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Abstract

Data on soil properties are indispensable for process-based hydrological modeling. Soil
information of Thailand is primarily provided by the Land Development Department (LDD),
nevertheless soil property data are available only in arable land whose slope is less than 35%.
The steep-slope land was generally labeled as Slope Complex (SC), there is no information
available. This paper demonstrated the application of soil-landscape evaluation approach for
predicting the missing properties of soil which resulted on enhancement of model
performance in streamflow estimation in Krasioa Basin by the Soil and Water Assessment
Tool (SWAT) model. The physical properties of soil-soil thickness, fraction of soil particles
(clay, sand, organic matter) were predicted using the Soil-Landscape Estimation and Evaluation
Program (SLEEP). The additional properties of soil including bulk density, hydraulic
conductivity, and available water content were estimated using the pedo-transfer functions
(ROSETTA). It was found that SLEEP model could provide consistent information on
physical properties of soil. The SWAT model performance in streamflow simulation at the
Krasioa Reservoir was improved using the proposed approach. Appropriate model inputs can
generate reasonable output. Model performance can further be improved by calibration.
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Introduction characteristics of the watershed. Since the soil

In order to get accurate and close-to-reality in  properties affect hydrological response of the
hydrological assessment, spatial input data will watershed relative to the amount of rainfall,
determine the parameters that indicate the details about them are necessary to examine
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with data from the field or methods which are
acceptable, before handling the hydrological
model of watershed [1]. Physical soil properties
are an important factor in controlling the
hydrological process and are the key to
controlling the parameters used to improve
results [2-3]. The accuracy of the soil data
determines the likelihood level [4-5]. Therefore,
choosing the right soil properties to suit the size
and condition of the watershed will result in a
reliable streamflow assessment at the desired
accuracy level [6].

Currently, geographic information system
(GIS) is widely used to increase the spatial ease
of field work and analysis in the laboratory [7-
8], to distribute spatial soil data, to see the
overall picture. These lead to the improved
results in the creation of models for watershed
management [9]. Statistical models developed
by using the relationship between topographic
and soil characteristics in areas with similar
geological and geographical history, seem to be
the right approach for predicting the spatial and
understanding the landscape of the earth [10]. In
addition, the use of digital elevation model
(DEM) combined with satellite image in multiple
linear regression models can analyze the spatial
distribution of appropriate classification derived
from the features [11]. The predicted soil shows
a more realistic pattern using the characteristics
of the soil obtained from the prediction model as
an alternative to soil data [12-13]. The idea
behind the Soil-Landscape Estimation and
Evaluation Program (SLEEP) tool is to divide
the watershed or area into zones or facets
according to the average slope parameters and
then take a model for each aspect related to soil
characteristics to the terrain and environment
[14].

The predictive accuracy of the SWAT model
depends on whether the input factors describe
the spatial characteristics of the watershed [15-
18]. Fundamentally, a watershed model aims at
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minimizing errors in the streamflow estimation
comparing with the observation. The estimation
errors could be mitigated by defining an
appropriate size of sub-watershed which
represents the heterogeneous terrain and rainfall
pattern [19]. Although reliable results were
reported on a yearly and monthly time-step but
itis likely that SWAT would be successful in the
daily time-step only with GIS technology. The
development in techniques and methods for
digital soil resource dataset, resulted in the
accurate calculation of rainfall-runoff in the
basin [20].

In Thailand, the Land Development Department
(LDD) conducts soil surveying only in cultivable
area where the land slope is less than 35%. The
land with slope greater than 35% has not yet
been studied or classified because the steep-
slope lands are difficult to manage for
agriculture. The slope area greater than 35% is
generally defined as slope complex (SC), there is
no information available. The objectives of this
study were, therefore, to apply the SLEEP for
predicting the missing soil properties, and to
evaluate the performance of SWAT model in
estimating streamflow using the predicted soil
properties in the Krasioa Basin, Thailand.

Materials and methods
1) Study area

The Krasioa River is a tributary of the Tha
Chin River. Its drainage area about 1,327 km?,
lies between latitude 14°41'N and 15°17'N, and
longitude 99°20'E and 100°6'E, in 3 provinces
including Suphanburi, Kanchanaburi and Uthai
Thani (Figure 1). The Krasioa River starts from
the mountainous area in Ban Rai, Uthai Thani.
The river flows south-eastward to Dan Chang,
Suphan Buri and then eastward to join the Tha
Chin River at Sam Chuk, Suphanburi, with the
total length of 140 km. The altitude of the basin
ranges from 6 meters above mean sea level
(AMSL) to 1,414 AMSL.
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Figure 1 Study area (Krasioa basin, Thailand).

The Krasioa basin is located in the tropical
climate region with a clear distinction between
wet period from May to October and dry period
from November to April. The mean daily
temperature varies between 19.5°C and 36.4°C
with the lowest in December and the highest in
April. The mean daily relative humidity varies
between 75.9% and 94.5%. The annual evaporation
is about 1,704 mm. The annual rainfall is about
988.1 mm and the annual discharge of the basin
is about 95.82 Mm?°.

2) Soil-landscape approach for estimation of
soil properties

The SLEEP is a tool designed for helping
SWAT users to generate a soil database at sub-
catchment level from point field observations,
or legacy soil maps. Spatial interpolation of the
measured soil attribute is used to provide
continuous representation of soil but there are
some limitations owing to the non-uniform
distribution of soils over an area. It is impractical
to measure the soil attributes at each and every
point on the earth surface [14]. The SLEEP uses
measured soil properties e.g. soil depth, fraction

of soil particle (sand, silt, clay), or percentage of
organic matter, at different locations in a
watershed along with the geographical
coordinates of the measurement locations, to
produce the spatially distributed soil properties
for the whole watershed in the form of raster
data [12]. The SLEEP utilizes the DEM and
available soil observations to generate spatially
continuous layers of soil attributes [11, 13].
ROSETTA model [21] was developed for
estimation soil properties based on pedo-
transfer functions (PTFs) [22-23] by the
Agricultural Research Service (ARS) of the
U.S. Department of Agriculture (USDA).
ROSETTA wuses the following hierarchical
sequence of input data: soil texture, fraction of
soil particle (sand, silt, clay), and bulk density.
The hierarchy in PTFs allows the estimation of
van Genuchten’s water retention parameters
[24] and the saturated hydraulic conductivity
using limited input data (textural classes only) to
more extended input data, e.g. fraction of soil
particle, bulk density, and water retention points
(field capacity, permanent wilting point) [21].



3) SWAT model

SWAT is a public domain model developed
by a group of scientists from the USDA-
Agricultural Research Service; USDA-Natural
Resources Conservation Service, and Texas
A&M University. SWAT model is a conceptual,
time continuous and physically-based simulation
model with GIS software as an extension to
assist water resource managers in assessing the
impact of management and climate on water
supplies and non-point source pollution
problems for a wide range of scales and
environmental conditions across the globe.
SWAT divides the watershed into sub-watersheds
which are further subdivided into Hydrologic
Response Units (HRUs) that consist of
homogeneous land use, management, and soil
characteristics [25]. SWAT is a comprehensive
model that requires a diversity of information in
order to run [26] and developed in a semi-
distributed way, where the catchment is sub-
divided into sub-catchments and further sub-
divided into hHRUs, and land use, soil and slope
can be accounted for by the model [27]. The
SWAT model uses a daily time step and is able
to conduct continuous simulations over long
time periods [28]. SWAT is based on the
principle that the water balance equation as
shown in Eq. 1.

t
SWy = SW, + Z(Rday - qurf —E, — Wseep — ng) (Eq 1)

t=i

where SW; is the final soil water content
(mm), SW, is the initial soil water content on day
1(mm), t is the time (days), Raay 1s the amount of
precipitation on day 1 (mm), Oy 1s the amount
of surface runoff on day i (mm), £, is the amount
of evapotranspiration on day i (mm), Wieep is the
amount of water entering the vadose zone from
the soil profile on day i (mm ), and Qg is the
amount of return flow on day i (mm).

The surface runoft is predicted by SCS Curve
Number (CN) equation (Eq. 2).
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day_ a

Qs = (Eq.2)

where Qs 1s the accumulated runoff or
rainfall excess (mm), Ruqy 1s the rainfall depth
for the day (mm) § is the initial obstructions
(surface storage, interception, and infiltration
prior to runoff) (mm), I, is the retention
parameter (mm).

The retention parameter varies spatially due
to soil, land use, management and slope changes
(Eq. 3), and varies temporally due to changes in
soil water content.

o _ 25400 .,

(Eq. 3)

where CN is the curve number corresponding
to soil type, land use and land management
conditions [29].

4) Model performance evaluation

The performance of the model was evaluated
in order to assess how the model simulated
values fitted with the observed values. Several
statistical measures are available for evaluating
the performance of a hydrological model such
as percentage bias (PBIAS, Eq. 4), coefficient of
determination (R?, Eq. 5) and the Nash-Sutcliff
efficiency coefficient (NSE, Eq. 6). PBIAS, R?
and NSE can be used to determine how well the
model simulates the average magnitudes for the
output response of interest, is useful for
continuous long-term simulations, can help
identify average model simulation bias (over
prediction vs. under prediction), and can
incorporate measurement uncertainty [30]. R?
widely used in hydrological modeling studies,
thus serving as a benchmark for performance
evaluation. R? over sensitive to high extreme
values and insensitive to additive and
proportional  differences between model
predictions and measured data. For a good
agreement, the intercept should be close to zero
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and the gradient should be close to one [31].
NSE values can range between negative infinite
and one [32].

Yo0,->n,
PBIAS = % x100 (Eq.4)
Z
io ~0,))(B, ~Bi)
( )(" ) E.5)
>(0,-00 \/21( )~ Pu)
i(o P
NSE =1--=! - (Eq. 6)
2(0-0)

i=1

where P(; is the simulated flow (m>s™), is
the observed flow (m> s!) and is the number
of data.

5) Data used

Climatic data were necessary to simulate
runoff processes in the watershed. The available
data from the Thai Meteorological Department
(TMD) included relative humidity, maximum
and minimum temperature, wind speed and solar
radiation (sunshine hours). Rainfall and
streamflow from 1982 to 2000 can be retrieved

from the Royal Irrigation Department (RID).
Rainfall stations close to the study area were
selected.

The spatial data are also required for SWAT
model setup. DEM with a spatial resolution of
90 m, was downloaded from http://www.srtm.
csi.cgiar.org. It was used to delineate the
watershed boundary, to define the drainage
patterns, and to calculate slopes of the study
area and channels. Soil and land use maps
were obtained from the LDD. Satellite images
can be downloaded from https://earthexplorer.
usgs.gov/; band 4 (Red) and band 5 (NIR) of
Landsat-8 were used in this study.

6) Methodology

The methodology included: (1) the development
of regression model based on soil-landscape
approach by SLEEP model and pedo-transfer
functions by ROSETTA for predicting the
missing data on soil properties; (2) the set-up of
SWAT-based hydrological model for streamflow
simulation; and (3) the evaluation of model
performance on streamflow estimation at
Krasioa Reservoir. The overall methodology
was shown in Figure 2.
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Figure 2 The overall methodology.
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6.1) Estimation of missing soil properties

The first step was to develop a spatial
regression model based on soil-landscape
evaluation approach using SLEEP tool. The
regression model was applied for prediction of
soil physical properties of the SC in Krasioa
basin. The required data for SLEEP including
DEM, NDVI, and observed soil properties.
DEM was used to delineate the watershed, to
define the drainage patterns, and to estimate
slopes of watershed and of channels. NDVI was
calculated from band 4 (Red) and band 5 (NIR)
of Landsat-8. The observed soil properties were
extracted from attributes of the LDD soil map.
The centroids of polygon were selected as the
point location of observation with the total of
4,056 points. Next, the data points were divided
into 2 sets: one for parameter estimation and
another for validation. With the utilities of
SLEEP tool, one regression equation was
generated for predicting one desired soil
property. In this study, we developed equations
for the thickness of soil layer, the fraction of
sand particle, the fraction of clay particle, and
the percentage of organic matter.

In the next step, the others required soil-water
properties for SWAT model were estimated by
the ROSETTA model based on pedo-transfer
functions (PTFs) using soil particle fraction
(sand, silt, clay) and organic matter [23]. The
required soil-water properties included the
saturated hydraulic conductivity (SOL_K), the
bulk density (SOL_BD), and the available water
content (SOL_AWC). At this step, the soil map,
fulfilled with the predicted data from soil-

landscape  evaluation (SOIL-SLE) was
prepared.
6.2) SWAT model setup

In order to evaluate the SWAT model
performance in estimating streamflow from the
predicted soil properties. SWAT model was set
up into 2 input options: Soil-LDD and Soil-SLE.
The first option assumed the missing properties
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of Slope Complex to be those of medium texture
(Soil-LDD), while the spatial soil properties
predicted from soil-landscape evaluation and
PTFs were used in the second option (Soil-
SLE).

The SWAT model set-up comprised several
steps, i.e. data preparation, watershed delineation,
HRU definition, definition of weather stations,
and edition of model database. The DEM, land
use and soil maps of the study area were
prepared. DEM was used in the watershed
delineation. The study selected the threshold for
stream definition of 25 km? This process
resulted 39 sub-basins in the upstream of
Krasioa Reservoir (Supplementary material
(SM) 1). In this study, the multiple HRUs with
the threshold of 5% land use, 5% soil, and 10%
slope were selected. After the HRUs definition,
the Soil-LDD option possessed 264 HRUEs,
while the Soil-SLE option 587 HRUs. The
increasing in number of HRUs may be due to
more soil classes in the Soil-SLE map.

Time series covering the period from January
1982 to December 2000 were selected at 3
climatic stations: Suphanburi, Uthai Thani and
Kanchanaburi. Daily rainfall and others climate
data (wind speed, maximum and minimum
temperature, relative humidity and sunshine
hours) were available. The estimated inflow into
Krasioa Reservoir from 1982 to 2000 was used
as the observed streamflow in Krasioa River.
The observed data were used for evaluating
performance indicators, i.e. PBIAS, R? and
NSE. SWAT model run on daily time step from
January 1982 to December 2000. The results
were aggregated into monthly time step and
evaluated with monthly observed data in this
study.

Results and discussion
1) Estimation of missing soil properties

The physical properties of soil, predicted by
SLEEP tool, included the thickness of soil layer
(Figure 3), the percentage of organic matter



App. Envi. Res. 41(3) (2019): 1-13

(Figure 4), the fraction of clay particle (Figure
5), and the fraction of sand particle (Figure 6).
The maps on the left side of Figure 3(a) to Figure
6(a) showed the coverage of the SC where data
were not available. The predicted data by
SLEEP were shown on the right hand side of
map in Figure 3(b) to Figure 6(b).

The physical properties of soil predicted
using the SLEEP included the soil thickness in
cm, percent of organic matter (OM), fraction of
clay particle (CLAY), and fraction of sand
particle (SAND) (SM 2). The soil thickness
varied between 88 cm and 233 cm, OM between
0.27% and 4.80%, CLAY between 1.18% and
84.27%, and SAND between 0.67% and
89.50%.

The prediction properties of soil (Soil-SLE)
were compared with the pre-selected observation

i Slope Complex (SC)

points from LDD soil map (Figure 7). The
scatter plots of the properties of Soil-LDD data
and those of Soil-SLE prediction were considered
to be a validation of the regression equations of
soil properties. The soil properties included: soil
thickness (Figure 7(a)), OM (Figure 7(b)),
CLAY (Figure 7(c)), and SAND (Figure 7(d)).
Soil thickness showed a good correlation with
R? of 0.88. Percentage of OM was somewhat
good correlation (R?=0.77). CLAY and SAND
presented relatively poor correlation with the R?
of 0.34 and 0.44, respectively. From the scatter
plot (Figure 7(c) and (d)), more deviation from
the predicted lines can be observed when the
fractions are high. The percentage of silt fraction
can be calculated from the residual of CLAY,

SAND and OM fraction.
s
) e Soil thickness (cm)
\ .
) ‘ __l<100
S i W 1 101-150
J . e R 0 151-200
| B0 I 201-250
ks B 251 - 300
\ N {
N - ———
Y L,
‘ y Y

(b) SLEEP prediction

Figure 3 Pictures showing soil thickness (cm) from the (a) LDD data and (b) SLEEP prediction.
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Figure 4 Pictures showing organic matter (%) from the (a) LDD data and (b) SLEEP prediction.
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Figure 5 Pictures showing fraction of clay particle (%) from the (a) LDD data
and (b) SLEEP prediction.
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Figure 6 Pictures showing sand particle (%) from the (a) LDD data and (b) SLEEP prediction.

The fractions of soil particle are the key
information in the prediction of soil-water
properties by the PTFs (SM 3). The predicted
soil-water properties included the bulk density
in g cm® (BD), the available water content
(AWC) in mm mm, and the saturated hydraulic
conductivity in mm h! (SOL_K). The BD varied
between 1.35 g cm™ and 1.65 g cm™, the AWC
between 0.13 mm mm™ and 0.19 mm mm™, and
the SOL K between 2 mm h™! and 420 mm h.
The hydraulic properties of soil-AWC, or SOL K
depend highly on the heterogeneity of soil
properties and management conditions. The
spatial linear regression used by SLEEP was
unsuccessful to consistently predict highly non-
linear hydraulic properties of soil. The well-
grounded method, PTFs [21-22] is a better
alternative.

Sand Particle (%)
<10

[J11-20
B 21-40

(b) SLEEP prediction

The properties of soil in the SC were predicted
(SM 4). These data were defined as the input
options in SWAT model: (a) constant properties
assumed as medium texture in LDD dataset
(Soil-LDD), and (b) spatial properties predicted
by the soil-landscape evaluation approach (Soil-
SLE).

The complete mapping of soil properties can
be achieved by the SLEEP coupling with the
ROSETTA. However, not all types of soil property
can be accurately predicted by the soil-landscape
approach. The soil thickness and the percentage
of organic matter provided satisfactory results
with R? about 0.8, while fractions of clay and
sand remained mediocre. Spatial linear regression
model was unsuccessful to consistently predict
the hydraulic properties of soil. The PTFs method
using soil particle fraction is recommended.
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prediction: (a) soil thickness (cm), (b) organic matter (%), (c) fraction of clay particle (%),
and (d) fraction of sand particle (%).

2) Evaluation of SWAT model performance
SWAT model was executed using different
soil inputs: Soil-LDD and Soil-SLE. Figure 8
showed the streamflow hydrographs at the
Krasioa Reservoir from 1982 to 1990 (Figure
8(a)) and from 1991 to 2000 (Figure 8(b)). The
observed data estimated from water balance
analysis at the the Krasioa Reservoir (black solid
line). The simulated hydrographs were
calculated by SWAT model using the Soil-LDD
input (black dashed line) and the Soil-SLE input
(red dashed line). Figure 9 showed the scatter
plot between the observation and the
simulations (Soil-LDD input in circle and the
Soil-SLE input in triangle). Trend line of the
Soil-LDD input showed in black dashed line and

Soil-SLE
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(b) Organic matter, R>=0.77
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(d) Sand fraction, R?>=0.44

that of the Soil-SLE input in red dashed line. The
model performance was summarized in Table 1.
The indicators included R?> and NSE, and
PBIAS.

Table 1 Performance of SWAT model in
simulation of streamflow at Krasioa Reservoir
using different soil inputs (Soil-LDD and Soil-

SLE)
Performance Soil-LDD  Soil-SLE
indicator
R? 0.51 0.62
NSE 0.50 0.60
PBIAS (%) +16.85 +17.27
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Streamflow simulation using properties of
medium soil texture (Soil-LDD) presented
somewhat acceptable without model calibration
(R? and NSE>0.5, PBIAS<25) [28]. Positive
values of PBIAS indicated model underestimation
bias [33]. The systematic prediction of soil

properties (Soil-SLE) showed an improvement
on model performance (R%and NSE>0.6); all
indicators of model performance were increased.
The model would attain the optimal performance
when the R? and NSE are close to 1 [32], while
the PBIAS is close to 0.

The preparation of input data in SWAT
modeling is tremendous task. The physical and
hydraulic properties of soil are indispensable for
process-based hydrological model. The SLEEP
coupling with the pedo-transfer functions
(ROSETTA) can fulfill the requirements. The
appropriate data for model inputs generate
reasonable output. Model performance can
further be improved by calibration [34].

Conclusions

This paper demonstrated the application of
soil-landscape evaluation approach for predicting
the missing physical properties of soil which
resulted on enhancement of model performance
in streamflow estimation by process-based
hydrological model. The physical properties of
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soil, predicted by SLEEP, included soil
thickness, fraction of soil particles (clay, sand,
organic matter). The additional properties of soil
(bulk density, hydraulic conductivity, available
water content) were estimated using pedo-
transfer function (PTF) by ROSETTA. The
SLEEP  models  showed  satisfactory
performance in predicting soil thickness and the
percentage of organic matter, but relatively poor
in predicting the fractions of clay and sand. The
spatially predicted soil properties improved the
performance of SWAT model for streamflow
estimation at the Krasioa Reservoir. Streamflow
simulation using assumed medium texture (Soil-
LDD) presented somewhat acceptable without
model calibration (R*> and NSE>0.5). A
systematic prediction of soil properties showed
an improvement on model performance (R? and
NSE>0.6). The soil-landscape approach
coupling with the pedo-transfer functions can
fulfil the required data for hydrological
simulation by SWAT model.
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