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Abstract
This study aims to develop efficient management strategies and assess the
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spatiotemporal dynamics of land use and land cover (LULC) on surface runoff
modeling response dynamics for the long-term sustainability of watersheds. The
soil and water assessment tool (SWAT) model was used to evaluate the LULC
dynamics on GRSR in the Mae Wong Watershed (MWW) of Thailand. Using
Landsat images, three different LULC maps (2011, 2021, and 2031) were created
using the cellular automata markov chain (CA-Markov) model, and TerrSet 2020
geospatial monitoring and modeling software. In the overall MWW, the forestland
has undergone deforestation and decreased by 2.10% of the total area and 2.72%
of the total area has been transformed into agricultural lands due to human activity
and population growth. The soil, LULC, weather, and the digital elevation model
(DEM) were all used in the SWAT simulation procedure. To understand the
groundwater recharge and surface runoff (GRSR) responses of each hydrologic
response units (HRUs), the SWAT model was calibrated and verified using
streamflow and the sequential uncertainty fitting (SUFI-2) technique from the
SWAT calibration and uncertainty program (SWAT-CUP). The results indicate
that there is a good agreement for both the calibration and validation phases of all
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LULC simulations. The study indicated that groundwater recharge has decreased
over the last two decades while surface runoff has increased due to the forest area
being converted to agricultural land. Thus, the study can support maximizing
water management and strategies for systematically attaining sustainability.

Introduction

Uncertainties around climate change and changes in
LULC dynamically impede land and water supplies,
exacerbating the global water crisis. Land and water
resources are being threatened by improper exploitation
and inadequate management practices, which are
transforming the natural landscapes for human use [1].
To effectively manage the available resources, it is
necessary to examine the potential implications of
LULC change on the hydrologic cycle under both
natural and human activity [2-3]. Groundwater is the

primary source of fresh water in several climate regions,
and its use and management are closely tied to
sustainable development goals [4-5]. In contrast, the
extensive use of groundwater for home and agricultural
reasons negatively affects groundwater recharge and
food security in the majority of countries [1-2, 6]. The
LULC has a considerably greater impact than climate
change. Awareness of the abstraction possibilities of
water management requires an understanding of the
spatiotemporal variability of groundwater recharge and
streamflow [7-8]. While high inter-annual rainfall changes
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put a strain on the availability of surface water, ground-
water is a more desirable source of water than surface
water. In developing countries, estimating GRSR is
challenging because there aren't many sources of
pertinent data [8]. Thailand has abundant water and
land resources; however, these advantages have had
little impact on the growth of the country's economy in
regard to increased agricultural output for food security
[1], it is being impacted by a variety of environmental
concerns. A substantial LULC change has been docu-
mented during the previous few decades, primarily due
to man-made and natural influences [9-11]. Water
stress caused by anthropogenic and natural activities
changes ecosystem biodiversity by negatively affecting
watershed hydrology. This has a negative impact on the
environment's fundamental elements, geomorphologic
patterns, the fragmentation of flora and fauna habitats,
the loss of biodiversity, and climatic changes. The most
important thing is to minimize the effects of LULC change
on groundwater recharge. Differences in evapotran-
spiration, surface runoff, groundwater recharge, and
LULC change have an impact on the spatiotemporal
scales of land surfaces [1, 12-14]. However, major water
stress has been experienced in most developing nations,
including Thailand, because of information gaps in the
decision-making process. Planning and making use of
water resources requires an under-standing of the
hydrologic cycle in order to create an appropriate
watershed model. In order to address a broad range of
environmental issues, watershed models have been
employed as a dynamic mechanism, improving the
prediction accuracy of estimates [3, 15-16]. A powerful
hydrologic model for estimating hydrologic fluxes in
addressing water scarcity issues is the SWAT [17].
Multiple ecological processes are integrated into the
model to assist management and decision-making
scenarios across the globe change through time [3, 5,
18-22].

For watershed management to remain sustainable,
using the geographical data and modeling process are
crucial to categorize and evaluate the spatiotemporal
changes in groundwater recharge [8, 23]. However,
while water and food security are major concerns, basic
knowledge of the spatiotemporal patterns of LULC
change and its impact on GRSR in Thailand is
infrequently recognized. Due to significant changes in
numerous anthropogenic activities, GRSR is difficult.
Furthermore, groundwater recharge could be negatively
impacted by sediment deposition if surface runoff is not
appropriately controlled because it is the energy source

for soil erosion that leads to reservoirs [24]. Therefore,
groundwater recharge and surface runoff modeling
studies are essential for creating water infrastructure that
supports sustainable watershed management techniques
in regions with little data. For the sustainable manage-
ment of water resources, a thorough comprehension of
the results and implications of LULC and watershed
monitoring systems is required. The SWAT model was
effectively used to evaluate the unique effects of LULC
variations on GRSR in order to confirm the practicality
of predicting streamflow. The study's goal is to
ascertain, in situations with limited data, how changes
in land use and land cover affect surface runoff and
groundwater recharge. This study will help spread
strategies for resource development and watershed
management that are sustainable.

Methodology
1) Study area

The Mae Wong Watershed (MWW) area is in
northern Thailand, between latitudes 99°06'36.05"E and
99°34'51.79"E, and longitudes 16°1829.82"N and
15°66'31.56"N, covering an area of 199.96 km?, and is
the part of the Ping Watershed (34,499 km?). It flows
from west to east, covering the lower parts of
Kamphaeng Phet Province (Figure 1A). The LULC of
MWW were classified into 14 classes: cassava, corn,
deciduous forest, evergreen forest, field crop, mixed
forest, orchard, other, paddy field, pasture, rubber
trees, sugarcane, urban or built-over area, and water,
respectively (Figure 1B). The land west of the MWW
area is predominantly evergreen forest and deciduous
forest, of which half of the area is mostly cassava, paddy
field, and urban or built-over area, respectively. The
total stream flow from the upper to the outlet consists
of forests, valleys, and agricultural lands with an urban
or built-over area long of approximately 96.39 km. The
percentage of the land covered by slope is 0-2 (22.41%),
2-5 (17.10%), 5-12 (16.76%), 12-35 (21.65%), and
22.08% for slopes above 35 percent (Figure 1C). The
geological structures are joints in igneous rock and
sedimentary and metamorphic rock. The area reveals
Tertiary rocks, including Cambrian, Jurassic, Pre-
Cambrian, Qua-ternary, Silurian-Devonian, and Triassic,
as in Figure 2A. The west MWW consists of high
elevation surrounded by mountains with the DEM
ranging between 73 and 1,230 mean sea-level (MSL)
(Figure 2B), and a contour line ranging between 100
and 1,200 MSL (Figure 2C).
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Figure 2 Geology (A), Digital Elevation Model (B), and Contour line (C).

2) The SWAT model

The SWAT model can simulate water management
environments since it is continuous, physically based,
and The Mae Wong Watershed (MWW) of hydrological
and meteorological processes). With easily accessible
input data, the model is created to mimic runoff and
nutrient losses in order to evaluate management
techniques [25]. Typically, the SWAT has been used to
assess the effects and implications of LULC change on
the hydrology of watersheds [3, 11, 13, 26-27]. It
mimics both a shallow unconfined aquifer that
provides water to the main-stream and a deep limited
aquifer that reaches the sub-watershed [28]. This
improves the water balance's accuracy and gives it a
strong physical meaning. Additionally, SWAT uses the
water balance Equation to mimic the hydrological cycle
[28-30], shown in Eq. 1.

St = SWo+ Z (Rday- Qsurf- Ea - Weep - ng) (Eq. 1)

Eq. 1 Swris the final soil water content (mm H20),
SWhois the initial soil water content (mm H20), t is the
time (days), Rday is the amount of precipitation on the
day (mm H20), Qsurf is the amount of surface runoff
on the day (mm H20), E; is the amount of
evapotranspiration on the day (mm H20), Wieep is the
amount of percolation and bypass flow exiting the soil
profile bottom on the day (mm H20), Qgwis the amount
of return flow on the day (mm H20) [28].

3) Model input data preparation

To simulate hydrologic processes, the SWAT model
requires topography, LULC data, soil data, and daily
weather data. A lookup table links the input soil map,
soil class, and SWAT model database. This study
considered LULC changes in the context of this study,
Google Earth Engine employed satellite data search
images. Landsat 8 images in the year 2011, as in Figure
3A, and 2021 as in Figure 3B, are used to the LULC
scenario by 2031, as in Figure 3C. This study used the
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supervised classification of the support vector machine
(SVM) for the pre-identification of precisely targeted
categorization after the images were transferred using
the ENVI application and cellular automata markov
chain (CA-Markov) model [27]. The images were
categorized using supervised classification using
maximum likelihood estimation, which produced a
pixel-by-pixel land use map of the MWW. As a result,
it is thought that the integrated cellular automata
markov chain (CA-Markov) model is a capable
estimator [27]. In order to predict the change of LULC
in MWW over the next 10 years, the Markov chain
model and the CA-Markov model [31-34] were
combined with the processed spatial inspection and

modeling software TerrSet 2020 [35-36]. A good agree-
ment is one with a kappa distribution rate greater than
zero [37]. The comparison between the classification
outcomes and values chosen at random is gauged by the
Kappa coefficient. The categorized and ground truth
images are identical if the kappa coefficient equals one.
Subsequently, to boost confidence for test applications, the
accuracy of LULC maps was examined. These codes
allow the studied watershed's LULC to be linked to the
SWAT land use database via the SWAT model. Finally,
a user lookup table was prepared that identifies the
SWAT code for each LULC category (2011, 2021, and
2031) to simulate the SWAT model (Table 1).
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Figure 3 The LULC maps of the year 2011 (A), 2021 (B), and 2031 (C).

Table 1 SWAT model code of the land use and land cover of the MWW

No. LULC classes SWAT Year 2011 Year 2021 Year 2031
code (km?2) % (km?2) % (km?2) %
1 Cassava CASV 225.83 24.55 231.60 25.18 237.43 25.81
2 Corn CORN 11.35 1.23 13.55 1.47 15.76 1.71
3 Deciduous forest FRSD 141.53 15.38 139.65 15.18 137.69 14.97
4 Evergreen forest FRSE 268.16 29.15 261.47 28.42 255.65 27.79
5 Field crop FCRP 0.67 0.07 0.82 0.09 0.95 0.10
6 Mixed forest FRST 14.85 1.61 13.05 1.42 11.89 1.29
7 Orchard ORCD 16.69 1.81 15.26 1.66 13.84 1.50
8 Other OTHR 47.07 5.12 44.99 4.89 42.87 4.66
9 Paddy field PDDY 126.89 13.79 128.98 14.02 130.23 14.16
10 Pasture PAST 1.33 0.14 1.46 0.16 1.59 0.17
11 Rubber trees RBBR 5.92 0.64 5.41 0.59 4.96 0.54
12 Sugarcane SUGC 14.07 1.53 17.01 1.85 19.17 2.08
13 Urban or built-over area URBN 37.13 4.04 38.24 4.16 39.47 4.29
14 Water WATR 8.48 0.92 8.47 0.92 8.46 0.92
Total 919.96 100.00 919.96 100.00 919.96 100.00
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4) Model setup and simulation

The structure of the model was created to replicate
the hydrological process of the watershed and assess
GRSR. First, the threshold necessary for the formation
of streams was carefully chosen to establish the stream
definition. The slope map used in this investigation was
created using a 30-meter spatial resolution DEM from
the Shuttle Radar Topographic Mission database. To
generate HRUs the study established the multiple slope
option, taking into account various slope classes.
Following that, the LULC area was divided up into HRUs
using unique data pertaining to various aspects of the
LULC, management, and soil qualities. HRUs improve
the precision of sub-watershed loading predictions.
HRUs are defined by employing DEM, LULC, and soil
data. Every component of the soil water balance is
calculated using HRUs, and similar HRUs would have
similar hydrologic characteristics [17, 25]. For the SWAT
model simulation, specific weather data is an essential
requirement. Meteorological stations are required by
the SWAT model both inside and outside the watershed's
buffer zone to record daily data on temperature (°C),
precipitation (mm), wind speed (m s1), relative humidity
(percent), and solar radiation (MJ m2). This study combines
meteorological data from weather monitoring stations
in Kamphaeng Phet Province to simulate the hydrology
of the MWW. The streamflow data were collected from
observed data during the year 2020 to 2021. After that,
the LULG, soil, and slope layers were overlaid, watershed
HRUs were created, meteorological data was specified,
and the SWAT model was run for the duration of the
simulation period. The general outline of the workflow
structure used in this study is in Figure 4.

‘ DEM, Soil data, Weather data

5) Model calibration and validation

The tool for modeling watersheds is well-developed,
reliable, and interdisciplinary. However, calibration and
validation methods affect how effectively the hydrologic
model predicts streamflow [25, 38—40]. Correct parameters
speed up and improve model calibration, which results
in lower prediction uncertainty [41], and describe com-
prehensive hydrological processes [42]. To quantify the
calibration, validation, and sensitivity analysis of the SWAT
models, the SWAT-CUP was created. The SWAT-CUP's
capabilities include an automated method for doing
performance analysis with greater rigor [39, 41]. The
SWAT-CUP is an open-access application that links the
output of the SWAT model to the SUFI-2 algorithm.
The SUFI-2 accounts for all causes of uncertainty driving
factors in hydrological processes [39, 43]. Sensitivity
analysis establishes model output modifications in light
of model modifications. This inquiry supported the
automated SWAT-CUP and SUFI-2 analyses. To choose
and fine-tune estimates, an auto-analysis produces
suitable parameter estimates in accordance with previous
data. Reflections that restrict output variations caused
by input variability are provided by sensitivity analyses
[39]. The p-values determine the implications while the
t-stat evaluates the sensitivity [43]. Accordingly, a p-value
that is close to zero is more significant while a higher t-
stat value indicates a more sensitive the parameter [39].
The relative error is minimized by the practically optimal
value that falls within a certain bound. A model's ability
to make accurate predictions without adjusting para-
meter values during calibration is known as model
validation [44]. The observed and simulated annual
streamflow was used to calibrate (2020), and validate
(2021), the effects of LULC changes on GRSR. After
calibration and validation, the modeling of LULC
dynamics on GRSR has been analyzed.
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6) The model sensitivity analysis

ArcGIS and the SWAT model were used for the
simulation and modeling of the hydrologic system. The
model was simulated after preparing all of the model's
inputs. Then, the sensitivity analysis was performed at
the water sampling station of the Mae Wong main-
stream. To improve the accuracy of results, the sensiti-
vity analysis finds the most sensitive hydrological
factors that have a substantial impact on a given model
output. The monthly streamflow data simulation was
performed from January 2020 to December 2020. The
SUFI-2 program t-stat and p-values were used to
calculate the sensitivity. The relative sensitivity in these
statistics increases as the t-stat values rise. The p-values
were used to fix the sensitivity implication such that the
parameters become more crucial the closer the p-values
are to zero. The most sensitive parameters that control
the creation of streamflow were found using many
more parameters before calibration and validation.
Then, based on sensitivity evaluation criteria, the 16
most sensitive parameters were chosen to calibrate and
validate the model's predictive abilities. In order to
achieve the best simulation, the parameter values were
changed one at a time while staying within reasonable
limits [41]. The most sensitive parameters that were
chosen and their roughly optimum values are shown
with qualifications in Table 2. The extensions .hru, .gw,
.mgt, .bsn, .rte, and .sol indicate the groundwater,
basin, management, route, and soil HRUs that
collectively make up the SWAT parameter family.

To assess model simulation performance in the
watershed under changing environmental conditions
brought on by numerous human-induced causes, the
model was calibrated and verified. Hydrologic cycles
are significantly impacted by LULC change uncertainty,
which confounds the modeling results for groundwater
recharge and surface runoff [5]. As for calibration, using
the same parameters for calibration may not always be
possible because they change when LULC changes. When
LULC alterations have an impact on HRUs setups, the
simulations change, this no longer has an impact on the
new LULC simulation. The primary factors determining
streamflow and other hydrologic components are HRUs
characteristics.

In order to improve the values of sensitive para-
meters, simulations of each reference LULC period in
the current study were calibrated using an auto-
calibration technique. In order to determine whether
the previously applied parameter could accurately depict
the hydrologic simulation process, new parameters were
also added. Nevertheless, during the LULC simulation
periods in 2020, optimal values and parameter sub-
stitutions were noted irrespective of the degree of
parameter similarity. As a result, the calibration for the
simulation of the LULC for the year 2020 shows that
the best 16 sensitive parameters were replaced with the
actual simulation results and multiplied. This could
help solidify strategies for the development of land and
water resources.

Table 2 Optimized settings and sensitive model calibration parameters for the LULC 2020 simulation

No. Parameter code Parameter name Input file Range Optimized value
1 CANMX Maximum canopy storage .hru 10-100 48.651
2 ESCO Soil evaporation compensation coefficient hru 0-1 0.076
3 EPCO Plant uptake compensation factor .hru, bsn 0-1 0.861
4 SURLAG Surface runoff lag coefficient .bsn 0-24 13.854
5 ALPHA_BF Base flow recession constant .gW 0.01-1 0.261
6 SHALLST Initial depth of the shallow aquifer .gw 0-5000 412.852
7 GWQMN Threshold depth of shallow water aquifer W 0-2 0.823
8 GW_DELAY Delay time for aquifer recharge W 0-350 201.360
9 GW_REVAP Revap coefficient W 0.02-0.2 0.081
10 GW_SPYLD Specific yield of the shallow aquifer W 0-0.4 0.214
11 CN2 Moisture condition II curve number mgt 0.02-0.2 0.072
11 CH_K2 Effective hydraulic conductivity in the main channel .rte 0.01-150 98.637
13 CH_N(2) Manning’s “n” value for the main channel. .rte -0.01-0.3 0.117
14 SOL_AWC Available water capacity .sol 0.5-0.5 0.378
15 SOL_K Saturated hydraulic conductivity .sol 0.5-0.5 -0.419
16 SOL_ZMX Maximum rooting depth in the soil .sol 0.5-1 0.788
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7) Estimation of model predictive accuracy

The SWAT-CUP was used to assess statistical
indications in order to determine the optimal parameter.
The dependability of forecasts in comparison to
experimental values of SWAT model performance was
determined using the coefficient of determination (R?),
NSE, and percent bias (PBIAS). The percentage of variance
used by R? shows correlations between predicted and
actual values. R? is a measure of how well or poorly data
are presented, and values near 0 and 1 indicate the
opposite. The NSE evaluates the hydro-graphs' overall
agreement and prediction ability. The NSE should be
close to 1 for satisfactory model performance. PBIAS
measures the consistency between simulated and actual
data. On the basis of a range of values for R%, NSE, and
PBIAS, the model performance ratings were assessed.

Results and discussion
1) Evaluating the streamflow performance of hydrological
models

The SWAT-CUP application with the SUFI-2 set of
rules has been employed for calibration, validation, and
uncertainty assessment of the SWAT output. The model
was calibrated for this study's many independent
calibration time steps to improve the realism of the
simulation results. The statistically significant model
performance over time intervals was evaluated using
the R2, NSE, and PBIAS measures. If the statistical
criteria R2, NSE, PBIAS, and graphic suitability are met,
the hydrology is deemed to be accurately replicated and
representative of the watershed. The calibration period
of the SWAT model was in the year 2020, and its validation
period was in the year 2021. The model's output demon-
strated that the R2, NSE, and PBIAS statistical values,
which simulate monthly streamflow, were 0.97, 0.89,

and 4.3%, respectively during the calibration time steps
of the year 2020 land use simulation. The model was
validated with observed streamflow data in the year
2021 without further adjusting calibration parameters.
A regular correlation between rainfall and runoff was
observed, and the SWAT overall performance for the
year 2021 LULC simulation during validation was 0.95,
0.87, and -3.2% for R%, NSE, and PBIAS, respectively.
As depicted in Figure 5, the results were in good agree-
ment with actual and simulated streamflow data,
according to the hydrographs. The chosen statistical
performance indicators demonstrate that the calibration
and validation periods have a good agreement and are
within acceptable ranges. According to the scattered
plot of the observed and simulated streamflow, the best-
fit line’s correlation coefficient of 0.97 during calibration
for the year 2020, in Figure 6A, and 0.95 during vali-
dation time steps is observed for the year 2021 land use
periods, in Figure 6B, respectively. For each calibration
and validation time step, the results of the statistical
performance evaluation have been statistically accurate.
According to the statistical results, objective functions
were suitable for model evaluation and comparable to
other worldwide studies for each calibration and
validation time step [1, 20-22, 45-47]. Total pre-
cipitation, soil water storage, and evaporation all affect
surface runoff. The most increased flows in September,
August, and July were 132.45, 114.41, and 98.47 m3 s°1,
and the lowest decreased flows in January, December,
and February were 12.23, 23.01, and 24.36 m3 s,
respectively. As a result, it was determined that the
simulated SWAT model's applicability was reasonably
acceptable in the MWW and agreed with regional and
international studies.
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Figure 5 Hydrograph of measured and simulated flow during calibration 2020, and validation 2021.
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2) Effects of LULC change

As improve the long-term viability of water resources
in every basin, ongoing research and the creation of
context-specific groundwater recharge models are vital.
The understanding of LULC change will enable plan-
ners and policy-makers to lessen negative effects in
watershed hydrology. In the overall watershed, the
forest covers have undergone deforestation and decreased
(evergreen, deciduous, and mixed forest), has been
transformed into cassava, sugarcane, and paddy field,
and have increased over the last two decades (2011,
2021, and 2031). The corn, urban or built-over area,
and field crop were augmented by 0.240%, 0.120%, and
0.016% from the year 2011 to 2021 and 0.480%,
0.254%, and 0.030% from the year 2011 to 2031. The
other area, orchard, and rubber trees have proven to
continuously decrease by 0.226%, 0.155%, and 0.055%
from the year 2011 to 2021, 0.230%, 0.154%, and
0.049% from the year 2021 to 2031, and 0.456%,
0.309%, and 0.104% from the year 2011 to 2031. An
increase in agricultural lands (sugarcane, cassava, corn,
paddy field, field crop, and pasture), and urban or
built-over area results in a reduction of decrease of
most of the forested areas (Table 3). Assessment of
LULC over a long time confirmed continuous agri-
cultural activity, numerous anthropogenic activities are
associated with socioeconomic environments, and
deforestation reduced forested areas.

The effects showed significant variations in LULC
that occurred from the year 2011 to 2031. LULC dis-
turbs water yields by reducing infiltration and increasing
surface runoff in the watershed. The goal of increasing
cultivation is to produce a crop at the expense of forest
areas. This makes the land more vulnerable to erosion
and the sedimentation of waterways and reservoirs.
This is due to decreasing plant-available water, loss of
nutrients, deterioration of the soil, loss of rich topsoil,
and fall in organic matter, which all result in lower
agricultural yields.

The need for more agricultural lands grows along
with population growth, which is why farming products
are grown. Human activities have significantly changed
the LULC changes in the MWW. Due to agriculture's
impact on water bodies in the ecosystem and land
surfaces, there is a change in vegetation and forest areas.
The agricultural land use practice encourages more
surface runoff than infiltration. Therefore, LULC change
has a significant impact on spatiotemporal evaluation
for socio-economic and environmental development.
The findings are in agreement with studies conducted
by (3,9, 26, 48-51].

3) Effects of the LULC change on surface runoff

In watershed hydrology, LULC modification typically
causes large changes in flood peak and infiltration
characteristics, affecting the watershed's total hydro-
logical condition. To estimate the water balance, it is
crucial to evaluate the spatiotemporal variability, the
impact, and the implications of LULC changes. With
well-calibrated model simulation, the computational
reliability of hydrological model simulation increases
[1]. In the present study, the impact of LULC changes
on GRSR, the SWAT model in the current study was
first calibrated using the LULC map from the year 2011,
and then updated to the year 2021 and the year 2031.
For the first LULC in the year 2011 period, the watershed
has a total mean annual value of actual evapotrans-
piration of 314.57 mm, surface runoff of 106.56 mm,
groundwater of 201.63 mm, recharge of 189.31 mm,
lateral flow of 85.78 mm, and water yield of 394.65 mm.
The simulated annual water balances indicated that
actual evapotranspiration loses 24.86% of the yearly
precipitation and 75.41% of the rainfall in the
watershed contributes to the streamflow during the
simulation period. The average annual contribution of
groundwater relative to rainfall is 35.54%. Therefore,
39.61% of precipitation is lost as groundwater recharge.
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Table 3 LULC change of MWW from the year 2011 to 2031

LULC LULC LULC LULC change LULC LULC change = LULC change
classes 2011 2021 2011-2021 2031 2021-2031 2011-2031
km? % km? % km? % km? % km? % km? %
Cassava 225.83 24.55 231.60 25.18 5.775 0.628 237.43 25.81 5.830 0.634 11.605 1.261
Corn 11.35 1.23 13.55 1.47 2.204 0.240 15.76 1.71 2.210 0.240 4.414 0.480
Deciduous forest 141.53 15.38 139.65 15.18 -1.880 -0.204 137.69 14.97 -1.960 -0.213 -3.840 -0.417
Evergreen forest 268.16 29.15 261.47 28.42 -6.689 -0.727 255.65 27.79 -5.820 -0.633 -12.509 -1.360
Field crop 0.67 0.07 0.82 0.09 0.147 0.016 0.95 0.10 0.130 0.014 0.277 0.030
Mixed forest 14.85 1.61 13.05 1.42 -1.798 -0.195 11.89 1.29 -1.160 -0.126 -2.958 -0.322
Orchard 16.69 1.81 15.26 1.66 -1.425 -0.155 13.84 1.50 -1.420 -0.154 -2.845 -0.309
Other area 47.07 5.12 44.99 4.89 -2.078 -0.226 5.00 4.66 -2.120 -0.230 -4.198 -0.456
Paddy field 126.89 13.79 128.98 14.02 2.085 0.227 130.23 14.16 1.250 0.136 3.335 0.363
Pasture 1.33 0.14 1.46 0.16 0.128 0.014 1.59 0.17 0.130 0.014 0.258 0.028
Rubber trees 5.92 0.64 5.41 0.59 -0.506 -0.055 4.96 0.54 -0.450 -0.049 -0.956 -0.104
Sugarcane 14.07 1.53 17.01 1.85 2.943 0.320 19.17 2.08 2.160 0.235 5.103 0.555
Urban or built-over area  37.13 4.04 38.24 4.16 1.107 0.120 39.47 4.29 1.230 0.134 2.337 0.254
Water 8.48 0.92 8.47 0.92 -0.009 -0.001 8.46 0.92 -0.010 -0.001 -0.019 -0.002
Total 919.96  100.00 919.96  100.00 - - 919.96  100.00 - - - -

Surface runoffis the main component of streamflow
and is crucial for determining the potential for ground-
water recharge. The LULC is an important aspect of the
surface runoff process that influences groundwater
flow, infiltration rate, soil water content, and water yield.
Surface runoff is the main streamflow contributor to
aquifers in watershed hydrology. The simulated total
average surface runoff in the year 2011, 2021, and 2031
was 106.65 mm, 145.66 mm, and 156.88 mm, respec-
tively. The results of the LULC transformation indicate
that surface runoff tends to continue in-creasing. The
excess water flows can be stored and used during low
flow conditions. The simulated streamflow accounts
for the LULC change scenarios classified into the wet
period (July to October) and dry period (November to
December, and January to March). Surface runoff as a
result was quite high during the rainy season and
relatively low during the dry period. This analysis
demonstrated that the expansion of agricultural lands
results in direct runoff during the wet period. If suitable
control measures are not taken, the increase in runoff
could have wide-ranging effects on rising soil erosion
and sedimentation. Additionally, it degrades low-lying
plains, natural riverbanks, and agricultural lands by
removing the top layer of useful soil. These crop yields
are decreased, which causes food insecurity and
sediment to enter downstream, shortening the lifespan
of service downstream systems. According to the surface
runoff chart, sub-watersheds with heavy rainfall have
an excessive runoff. The surface runoff map suggests
that sub-watersheds with high rainfall correspond to
extreme runoff, as in Figures 7A, 7B, and 7C, respectively.
The sub-watershed numbers 5 in the year 2011, sub-

watershed numbers 4 and 5 in the year 2021, and sub-
watershed numbers 4, 5, and 7 in the year 2031, were
highly attributed to the surface runoff of 107.07 mm to
135.86 mm annually. The lowland elevation areas see
high yearly surface runoff because water cannot
penetrate the soil surface and most of the area is used
for agriculture. In flat-sloping regions of lowlands, surface
runoft is also higher on forestland, resulting in human
activities in the watershed and significant driving
factors for LULC change. These findings agree with
other similar efforts [2, 7, 10, 13—14, 46].

4) Effects of land use and land cover (LULC) change on
groundwater recharge

An essential hydrologic cycle for maintaining aquifers
refilled by precipitation is groundwater recharge.
Therefore, by boosting recharge and reducing surface
runoff, the optimal management options could help
preserve stream biotas within the ecosystems. The best
management strategies decrease surface runoff and
increase groundwater recharge, which lowers erosion as
in-stream sediment loads decline. For example, surface
runoff was reduced when agricultural land was returned
to its natural state. Additionally, it lowered in-stream
sediment loads as a result of less erosion. Furthermore,
the LULC change had an impact on surface runoff,
which increased as interception fell, and the amount of
forest cover decreased. Poor land-use practices change
the structure and porosity of the soil, lower the rate of
infiltration, and increase surface runoff. Intensive
agricultural methods, however, that exposed dense soils
to erosion by eliminating plant covers, reduced ground-
water recharge in the aquifer.
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The LULC has a significant impact on groundwater
recharge, and it is crucial to comprehend how it interacts
with rising levels of natural and human activity.
According to the calibrated SWAT model for the LULC
reference periods in the year 2011, 2021, and 2031, the
average simulated rainfall is expected to be 189.31 mm,
167.35 mm, and 156.88 mm, respectively. At the sub-
watershed scale, groundwater recharge varies from 0 to
119.20, 0 to 109.55, and 0 to 98.20 mm for the year
2011, 2021, and 2031, respectively. The sub-watershed
numbers 1 and 9 in the year 2011, sub-watershed
numbers, 1 and 9 in the year 2021, and sub-watershed
numbers 1 in the year 2031, were attributed to high
groundwater recharge. The sub-surface infiltration of
alluvial deposits is possible in rangeland and sandy,
loamy soil. The spatial pattern of GRSR showed the
direct effects of surface runoft reducing the ground-
water recharge rate in 2011, as in Figures 8A, 8B, and

8C, respectively. The agricultural sub-watersheds show
the lowest recharge levels. The decrease in streamflow
is linked to less infiltration, recharge conditions, and
lower surface runoff as a result of more forestland,
which raises the soil is water-holding capacity of the
soil. High evapotranspiration may also contribute to
the reduction in groundwater recharge.

The temporal variation of groundwater recharge
showed that the highest value occurred during the wet
period (July to October). The LULC simulation scenarios
dry period has indicated lowering responses of ground-
water recharge during the dry periods (November to
December, and January to March). The main reason for
reducing the average annual groundwater recharge is
the long dry period. The findings revealed increasing
wet periods, and lower dry periods due to the alteration
of vegetation cover in agricultural lands over study
periods, including the reduction of forest area, which
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has been converted to agricultural land, it has resulted
in a decrease in the rate of water infiltration through
surface water into groundwater. Similar efforts in many
reported that field crop, orchard, and urban develop-
ment increased runoff and decreased recharge when
agricultural expansion reduced forest cover. As a result,
flooding during the wet season and a reduction in low
flow during the dry season (3, 7, 13, 52-53]. Therefore,
a possible recurring hydrological drought was shown
by the lower recharge caused by the LULC shift.
Knowing the flow regimes of the wet and dry periods in
the watershed requires an understanding of how it
affects GRSR. Hence, efforts should be made to
improve watershed management techniques in order to
make the best use of available resources for the socio-
economic growth of the country. In order to preserve
the ecological and riverine ecosystems, sustainable land
and water management is crucial.

Conclusion

In this study, three reference scenarios in the MWW
of Thailand were used to assess the spatiotemporal
effects and implications of LULC variations on GRSR.
The LULC changes derived from satellite images showed
an increase in agricultural lands was 2.72% (cassava,
corn, field crop, paddy field, pasture, and sugarcane),
and a decline in forestland was 2.10% (deciduous
forest, evergreen forest, and mixed forest) from the year
2011 to 2031 due to human activity and population
growth. The findings indicate that the vast agricultural
operations in the watershed have changed, resulting in
a reduction of forestland via deforestation of the
forests. The findings imply that the watershed GRSR is
significantly impacted by LULC changes. The
calibrated model confirmed that variations in LULC
resulted in an increase in runoff and a decrease in
replenishment. The study carefully examined how
LULC changes, which are mostly brought about by the
spread of intensive agriculture and the removal of
forestlands, affected GRSR. Therefore, developing
scenarios for watershed management is crucial to
reducing the adverse effects of LULC changes on GRSR.
Planners and decision-makers of water resource
projects must give serious consideration to the LULC
response. It was discovered as a result that offering
insights into calibrated out-comes aids in the
development of a detailed plan for upcoming
management strategies on watershed hydrology. As
groundwater is the primary source of available
freshwater, sustainable development goals are directly
tied to how it is used, managed, and sustained. Future
studies should investigate the impact of LULC change
on rock layers, infiltration and percolation rate, and

ground water level, which will ultimately help to
develop a plan for sustainable use of the watershed
management.
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