods (C). 
 

 The LULC has a significant impact on groundwater 
recharge, and it is crucial to comprehend how it interacts 
with rising levels of natural and human activity. 
According to the calibrated SWAT model for the LULC 
reference periods in the year 2011, 2021, and 2031, the 
average simulated rainfall is expected to be 189.31 mm, 
167.35 mm, and 156.88 mm, respectively. At the sub-
watershed scale, groundwater recharge varies from 0 to 
119.20, 0 to 109.55, and 0 to 98.20 mm for the year 
2011, 2021, and 2031, respectively. The sub-watershed 
numbers 1 and 9 in the year 2011, sub-watershed 
numbers, 1 and 9 in the year 2021, and sub-watershed 
numbers 1 in the year 2031, were attributed to high 
groundwater recharge. The sub-surface infiltration of 
alluvial deposits is possible in rangeland and sandy, 
loamy soil. The spatial pattern of GRSR showed the 
direct effects of surface runoff reducing the ground-
water recharge rate in 2011, as in Figures 8A, 8B, and 

8C, respectively. The agricultural sub-watersheds show 
the lowest recharge levels. The decrease in streamflow 
is linked to less infiltration, recharge conditions, and 
lower surface runoff as a result of more forestland, 
which raises the soil is water-holding capacity of the 
soil. High evapotranspiration may also contribute to 
the reduction in groundwater recharge. 
 The temporal variation of groundwater recharge 
showed that the highest value occurred during the wet 
period (July to October). The LULC simulation scenarios 
dry period has indicated lowering responses of ground-
water recharge during the dry periods (November to 
December, and January to March). The main reason for 
reducing the average annual groundwater recharge is 
the long dry period. The findings revealed increasing 
wet periods, and lower dry periods due to the alteration 
of vegetation cover in agricultural lands over study 
periods, including the reduction of forest area, which 
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has been converted to agricultural land, it has resulted 
in a decrease in the rate of water infiltration through 
surface water into groundwater. Similar efforts in many 
reported that field crop, orchard, and urban develop-
ment increased runoff and decreased recharge when 
agricultural expansion reduced forest cover. As a result, 
flooding during the wet season and a reduction in low 
flow during the dry season [3, 7, 13, 52–53]. Therefore, 
a possible recurring hydrological drought was shown 
by the lower recharge caused by the LULC shift. 
Knowing the flow regimes of the wet and dry periods in 
the watershed requires an understanding of how it 
affects GRSR. Hence, efforts should be made to 
improve watershed management techniques in order to 
make the best use of available resources for the socio-
economic growth of the country. In order to preserve 
the ecological and riverine ecosystems, sustainable land 
and water management is crucial. 
 
Conclusion 
 In this study, three reference scenarios in the MWW 
of Thailand were used to assess the spatiotemporal 
effects and implications of LULC variations on GRSR. 
The LULC changes derived from satellite images showed 
an increase in agricultural lands was 2.72% (cassava, 
corn, field crop, paddy field, pasture, and sugarcane), 
and a decline in forestland was 2.10% (deciduous 
forest, evergreen forest, and mixed forest) from the year 
2011 to 2031 due to human activity and population 
growth. The findings indicate that the vast agricultural 
operations in the watershed have changed, resulting in 
a reduction of forestland via deforestation of the 
forests. The findings imply that the watershed GRSR is 
significantly impacted by LULC changes. The 
calibrated model confirmed that variations in LULC 
resulted in an increase in runoff and a decrease in 
replenishment. The study carefully examined how 
LULC changes, which are mostly brought about by the 
spread of intensive agriculture and the removal of 
forestlands, affected GRSR. Therefore, developing 
scenarios for watershed management is crucial to 
reducing the adverse effects of LULC changes on GRSR. 
Planners and decision-makers of water resource 
projects must give serious consideration to the LULC 
response. It was discovered as a result that offering 
insights into calibrated out-comes aids in the 
development of a detailed plan for upcoming 
management strategies on watershed hydrology. As 
groundwater is the primary source of available 
freshwater, sustainable development goals are directly 
tied to how it is used, managed, and sustained. Future 
studies should investigate the impact of LULC change 
on rock layers, infiltration and percolation rate, and 

ground water level, which will ultimately help to 
develop a plan for sustainable use of the watershed 
management. 
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