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Abstract 
The river water quality index (RWQI) of the upper Ganga canal has been 

computed to assess the effect of lockdown and unlock phases lead down by 
COVID-19 in India. Geospatial distribution of RWQI from January 2019 to 
December 2021 in the study area revealed significant impacts of lockdown on 
water quality. However, unlock phases (post lockdown) have deteriorated water 
quality since August 2020 and reached to actual conditions of the river by August 
2021. To evaluate the lockdown as a management strategy to clean the river, 
other factors were reviewed including rainfall data, migration, and other 
activities. The results revealed that all the monitoring stations have improved 
water quality index ranging from 3 to 45 between March to June 2020. The River 
Ganga at Haridwar showed a two-fold improvement in the water quality index 
making it the highest positive impact of the lockdown, and at Rishikesh, the 
water quality index showed the least changes. The average decrease in RWQI has 
been observed to be 13 units in the year 2020 as compared to 2019 between 
March to June. In October 2020, RWQI has been observed to be higher as 
compared to the years 2019 and 2021. This is possibly due to a shift in rainfall 
patterns and other factors such as evapotranspiration, precipitation, and 
atmospheric temperature involved in river water quality control. Up to 60% 
reduction in average total coliforms and fecal coliforms has been observed due 
to the nationwide lockdown and a shift in human behavior towards cleaner and 
sustainable approaches. 
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Introduction 
 Globally, impulsive reduction in anthropogenic 
activities driven by widespread lockdowns has been 
witnessed due to the COVID-19 pandemic and it has 
affected every part of the environmental compartment 
[1–7]. In addition, it has influenced changes in 
environmental and hygiene practices to enhance the 
well-being of society [8–12]. To contain the spread of 
the COVID-19 pandemic, a complete and extensive 
lockdown was implemented in India from March 24, 
2020, to May 31, 2020, in four phases followed by the 
twenty-two unlocking phases starting from June 1, 

2020, to March 31, 2022. Almost all institutions, 
industrial establishments, hospitality, and transport 
including air, road, rail, and waterways were suspended 
except for essential services during the lockdown. 
However, unlock phases guided some relaxation in 
industrial activities to avoid negative economic impact. 
 This pandemic-induced nationwide lockdown had 
a significant impact on environmental compartments 
including air, water, and soil. Up to a 34% decrease in 
the suspended particulate matter has been reported in 
Vembanad Lake due to the nationwide lockdown [13]. 
Similarly, up to 44% reduction in air pollutants has 
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been observed under the COVID-19 lockdown in India 
[14]. The lowest concentrations of NO2, PM10, and 
PM2.5 were observed during the first phase of the 
lockdown in Delhi, India [15]. However, the second 
surge of COVID-19 has improved air quality lesser than 
first lockdown in Delhi, India possibly due to the 
vaccination drive and less fear of COVID-19, and 
partial relaxation in activities of industrial to reduce the 
socio-economic impact as observed in the first 
lockdown [16–17]. Moreover, the concentration of 
aerosol over the Indo-Gangetic Plains has been 
reported to be the lowest in the last 20 years during the 
lockdown [18]. The atmospheric concentration of CO2 
and CH4 has dramatically declined over the Yangtze 
River Delta of China during the COVID-19 lockdown 
[19]. At the same time, atmospheric secondary aerosols 
were raised unexpectedly due to more burning of 
biomass in Hangzhou, China during the COVID-19 
lockdown [20]. 
 On another hand, municipal solid waste generation 
has been remarkably reduced during the nationwide 
lockdown and/or due to a shift in consumer demand 
and behavioral change towards sustainable consump-
tion of resources [12, 21]. As per the Central Pollution 
Control Board (CPCB), Ministry of Environment, 
Forest and Climate Change (MoEF&CC), Government 
of India, Ganga’s water conditions are more conducive 
for aquatic life since it carries more dissolved oxygen 
and fewer nitrates, BOD, and total coliforms during 
lockdown [14, 18]. However, the water quality of the 
river after unlocking phases has not been well 
documented in the literature. 
 The physical-chemical and biological parameters as 
individual parameters are difficult to follow and cannot 
describe the overall quality of water resources. However, 
a water quality index (WQI) approach based on multi-
variate concerning suitable standards has been often 
used to describe the quality of water resources including 
rivers, ponds, lakes, coastal water, and groundwater, 
and used for their management [22–31]. Assessment of 
water quality based on WQI facilitates water manage-
ment authorities to take a quick decision as it converts 
multiple complex datasets into a single unit less 
number [32, 33]. WQI has been widely accepted and 
used tools to assess water quality, although it has many 
limitations such as uncertainty, ambiguity, and eclipsing 
due to the selection of algorithm, weightage, and 
standards. This is possible with the use of optimized 
advanced machine learning and algorithm which 
provide uncertainty-free WQI [34–37]. 

 Ganga water is extensively used for drinking purposes 
without conventional treatment with a disinfection 
process (Class A water defined by CPCB, Govt. of 
India). So it is crucial to assess the water quality based 
on class-A water standards in addition to BIS standards 
of drinking water. In the current study, the river water 
quality index (RWQI) has been calculated based on 
weighted arithmetic and a multivariate analysis approach 
to understand overall water quality. To investigate the 
impact of nationwide lockdowns and unlock phases in 
the upper Ganga canal due to the COVID-19 
pandemic, the geospatial distribution of RWQI from 
January 2019 to December 2021 was studied. In 
addition, factors including rainfall, migration, and 
human activities were reviewed to speculate on the 
possible use of lockdown as a pollution management 
strategy. 
 
Materials and methods 
1) Study area 
 The Ganga River has been declared the national 
river of India in 2008 since it is the longest river (2,525 
km) in India and it has been regarded as one of the 
holiest, sacred and cultural rivers of the world. As per 
the Ganga Basin Report, 2014 (version 2.0) Central 
Water Commission, Ministry of Water Resources and 
National Remote Sensing Centre, ISRO, Department of 
Space, Govt. of India, it originates as Bhagirathi from 
the Gangotri Glaciers in the Himalayas at an elevation 
of ~7,010 m in Uttarakhand and flows east through the 
Gangetic Plains of Northern India including Uttarakhand, 
Uttar Pradesh, Bihar, Jharkhand and West Bengal State 
of India [38]. The river extant in Uttarakhand has some 
of the most culturally significant places such as 
Rishikesh and Haridwar where a large number of 
people take holy dips into the Ganga. The study area 
chosen for the current study is prone to soil erosion 
since it has mainly silty loams and brown soil with steep 
slopes in undulating terrain [38]. May month is the 
hottest month in most of the study areas. A total of 11 
river water sampling stations were chosen for the 
current study (Figure 1). The study area receives wide 
pollutants from developmental and tourist activities 
including untreated sewage discharge, partially treated 
industrial effluent, and wastewater from commercial 
complexes [39–41]. At the same time, point sources of 
pollutants in the study area have not been well defined 
[42].
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Figure 1 Spatial variation map of water sampling stations of upper Ganga Canals of river Ganga in the study area. 

 
2) River water quality index 
 RWQI was calculated using multivariate analysis 
methods using BIS standards of drinking water [43] 
and standards of class A water intended for drinking 
purposes after disinfection without conventional treat-
ment as per CPCB [44] by assigning a weightage (Wi) 
of each selected parameter according to its relative 
environmental significance and impact on human health 
(Table 1). Physical-chemical and biological parameters 
of Ganga’s water and its associated upper canal reported 
by the Uttarakhand Pollution Control Board (UKPCB) 
were used to describe the impact of the lockdown phases 
and unlock phases implemented in India. Standards of 
BOD, DO, and total coliforms of class A water intended 
for drinking purposes after disinfection without con-
ventional treatment defined by the CPCB, MoEF&CC, 
Government of India [44] has been considered to 
compute RWQI. 
 A maximum of 5 weightage was assigned to the DO 
due to their high concern in water quality assessment 
and its environmental significance. Calcium, magnesium, 
and alkalinity were given 2 weightage as it has a lesser 
concern in the water quality assessment due to their 
high positive impact on human health. Chloride, total 
hardness, BOD, and total coliform were assigned a 
weightage of 3 based on their environmental signifi-
cance on water quality. However, pH and TDS were 
assigned 4 weightages since it plays a vital role in 
biological activities under natural conditions which are 
considered to be a key factor to estimate the self-
cleaning potential of the river (Table 1). RWQI were 
computed using the following Eq. 1. 

                            𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ∑𝑆𝑆𝑆𝑆𝑖𝑖                              (Eq. 1) 
 

 In Eq. 1, SIi is the sub-index of ith parameters. Sub-
index of each parameter was computed using the 
following Eq. 2. 
 

                     𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑊𝑊𝑟𝑟  × 𝐶𝐶𝑖𝑖
𝑆𝑆𝑖𝑖

 × 100                          (Eq. 2) 

 

 In Eq. 2, SIi is the sub-index of ith parameters, Wr is 
the relative weight of respective parameters, Ci is the 
concentration of ith parameters and Si is the standards 
of ith parameters according to BIS 10500 2012 [43] and 
standards of class A water intended for drinking purpose 
after disinfection without conventional treatment as 
per CPCB [44]. 
 
 To calculate the SIi pH, DO for the pH and DO, the 
following Eq. 3 was employed. 
 

             𝑆𝑆𝑆𝑆𝑖𝑖 𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷 = 𝑊𝑊𝑟𝑟  × (𝐶𝐶𝑖𝑖−𝑉𝑉𝑖𝑖)
(𝑆𝑆𝑖𝑖−𝑉𝑉𝑖𝑖)

 × 100                  (Eq. 3)   

 

 In Eq. 3, Vi is the ideal value of pH and DO. The 
ideal value of 7 and 14.6, respectively for pH and DO 
were deducted from the measured values in the samples 
[45]. The relative weight (Wr) is computed from the 
following Eq. 4. 
 

                      𝑊𝑊𝑊𝑊 =  � 𝑊𝑊𝑊𝑊
∑ 𝑊𝑊𝑊𝑊𝑛𝑛
𝑖𝑖−1

� × 0.95                         (Eq. 4) 

 

 In Eq. 4, Wr is the calculated relative weightage, Wi 
is the weightage of each parameter and n is the number 
of parameters. 
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 As per the literature [46–49], the categorization of 
RWQI rating values were classified into five groups 
namely “excellent” (<50), “good” (50–100), “poor” (100 
–200), “very poor” (200–300), “unfit for drinking” (>300). 
 
3) Spatial variation of RWQI 
 The values of RWQI were interpolated for the rest 
of the study areas with the inverse distance weightage 
(IDW) method by using QGIS 3.14 for its spatial vari-
ation in 2019, 2020, and 2021. IDW interpolation method 
generated predicted values of RWQI at each point cal-
culated on the basis of weighted average of the closest 
sampling points. The weights are calculated through 
the inverse of the distance from sampling stations to the 
location of the point of projection. The IDW interpolated 
RWQI were finally used to generate ranked river water 
quality maps of every months starting from January 
2019 to December 2021 to understand the impact of 
COVID-19 pandemic. 
 
Results and discussion 
1) RWQI of Ganga’s water 
 A statistical overview of selected water quality 
indicators showed a significant statistical difference in 
water quality variables in the years 2019, 2020, and 2021 
(Figure 2). This is possibly due to the restrictions 
imposed during the period of the COVID-19 pandemic. 
It can be noted that more outliers and extremes are 
towards the upper whisker for all the indicators except 
pH (Figure 2). This clearly indicates that the water quality 
indicators are right-skewed and do not follow a normal 
distribution pattern. It can be further noted that the 
pattern of box plots are variables including median values, 
length of the box, and distribution density over assess-
ment years for all the water quality indicators except 
COD (Figure 2c). In addition, a standard for COD has not 
been included in BIS for drinking water as well as in 

CPCB guidelines for class A water. Therefore, it has been 
omitted from the RWQI calculation in the present study. 
 The monthly RWQI of 2019, 2020, and 2021 
comparison of the upper canal of Ganga facilitated the 
computation of the potential impact of nationwide 
lockdown and associated reduction in anthropogenic 
pressure on river water. The maximum change in 
average RWQI (15 units) has been observed in May and 
June months (Figure 3). More than 80% of the sampling 
stations showed a maximum reduction in June month 
of 2020. However, the rest of the sampling stations 
showed a maximum reduction in May month of 2020. 
The results of RWQI revealed that the lockdowns have 
enhanced the overall water quality in most of the study 
areas. Each of the sampling stations has improved 
RWQI ranging from 3 to 45 between March to June 
2020. Except at the sampling station located after the 
confluence of river Song near Satyanarayan temple, 
Raiwala, Dehradun has started deteriorating since June 
2020, it showed a negative change in RWQI. The River 
Ganga at Haridwar (sampling stations 3 to 5) showed a 
two-fold improvement in the water quality index making 
it the highest positive impact of the lockdown, and at 
Rishikesh, the water quality index showed the least 
changes. The current finding of improved water quality 
is consistent with the literature [50]. Improved water 
quality of the river has shown a significant positive 
impact on aquatic animals and many animals have 
returned to their natural habitat [50]. However, unlock 
phases (post lockdown) have deteriorated water quality 
since August 2020 and reached to actual conditions of 
the river by August 2021. In October 2021, RWQI has 
been observed to be higher as compared to the years 
2019 and 2020. This is possibly due to a shift in rainfall 
patterns and other factors involved in river water quality 
control. These results are in contrast to the literature 
where strategic lockdowns have been suggested as an 
option for sustainable environmental management [50]. 

 

Table 1 List of water parameters considered to compute RWQI, their Indian standards of drinking water (BIS 10500: 
2012), or class A water intended for drinking purposes after disinfection (CPCB) along with assigned weightage and 
relative weightage 

Water parameters Indian standards  (BIS 10500 2012) or 
Class ‘A’ standards 

Weightage 
(Wi) 

Relative weightage 
(Wr) 

pH 6.5-8.5(8.5) 4 0.123 
DO (mg L-1) 6 (Class A) 5 0.153 
BOD (mg L-1) 2 (Class A) 3 0.092 
Total coliform (MPN/100 mL) 50 (Class A) 3 0.092 
Calcium as Ca (mg L-1) 75 2 0.061 
Hardness as CaCO3 (mg L-1) 200 3 0.092 
Magnesium as Mg (mg L-1) 30 2 0.061 
Chlorides (mg L-1) 250 3 0.092 
Alkalinity as CaCO3 (mg L-1) 200 2 0.061 
Total dissolved solids (mg L-1) 500 4 0.123 
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Figure 2 Whisker plot analysis of water quality indicators (a) pH, (b) BOD, (c) COD, (d) DO, (e) alkalinity,  
(f) chloride, (g) calcium, (h) magnesium, (i) hardness, (j) TDS, (k) fecal coliforms, and (l) total coliforms,  

showing outlier attributes of the upper canal of the Ganga River in the years 2019, 2020, and 2021. 
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Figure 3 Annual variation of average RWQI of the upper canal of the Ganga River  

from January 2019 to December 2021. 
 

2) Spatial variation of RWQI 
 The spatial variation of RWQI over the last three 
years (2019-2021) showed a significant distinction 
(Figure 4). RWQI of 60 to 90% of the study area was 
observed to be under 50 in the year 2020 except in 
October 2020. It can be noted that in October 2020, 
only 8.3% of rainfall was received as compared to 
normal rainfall in the above Ramganga Confluence 
sub-basin of the Ganga basin (Figure 5). However, pre-
lockdown and unlock years were observed to be less 
than 50% of the study area with <50 RWQI.  
 The Ganga River at Haridwar (sampling station 3 to 
5) were found to be the highest RWQI in all the 
monitored years. The gradual increase in RWQI has 
been observed as the river passes through the urban 
area of Haridwar (up to sampling station 5) followed by 
decreasing trend. This is possibly due to the highest 
number of pilgrims activities in Haridwar as compared 
to all other study areas. The decrease in RWQI is 
possibly due to the physical-chemical and biological 
remediation of pollutants in the river ecosystem. These 
results indicated the potential of the Ganga River in 
pollution load handling and self-cleaning properties. 
Further increase in RWQI is possibly due to further 
discharge of untreated sewage and solid waste disposal 
in unmanageable quantities. 
 Based on the above analyses, it can be predicted that 
the maximum discharge and disposal of solid waste is 
carried out between sampling stations S3 to S5 and S8 
to S10. The reduction of RWQI in downstream of 
Haridwar might be possible due to high vegetation on 

the bank of the river which provides suitable conditions 
for remediation of several pollutants. The processes 
such as Phytodegradation, phytosequestration, rhizo-
degradation, phytohydraulics, phytoextraction, and 
phytovolatilization play a vital role in the remediation 
of pollutants on the bank of rivers due to high vegetation 
in rural areas [51]. These results are consistent with 
literature that suggest the river is a plug-flow bioreactor 
with high self-purification potential [52]. 
 
3) Impact of lockdown and unlock phases on envi-
ronmental contamination 
 A significant change in total coliforms and fecal 
coliforms in the entire monitoring area has been 
observed throughout the years 2020 and 2021 as 
compared to the year 2019 (Figure 6). Total coliforms 
and fecal coliforms are key biological indicators of total 
environmental contamination and fecal contami-
nation, respectively in water resources [53]. The highest 
values of total coliforms were reported in May and June 
2019 in the last three years (Figure 6a). However, the 
lowest values of total coliforms were reported from 
April to June 2020 (lockdown phase). The average total 
coliform has decreased by more than 39% in the year 
2020 as compared to the year 2019. However, it has 
increased in the year 2021 by 20% as compared to the 
year 2020 till June and followed by a 19% decrease till 
December 2021. This is possibly due to the restrictions 
imposed during the third wave of COVID-19. A similar 
trend has been reported in the case of fecal coliform, 
suggesting a decrease in fecal contamination during the 
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lockdown and a further increase during the unlocking 
phases. The highest values of fecal coliform have been 
reported in June 2019. The average coliform has 
decreased by more than 59% in June 2020 as compared 
to June 2019 followed by an increase in the year 2021 

during unlocking phases up to 75% as compared to the 
year 2020 (Figure 6b). The reduction percentage of 
total coliforms and fecal coliforms has declined since 
June 2020 and reached 4% and -3%, respectively in 
December 2020 as compared to December 2019.

 

 
Figure 4 Spatial variation map of RWQI of upper Ganga Canal from January 2019 to December 2021  

at three months of interval. 
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Figure 5 The average monthly rainfall of above Ramganga Confluence sub-basin of Ganga Basin along with average 

monthly rainfall of Ganga basis from January 2019 to December 2021 as per India Water Resources Information 
System (India-WRIS). 

 

 
Figure 6 Monthly change in (a) total coliforms (an indicator of environmental contamination) and  

(b) fecal coliforms (an indicator of fecal contamination) in the years 2019, 2020, and 2021. 
 

 The maximum reduction of these indicators has 
been noted in the year 2020 (lockdown phases) as 
compared to 2019 followed by an increase in 2021 
(unlock phases), although discharge from domestic 
sewerage has not reduced during these days. This is 
possibly due to the contribution of pollutants from 
other sources than domestic discharge such as industrial 
effluent, transport, and people dips. These observations 
indicated an impact of lockdown and unlock phases 
due to a shift in human behavior towards the use and 
disposal of waste resulting in sustainable and cleaner 
development even after the lifting of the lockdown.  
 In addition to anthropogenic factors, natural 
processes such as changes in precipitation, erosion, and 

weathering of the earth’s crust play a vital role in river 
water quality and quantity [54]. The rainfall pattern has 
significantly changed in the last three years in the above 
Ramganga Confluence sub-basin of Ganga Basin 
(Figure 5). It can be noted that maximum rainfall has 
been observed in May 2021 followed by May 2020. 
However, lesser environmental contaminants and fecal 
contaminations were reported in June 2020. These 
observations suggested the involvement of natural 
processes in river water quality in addition to 
anthropogenic impact. Similar findings were reported 
in case of air pollutants using AQI approach from 
pandemic hotspots including China, Japan, the Republic 
of Korea, and India [55]. 
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4) Impact of lockdown and post-lockdown phases on 
Ganga’s water 
 The water quality of the Ganga River has de-
teriorated in the last few decades due to more urban 
exposure, industrial effluent discharge, and change in 
land use land cover [14, 56]. A significant change in the 
water quality of river Ganga under lockdown and post-
lockdown is imaginable since more than 80% of total 
pollutants are due to domestic sewage discharge and 
the rest are contributed by industrial activities [57]. The 
water quality of the Ganga river is expressively 
dependent on anthropogenic activities in addition to 
geomorphological functions since more than 97 towns, 
29 cities, and many villages are located on the bank of 
the river [18]. Similar observations have been reported 
from China, Turkey, and India where river water 
quality has improved in lockdowns and returned to the 
actual conditions after the lifting of lockdowns [58–60]. 
 The water quality of a river ecosystem is often 
directly linked with human health, ecological health, 
and biodiversity of flora and fauna. About 30% of total 
environmental pollutants including river pollutants are 
directly exposed to human beings [61–62]. Several 
natural and anthropogenic activities such as urbaniza-
tion, industrialization, hydropower projects, untreated 
wastewater discharge, rainfall, surface runoff, lack of 
awareness, and seasonal variations are concomitant 
with river water quality [63–65]. Residential mobility 
also plays a vital role in the water quality of rivers. 
During the first lockdown, residential mobility in-
creased by more than 31% in India because of the 
temporary movement of people towards their permanent 
residences [66]. In addition, the quality of water also 
depends on its origin and change in climate [67,68]. For 
the last 100 years, river ecosystems are one of the most 
exploited and vulnerable environmental compartments 
of the aquatic biomes [67, 69–70]. The decline in 
biodiversity is one of the major threats to the hydro-
logical and biological sustainability of aquatic biomes. 
This is true for the Ganga River which flows through 
multiple urban areas in the central part of India with 
high self-cleaning potential. Similar to other rivers, it 
plays a significant role in assimilating or carrying off 
municipal and industrial effluent, runoff from 
agricultural fields, manure discharges, roadways, and 
street pollutants [71]. The flow rate of rivers is 
dependent on many factors including pumped inflow 
and outflow, precipitation, surface runoff, and ground-
water recharge [72]. The amount of pollutants in the 
river is highly dynamic and varies seasonally with flow 
rates. 

 On another hand, the river act as a natural plug flow 
bioreactor for the remediation of various pollutant 
discharged into it [73]. Biological activities play a major 
role in the degradation, transformation into non-toxic, 
and transport of pollutants in the natural ecosystem 
[61,74–77]. In addition to biological activities, physical-
chemical processes can play a vital role in the environ-
mental fate of pollutants in river ecosystems [78]. 
However, the extent of remediation depends on various 
factors and limits the self-purification process. At the 
same time, not all man-made pollutants are degradable 
under natural decomposition in river ecosystems such 
as plastics. The self-cleaning properties of the river are a 
function of time. Therefore, if the rate of introduction 
of pollutants into the river is faster than the rate of its 
natural decomposition, the pollutants get piled up and 
the result is detrimental. As per the observed results, it 
is evident that the water quality of the Ganga River is 
the cumulative result of natural processes and human 
interference with the river ecosystem. 
 
Conclusion 
 The ranked river water quality maps generated of 
the study area has provided excellent tools to un-
derstand dynamics of river water quality of upper 
Ganga Canal. Based on the investigation, a substantial 
improvement in the Ganga water during lockdown 
phases imposed in India has been observed. However, 
post-lockdown phases have deteriorated the water 
quality and reached similar conditions as pre-lockdown 
years. The observation of results were not only due to 
changes in the mobility of people but also due to 
changes in the rainfall pattern. Most of the variation in 
the water quality of the Ganga River was due to natural 
phenomena and human interference in the river eco-
systems. Based on the current investigation, the use of 
lockdown as a remedial measure for pollution handling 
is not effective since after lockdown the conditions are 
resumed to their original. Further assessment to find-
out point pollution inventory of the study area could 
facilitate the river management strategies to maintain 
the water quality of the Ganga. 
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