

Robust Kalman filtering with generalized Laplace observational noises*

Pairoj Khawsithiwong**

Nihal Yatawara***

Abstract

It is well known that the Kalman filter fails to provide optimal state estimates in the sense of minimum mean of squared state error, when measurement outliers occur in a linear stochastic system. This is primarily due to the usual Gaussian assumptions made on the measurement noise term in the state space model. In this manuscript, robust filters are derived by using generalized Laplace measurement noise with single and multi scale factors to replace Gaussian assumptions. The performance of the proposed robust filters is compared to the Kalman filter and other robust filters through Monte-Carlo simulations.

Key Words: recursive estimation, measurement outliers, heavy-tailed distribution

Introduction

In real-time applications, data is frequently collected one at a time. Hence, any suitable technique proposed to analyze real-time data is required to utilize the information from the current measurement and the prior knowledge of the system. To deal with problems of linear filtering and prediction, a linear discrete-time stochastic systems possesses properties of observability and reachability, represented by

$$\underline{X}_{t+1} = A_t \underline{X}_t + \underline{W}_t \quad (1)$$

$$\underline{Y}_t = C_t \underline{X}_t + \underline{V}_t \quad (2)$$

where \underline{V}_t and \underline{W}_t are the measurement noise and the system noise with the covariance matrices Σ_V and Σ_W , respectively. Also, both noise terms are assumed to be independent over time. The most celebrated Kalman filter (Kalman, 1960) was proposed as a recursive

* This article is to develop the robust Kalman filtering with single and multi scale factors to alleviate the effect of measurement outliers by assuming the measurement noise is multivariate generalized Laplace distributed.

** Assistant Professor in Statistics, Department of Statistics, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand. E-mail: khawsithiwong_p@su.ac.th

*** Adjunct Faculty, Department of Mathematics and Statistics, Curtin University of Technology, Perth, Western Australia, Australia. E-mail: N.Yatawara@curtin.edu.au

estimation procedure. By means of orthogonal projections, the optimal filter was derived in the sense of minimum average loss when a linear Gaussian stochastic system is considered. The traditional Kalman recursive formula of the state estimate and its covariance are respectively given as

$$\begin{aligned}\hat{X}_{t|t} &= \hat{X}_{t|t-1} + K_t(Y_t - C_t \hat{X}_{t|t-1}) \\ P_{t|t} &= (I - K_t C_t) P_{t|t-1}\end{aligned}$$

where

$$\begin{aligned}\hat{X}_{t|t-1} &= A_t \hat{X}_{t-1|t-1} \\ P_{t|t-1} &= A_{t-1} P_{t-1|t-1} A_{t-1}^T + \Sigma_W \\ K_t &= P_{t|t-1} C_t (C_t P_{t|t-1} C_t^T + \Sigma_V)^{-1}\end{aligned}$$

Unfortunately, in the presence of outliers, the noise terms are obviously non-Gaussian. This causes the Kalman filter to be no longer optimal.

To overcome the problem of having to deal with a non-Gaussian measurement noise term, robust filtering algorithms have been constructed and, consequently, many different robust filtering theories have emerged. One class of approaches considers the noise term to be distributed as a non-Gaussian heavy-tailed random variable to account for the outliers. For example, in early work, the distribution of the noise term was assumed to be a mixture of Gaussian components (Sorenson and Alspach, 1971; Pena and Guttman, 1988; Yatawara, Abraham, and MacGregor, 1991), a mixture of Student-t distributions (Meinhold and Singpurwalla, 1989), or a generalized Gaussian distribution (Niehsen, 2002).

An alternative technique was proposed by using a weighting factor in the covariance matrix of the measurement noise term. The weight is used to balance the disparity between the measurement and the predicted state estimate. Ting, Theodorou, and Schaal (2007) constructed a filter by using a weighted least squares-like approach with a single weight for all variables. Kovacevic, Banjac, and Kovacevic (2016) also proposed the robust filter using the recursive weighted least squares. The suitable single weight was obtained by Huber's robust estimation method. A drawback of these filters is that all variables, although some may not have outliers in them, get treated by the same weighting factor. To improve the filter's performance, Yang and Cui (2008) developed a robust filter with multi weights.

In this manuscript, a robust filter is developed by assuming that the measurement noise term follows a multivariate generalized Laplace (MGL) distribution, which is a class of symmetric multivariate models depending on a shape parameter. By a scale factor depending on an estimated value of the shape parameter at each time, the noise covariance matrix of the measurement noise term can be calculated adaptively such that the proposed robust

filter could account for measurement outliers in the system. Moreover, algorithms for a such robust filtering are provided considering single and multiple scale factors.

Multivariate Generalized Laplace Distribution

The multivariate generalized Laplace (MGL) distribution was introduced by Ernst (1998) as a class of symmetric elliptically contoured models consisting of several distributions depending on the value of a shape parameter. This shape parameter λ distinguishes between members of the family such as the Laplace ($\lambda = 1$), the normal ($\lambda = 2$) and the uniform ($\lambda \rightarrow \infty$) distributions.

Let \underline{Y} be a $k \times 1$ random vector, $\underline{\mu}$ be a $k \times 1$ vector of constants, and $\Sigma = [(\sigma_{ij})]$ be a $k \times k$ non-negative definite matrix. Suppose the random vector \underline{Y} has an MGL distribution with the mean vector $\underline{\mu}$, the scale parameter matrix Σ , and the shape parameter λ , denoted by $\underline{Y} \sim MGL_k(\underline{\mu}, \Sigma, \lambda)$, with the joint density of \underline{Y} defined as

$$f(\underline{y}) = \frac{\lambda \Gamma(\frac{k}{2})}{2\pi^{\frac{k}{2}} \Gamma(\frac{\lambda}{2})} |\Sigma|^{-\frac{1}{2}} \exp \left\{ - \left[(\underline{y} - \underline{\mu})^\top \Sigma^{-1} (\underline{y} - \underline{\mu}) \right]^{\frac{\lambda}{2}} \right\} \quad (3)$$

where $\Gamma(\cdot)$ denotes a gamma function. The mean vector and the covariance matrix of the MGL random vector \underline{Y} are given respectively by

$$E(\underline{Y}) = \underline{\mu} \quad \text{and} \quad Cov(\underline{Y}) = \frac{\Gamma(\frac{k+2}{\lambda})}{k \Gamma(\frac{k}{\lambda})} \Sigma.$$

Furthermore, let a partitioned random vector

$\underline{Y}_{k \times 1} = (\underline{Y}_{1(1 \times k_1)}, \underline{Y}_{2(1 \times (k-k_1))})$ having a mean vector $\underline{\mu}_{k \times 1} = (\underline{\mu}_{1(1 \times k_1)}, \underline{\mu}_{2(1 \times (k-k_1))})$, and scale parameter matrix

$\Sigma = \begin{bmatrix} \Sigma_{11(k_1 \times k_1)} & \Sigma_{12(k_1 \times (k-k_1))} \\ \Sigma_{21((k-k_1) \times k_1)} & \Sigma_{22((k-k_1) \times (k-k_1))} \end{bmatrix}$ be given. Then, the conditional MGL

density of $\underline{Y}_1 \mid \underline{Y}_2 = \underline{y}_2^*$ is defined as

$$f(\underline{y}_1 \mid \underline{y}_2 = \underline{y}_2^*) = \frac{\Gamma(\frac{k}{2}) \Gamma(\frac{k-k_1}{\lambda})}{\pi^{\frac{k_1}{2}} \Gamma(\frac{k}{\lambda}) \Gamma(\frac{k-k_1}{2})} |\Sigma_{11.2}|^{-\frac{1}{2}}$$

$$\times \exp \left\{ - \left[(\underline{y}_1 - \underline{\mu}_{1.2}) \Sigma_{11.2}^{-1} (\underline{y}_1 - \underline{\mu}_{1.2}) + (\underline{y}_2^* - \underline{\mu}_2) \Sigma_{22}^{-1} (\underline{y}_2^* - \underline{\mu}_2) \right]^{\frac{\lambda}{2}} + \left[(\underline{y}_2^* - \underline{\mu}_2) \Sigma_{22}^{-1} (\underline{y}_2^* - \underline{\mu}_2) \right]^{\frac{\lambda}{2}} \right\} \quad (4)$$

where $\underline{\mu}_{1.2} = \underline{\mu}_1 + \Sigma_{12} \Sigma_{22}^{-1} (\underline{y}_2^* - \underline{\mu}_2)$ and $\Sigma_{11.2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$. The mean vector and the covariance matrix of $\underline{Y}_1 | \underline{Y}_2 = \underline{y}_2^*$ are given respectively by

$$E(\underline{Y}_1 | \underline{Y}_2 = \underline{y}_2^*) = \underline{\mu}_{1.2} \text{ and } Cov(\underline{Y}_1 | \underline{Y}_2 = \underline{y}_2^*) = \frac{\Gamma(\frac{k_1+2}{\lambda})}{k_1 \Gamma(\frac{k_1}{\lambda})} \Sigma_{11.2}.$$

See further details on the elliptically contoured distribution in Fang, Kotz, and Ng (1990).

MGL filter

Consider a linear discrete-time stochastic system given by equations (1) and (2). In this derivation, \underline{V}_t is assumed to be distributed as a zero mean MGL random vector with a scale parameter Σ_V and a shape parameter λ_V , denoted by $\underline{V}_t \sim MGL_k(\underline{0}, \Sigma_V, \lambda_V)$ and the system noise term \underline{W}_t is assumed to be a Gaussian random vector, denoted by $\underline{W}_t \sim MGL_r(\underline{0}, \Sigma_W, 2)$. The scale parameter matrices Σ_V and Σ_W are known positive definite. Also, both noise terms are assumed to be independent over time point. By least squares technique (Kalman, 1960; Duncan and Horn, 1972), an unbiased minimum variance state estimate and its covariance can be easily derived. These provide a recursive formulae of the MGL filter as given by the following equations.

$$\hat{\underline{X}}_{t|t} = \hat{\underline{X}}_{t|t-1} + K_t (\underline{Y}_t - C_t \hat{\underline{X}}_{t|t-1}) \quad (5)$$

$$P_{t|t} = (I - K_t C_t) P_{t|t-1} \quad (6)$$

where

$$\hat{\underline{X}}_{t|t-1} = A_t \hat{\underline{X}}_{t-1|t-1}$$

$$P_{t|t-1} = A_{t-1} P_{t-1|t-1} A_{t-1}^T + \frac{1}{2} \Sigma_W$$

$$K_t = P_{t|t-1} C_t \left(C_t P_{t|t-1} C_t^T + \frac{\Gamma(\frac{k+2}{\lambda_V})}{k \Gamma(\frac{k}{\lambda_V})} \Sigma_V \right)^{-1}$$

In practice, the shape parameter of the measurement noise term λ_V has to be estimated from data at each time point.

Algorithms of MGL filters

The MGL filter with a single scale factor (MGLF-S) is constructed by using only one factor for all variables. Consider an innovation, defined by $\underline{S}_t = \underline{Y}_t - \hat{\underline{Y}}_t = \underline{Y}_t - C_t \hat{\underline{X}}_{t-1}$. If \underline{S}_t is Gaussian, this implies that the system has no outliers in the measurement noise term. Thus, to deal with measurement outliers, \underline{S}_t is assumed to follow an MGL distribution with a time-varying shape parameter $\lambda_{S(t)}$, denoted by $\underline{S}_t \sim MGL_k(\underline{0}, \Sigma_S, \lambda_{S(t)})$ where Σ_S is the scale parameter matrix in case when \underline{S}_t is supposed to be Gaussian, given by $\Sigma_S = 2 \left(C_t P_{t|t-1} C_t + \frac{1}{2} \Sigma_V \right)$. This leads to MGLF-S obtained by replacing λ_V with $\hat{\lambda}_{S(t)}$, where $\hat{\lambda}_{S(t)}$ is the maximum likelihood estimator of $\lambda_{S(t)}$, obtained by maximizing the negative logarithm of the likelihood as in equation (3), i.e.

$$\frac{d}{d\lambda_{S(t)}} \left[\log \left(\lambda_{S(t)} \Gamma \left(\frac{k}{\lambda_{S(t)}} \right) \right) + (\underline{S}_t \Sigma_S^{-1} \underline{S}_t)^{\frac{\lambda_{S(t)}}{2}} \right] = 0$$

where $\Sigma_S = 2\delta^2 \left(C_t P_{t|t-1} C_t + \frac{1}{2} \Sigma_V \right)$ and δ is a known constant, named a tolerance factor and used to improve the performance of the filter.

To develop the MGL filter with multi scale factors (MGLF-M), the j^{th} element of an innovation is obtained to construct a diagonal matrix of the scale factors. Define a partitioned k-variate MGL random vector $\underline{S}_t = (S_{jt}, \underline{S}_t^*)$ where $\underline{S}_t^* = (S_{1t}, S_{2t}, \dots, S_{(j-1)t}, S_{(j+1)t}, \dots, S_{kt})$ is a vector of the rest of innovations

excluding S_{jt} with the corresponding block scale parameter matrix $\Sigma_S = \begin{bmatrix} \sigma_{jj} & \Sigma_j^* \\ \Sigma_j^* & \Sigma^* \end{bmatrix}$ for

$j = 1, 2, \dots, k$. Then, the conditional density function of S_{jt} given $\underline{S}_t^* = \underline{S}_t^* \sim MGL_1(0, \sigma_j^2, \lambda_{Sj(t)})$, where the conditional variance of $S_{jt} | \underline{S}_t^* = \underline{S}_t^*$ is given by

$$\sigma_{S_{jt} | \underline{S}_t^* = \underline{S}_t^*}^2 = \frac{\Gamma\left(\frac{3}{\lambda_{Sj(t)}}\right)}{\Gamma\left(\frac{1}{\lambda_{Sj(t)}}\right)} \sigma_j^2. \text{ In practice, the } \lambda_{Sj(t)} \text{ are replaced by the maximum}$$

likelihood estimates $\hat{\lambda}_{Sj(t)}$ for $j = 1, 2, \dots, k$, which are obtained by maximizing the negative logarithm of the likelihood of $S_{jt} | \underline{S}_t^* = \underline{S}_t^*$ with $\sigma_j^2 = 2\delta^2(\sigma_{jj} - \Sigma_j^* \Sigma^{*-1} \Sigma_j^*)$ that follows the conditional density in equation (4).

The followings are outlines of the algorithms which can be used to implement the MGL filter with single scale factor and with multi scale factors.

1. Enter the initial estimates $\hat{X}_{t|t-1}$ and $P_{t|t-1}$.
2. Collect a new measurement \underline{Y}_t .

3. Approximating the shape parameter

Compute an innovation, $\underline{S}_t = \underline{Y}_t - \hat{Y}_t = \underline{Y}_t - C_t \hat{X}_{t|t-1}$ where \underline{S}_t is distributed as an MGL random vector, denoted by $\underline{S}_t \sim MGL_k(\underline{0}, \Sigma_S, \lambda_{S(t)})$.

a. Single scale factor

Obtain a maximum likelihood estimator $\hat{\lambda}_{S_j(t)}$ with the scale parameter matrix Σ_S defined by $\Sigma_S = 2\delta^2 (C_t P_{t|t-1} C_t + \frac{1}{2} \Sigma_V)$ where δ is a known constant tolerance factor.

b. Multi scale factors

Obtain maximum likelihood estimators $\hat{\lambda}_{S_j(t)}$ for $j = 1, 2, \dots, k$ corresponding to a conditional random variable S_{jt} given $\underline{S}_t^* = \underline{S}_t$ with the scale parameter σ_j^2 defined by $\sigma_j^2 = 2\delta^2 (\sigma_{jj} - \Sigma_j^* \Sigma^{*-1} \Sigma_j^*)$.

4. Calculating the filter gain

a. Single scale factor

Compute the filter gain $K_t = P_{t|t-1} C_t (C_t P_{t|t-1} C_t + \hat{\omega} \Sigma_V)^{-1}$ where

$\hat{\omega} = \frac{\Gamma\left(\frac{k+2}{\hat{\lambda}_{S(t)}}\right)}{k\Gamma\left(\frac{k}{\hat{\lambda}_{S(t)}}\right)}$ is a scale factor. The covariance matrix of the measurement noise term $\hat{\omega} \Sigma_V$ is also adaptively estimated at this stage.

b. Multi scale factors

Compute the filter gain $K_t = P_{t|t-1} C_t (C_t P_{t|t-1} C_t + \hat{\Omega}^{\frac{1}{2}} \Sigma_V \hat{\Omega}^{\frac{1}{2}})^{-1}$ where

$\hat{\Omega} = diag\left(\frac{\Gamma\left(\frac{k+2}{\hat{\lambda}_{S_1(t)}}\right)}{k\Gamma\left(\frac{k}{\hat{\lambda}_{S_1(t)}}\right)}, \frac{\Gamma\left(\frac{k+2}{\hat{\lambda}_{S_2(t)}}\right)}{k\Gamma\left(\frac{k}{\hat{\lambda}_{S_2(t)}}\right)}, \dots, \frac{\Gamma\left(\frac{k+2}{\hat{\lambda}_{S_k(t)}}\right)}{k\Gamma\left(\frac{k}{\hat{\lambda}_{S_k(t)}}\right)}\right)$ is a diagonal matrix of

the multi scale factors. Obtain the adaptive covariance matrix of the measurement noise term.

5. State vector update

Update the state estimate $\hat{\underline{X}}_{t|t}$ and state error covariance matrix $P_{t|t}$ by

$$\begin{aligned}\hat{\underline{X}}_{t|t} &= \hat{\underline{X}}_{t|t-1} + K_t(Y_t - C_t \hat{\underline{X}}_{t|t-1}) \\ P_{t|t} &= (I - K_t C_t) P_{t|t-1}\end{aligned}$$

6. Time update

Compute the one step ahead state estimate $\hat{\underline{X}}_{t+1|t}$ and state forecast error covariance matrix $P_{t+1|t}$ given by

$$\begin{aligned}\hat{\underline{X}}_{t+1|t} &= A_t \hat{\underline{X}}_{t|t} \\ P_{t+1|t} &= A_t P_{t|t} A_t^T + \frac{1}{2} \Sigma_W\end{aligned}$$

7. Let $t = t + 1$ and go to step 2.

Clearly, when the MGLF-S is used, its performance is inferior as it tends to influence some variables that are devoid of outlier effects. However, the MGLF-M may be implemented to alleviate such outlier effects. In the next section, the performances of the proposed MGL filters are investigated and compared with the classical Kalman filter as well as other robust filters through Monte Carlo simulations. In addition, the effects of the tolerance factor and the scale factor are discussed.

Performance study

The performance of the MGL filtering technique in comparison to the Kalman filter could be illustrated by using Figure 1 that belongs to the bivariate linear stochastic system with measurement outliers occurred in the first variable at time 35, 40, 55, 75, and 80 in the series of length 100. As shown in Figure 1(a), the states from the Kalman filter are significantly affected by measurement outliers, whereas the MGLF-S and MGLF-M show resistance to outliers. However, a major drawback of having a single scale factor in the MGL filter is that both the first and the second variables are down weighed by the same weighting factor even though the second variable is not affected by outliers. As shown in Figure 1(b), the values of the shape parameter in the MGL distribution used to calculate the single scale factor is less than 2 for each variable. This tends to produce under estimates for the states of the second

variable which is not affected by outliers. In the MGLF-M, each variable is influenced by their own shape parameter, see Figure 1(c) for the first variable with outliers and Figure 1(d) for the second variable with no outliers. However, even under this scenario, the values of the shape parameter shown in Figure 1(d) are not significantly different from 2.

An investigation of the filter performance by a Monte Carlo simulation is established by assuming the outliers occur in the 5-variate linear discrete-time Gaussian system defined as

$$\begin{aligned} \underline{X}_{t+1} &= \underline{X}_t + \underline{W}_t \\ \underline{Y}_t &= \underline{X}_t + \underline{V}_t \end{aligned}$$

with the usual assumptions on the parameters. A simulation consisting of 2,000 iterations with the mean of squared state error (MSSE) as a preferred criterion for comparisons was conducted under following conditions.

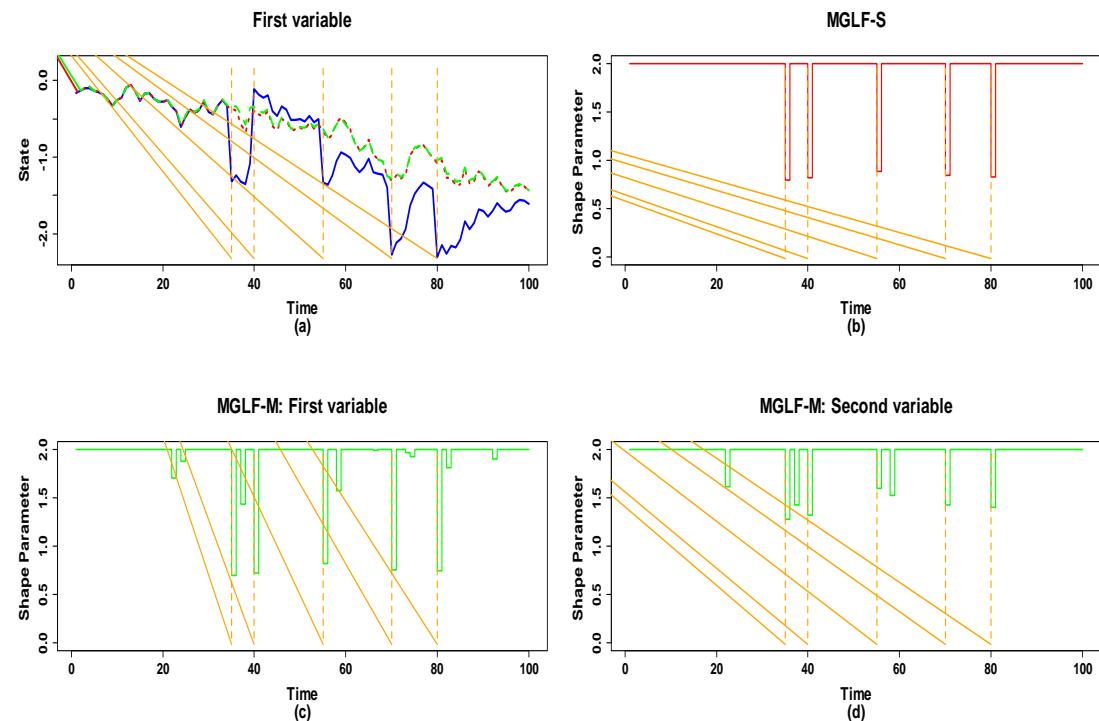


Figure 1 The states of the Kalman filter (solid line), the MGLF-S (dotted line) and the MGLF-M (dashed line) and the corresponding shape parameters.

1. System noise variances $\sigma_W^2 = 0.01$ and correlation coefficients of system noise terms $\rho_W = 0.1, 0.4$, and 0.8 ,
2. Measurement noise variances $\sigma_V^2 = 1$ and the corresponding correlation coefficients of the measurement noise terms $\rho_V = 0.1, 0.4$, and 0.8 ,

3. Magnitude of additive measurement outliers is defined by $\delta_{outlier} \sigma_V$ where $\delta_{outlier} = 2, 3, 4, 5, 10, \text{ and } 15$,

4. Five additional measurement outliers occur only in the first variable at times 35, 40, 55, 70, and 80 in the time series of length 100,

5. The mean of squared state error in each iteration computed by

$$MSSE = \frac{1}{100} \sum_{t=1}^{100} (\underline{X}_t - \hat{\underline{X}}_{t|t}) (\underline{X}_t - \hat{\underline{X}}_{t|t})$$

and averaged over 2,000 iterations.

The structure of both noise covariance matrices is formed by assuming $\Sigma = \sigma^2(1 - \rho)I + \sigma^2\rho J$ where I is an identity matrix and J is a matrix of ones.

Table 1 MSSE values of the filters for various correlation coefficients of the system noise terms (ρ_W), correlation coefficients of the measurement noise terms (ρ_V), and tolerance factor (δ).

$(\rho_W, \rho, \delta_{outlier})$	KAL MAN	MGF	GGF	MGLF-S					MGLF-M				
				1	2	3	4	5	1	2	3	4	5
(0.1, 0.1)	2	0.454	0.45	0.47	0.54	0.45	0.45	0.45	0.64	0.47	0.45	0.45	0.45
		65	467	623	445	023	421	244	335	783	062	605	167
	3	0.460	0.45	0.46	0.53	0.46	0.46	0.46	0.63	0.47	0.45	0.45	0.45
		49	967	985	931	007	141	449	249	799	600	487	851
	4	0.478	0.47	0.47	0.54	0.46	0.48	0.47	0.48	0.63	0.47	0.45	0.46
		14	270	001	531	732	034	875	451	993	775	845	022
	5	0.507	0.48	0.47	0.55	0.46	0.48	0.50	0.50	0.64	0.46	0.45	0.47
		75	423	463	157	033	944	141	035	589	903	763	914
	10	0.696	0.45	0.47	0.55	0.45	0.46	0.50	0.59	0.64	0.47	0.44	0.45
		86	482	057	091	992	483	668	004	309	363	657	144
(0.1, 0.4)	15	0.994	0.45	0.46	0.54	0.45	0.45	0.46	0.50	0.63	0.46	0.44	0.44
		32	309	799	847	336	531	881	912	931	544	426	090
	2	0.427	0.42	0.47	0.50	0.42	0.42	0.42	0.59	0.44	0.42	0.42	0.42
		63	751	352	829	486	527	629	629	862	308	617	495
	3	0.436	0.43	0.47	0.50	0.42	0.43	0.44	0.43	0.59	0.44	0.42	0.43
		53	477	160	923	747	440	145	786	057	134	430	125
	4	0.454	0.44	0.47	0.50	0.43	0.45	0.46	0.45	0.59	0.44	0.42	0.43
		58	324	041	828	619	387	039	914	538	710	875	189
	5	0.488	0.44	0.47	0.51	0.43	0.45	0.47	0.48	0.59	0.44	0.42	0.43
		31	377	640	685	381	392	387	153	743	171	754	255

10	0.704	0.42	0.47	0.51	0.43	0.43	0.45	0.50	0.59	0.44	0.41	0.42	0.42
	80	801	140	682	128	162	686	546	379	262	881	302	603
15	1.052	0.42	0.46	0.51	0.42	0.42	0.43	0.45	0.59	0.43	0.41	0.41	0.42
	63	197	457	060	572	393	297	567	085	862	763	636	074
(0.1, 0.8)	2	0.341	0.33	0.47	0.39	0.33	0.34	0.34	0.34	0.47	0.35	0.33	0.33
	19	987	448	704	834	090	246	345	580	604	949	907	059
	3	0.371	0.35	0.47	0.41	0.34	0.34	0.36	0.36	0.47	0.35	0.34	0.35
	47	242	660	182	006	977	922	396	806	849	575	528	897
	4	0.399	0.33	0.47	0.40	0.33	0.34	0.37	0.39	0.47	0.35	0.34	0.36
	90	579	332	328	561	909	563	428	026	437	785	415	927
	5	0.440	0.33	0.46	0.39	0.34	0.34	0.37	0.41	0.46	0.36	0.34	0.36
	26	392	741	959	306	383	019	068	227	392	782	871	553
	10	0.795	0.33	0.46	0.39	0.34	0.33	0.34	0.35	0.46	0.35	0.33	0.35
	67	409	866	925	608	582	428	392	784	732	845	490	281
	15	1.384	0.34	0.47	0.41	0.33	0.33	0.34	0.48	0.35	0.33	0.33	0.36
		72	050	149	286	740	409	641	240	212	391	679	929
													174

Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and multi scale factors, respectively. An underlined number and a bold number show a case of minimum MSSE value when the MGLF-S with $\delta = 2$ and the MGLF-M with $\delta = 3$ are respectively considered in a comparison with KALMAN, MGF, and GGF.

Table 1 Continued.

$(\rho_w, \rho, \delta_{outli})$	KAL MAN	MGF	GGF	MGLF-S					MGLF-M				
				1	2	3	4	5	1	2	3	4	5
(0.4, 0.1)	2	0.421	0.42	0.44	0.50	0.42	0.42	0.42	0.42	0.59	0.44	0.42	0.42
		07	107	176	892	434	063	603	230	837	351	164	566
	3	0.438	0.43	0.44	0.51	0.43	0.43	0.43	0.43	0.60	0.44	0.42	0.43
		14	804	645	905	179	408	239	387	838	485	847	746
	4	0.449	0.44	0.43	0.50	0.43	0.45	0.45	0.44	0.59	0.44	0.43	0.43
		26	331	941	856	691	121	119	127	328	597	142	378
	5	0.464	0.44	0.43	0.50	0.43	0.45	0.47	0.47	0.58	0.44	0.42	0.43
		74	246	248	343	524	615	338	250	021	262	599	455
	10	0.647	0.42	0.43	0.50	0.42	0.43	0.47	0.54	0.58	0.44	0.41	0.42
		09	359	715	857	901	680	413	577	579	008	883	344
	15	0.937	0.42	0.43	0.51	0.42	0.42	0.44	0.47	0.59	0.43	0.41	0.41
		65	532	678	522	625	600	254	214	465	656	556	421

(0.4, 0.4)	2	0.451	<u>0.45</u>	0.50	0.54	<u>0.45</u>	0.44	0.45	0.45	0.59	0.46	0.44	0.45	0.45
		74	<u>165</u>	481	642	<u>330</u>	890	680	412	163	912	978	583	355
	3	0.467	0.46	0.50	0.55	<u>0.45</u>	0.46	0.46	0.46	0.59	0.46	0.45	0.45	0.45
		36	614	899	446	<u>782</u>	473	100	412	727	790	609	270	897
	4	0.488	0.47	0.51	0.55	<u>0.45</u>	0.47	0.48	0.47	0.59	0.46	0.45	0.45	0.45
		02	639	085	473	<u>803</u>	397	208	371	366	578	461	828	612
	5	0.501	0.46	0.50	0.54	<u>0.46</u>	0.47	0.50	0.50	0.58	0.47	0.44	0.46	0.46
		82	484	380	627	<u>429</u>	480	481	674	574	429	990	048	341
	10	0.692	<u>0.45</u>	0.50	0.54	0.46	0.45	0.47	0.52	0.58	0.47	0.44	0.45	0.46
		12	<u>395</u>	207	430	152	592	770	170	620	084	537	105	197
	15	1.000	<u>0.45</u>	0.49	0.55	0.45	0.45	0.46	0.48	0.59	0.46	0.44	0.44	0.45
		15	<u>240</u>	937	080	425	710	001	207	378	498	990	438	422
(0.4, 0.8)	2	0.428	0.42	0.57	0.51	<u>0.41</u>	0.42	0.43	0.43	0.54	0.44	0.42	0.43	0.42
		18	732	418	158	<u>992</u>	212	281	015	335	497	690	070	756
	3	0.446	0.43	0.57	0.51	<u>0.42</u>	0.43	0.44	0.44	0.54	0.44	0.44	0.44	0.44
		73	265	447	643	<u>369</u>	156	015	598	237	683	109	097	207
	4	0.477	0.42	0.57	0.51	<u>0.42</u>	0.42	0.44	0.46	0.54	0.44	0.43	0.46	0.47
		76	735	782	579	<u>157</u>	593	731	566	519	588	946	483	344
	5	0.502	0.41	0.56	0.50	0.43	0.42	0.44	0.47	0.52	0.45	0.44	0.46	0.48
		79	<u>929</u>	855	412	<u>045</u>	709	607	439	965	393	034	817	927
	10	0.797	0.41	0.56	0.50	0.43	0.42	0.42	0.44	0.54	0.44	0.42	0.44	0.49
		61	<u>971</u>	891	244	<u>050</u>	159	835	312	050	390	799	952	906
	15	1.277	0.42	0.56	0.52	<u>0.42</u>	0.42	0.41	0.43	0.54	0.44	0.42	0.42	0.47
		84	379	812	033	<u>229</u>	451	773	334	720	227	697	933	086

Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and multi scale factors, respectively. An underlined number and a bold number show a case of minimum MSSE value when the MGLF-S with $\delta = 2$ and the MGLF-M with $\delta = 3$ are respectively considered in a comparison with KALMAN, MGF, and GGF.

Table 1 Continued.

$(\rho_w, \rho, \delta_{outli})$	KAL MAN	MGF	GGF	MGLF-S					MGLF-M					
				1	2	3	4	5	1	2	3	4	5	
(0.8, 0.1)	2	<u>0.334</u>	0.33	0.35	0.40	0.33	0.33	0.32	0.33	0.45	0.34	0.33	0.32	0.33
	3	45	462	044	124	456	284	948	423	739	838	357	883	400
	4	0.337	<u>0.33</u>	0.34	0.39	0.34	0.34	0.34	0.34	0.45	0.35	0.33	0.33	0.34
	5	37	681	414	823	631	302	235	389	070	767	796	832	188
	10	0.354	0.35	0.34	0.40	<u>0.34</u>	0.35	0.35	0.35	0.46	0.34	0.33	0.34	0.34
	15	24	020	851	628	<u>162</u>	194	609	418	049	849	700	162	526
	20	0.368	0.35	0.34	0.39	<u>0.33</u>	0.35	0.36	0.37	0.44	0.34	0.33	0.33	0.34
	25	07	021	290	628	<u>934</u>	993	621	352	386	477	598	614	992
	30	0.511	<u>0.33</u>	0.34	0.40	0.34	0.34	0.36	0.42	0.44	0.34	0.33	0.32	0.33
	35	21	<u>603</u>	501	202	<u>163</u>	772	911	922	953	942	343	974	760
	40	0.744	<u>0.33</u>	0.34	0.40	0.33	0.34	0.34	0.37	0.45	0.34	0.33	0.32	0.32
	45	57	<u>735</u>	666	530	879	152	949	204	417	470	192	734	640
	50	<u>0.409</u>	<u>0.40</u>	0.46	0.49	0.42	0.42	0.41	0.41	0.49	0.43	0.42	0.40	0.41
	55	42	942	189	525	088	288	002	807	541	333	410	954	755
	60	0.419	<u>0.41</u>	0.46	0.49	0.43	0.42	0.42	0.41	0.49	0.44	0.41	0.42	0.41
	65	98	<u>932</u>	312	971	299	493	835	989	751	217	942	316	673
	70	0.439	0.43	0.46	0.51	<u>0.42</u>	0.42	0.44	0.43	0.50	0.43	0.41	0.42	0.42
	75	14	264	683	686	<u>412</u>	436	460	820	614	144	078	677	435
	80	0.448	0.42	0.46	0.50	<u>0.41</u>	0.43	0.44	0.45	0.49	0.42	0.41	0.41	0.42
	85	97	267	390	318	<u>787</u>	456	541	766	642	416	805	448	865
	90	0.584	<u>0.42</u>	0.45	0.50	0.42	0.43	0.43	0.46	0.50	0.43	0.42	0.41	0.42
	95	65	<u>051</u>	790	798	<u>531</u>	016	493	057	025	113	158	816	335
	100	0.803	<u>0.41</u>	0.46	0.50	0.42	0.42	0.42	0.43	0.50	0.42	0.41	0.41	0.41
	105	96	<u>911</u>	623	868	<u>399</u>	783	907	395	699	881	948	956	827
(0.8, 0.8)	2	<u>0.440</u>	0.44	0.58	0.53	0.45	0.45	0.44	0.45	0.52	0.48	0.47	0.44	0.45
	3	44	099	962	775	256	670	186	015	476	445	119	973	149
	4	0.456	<u>0.45</u>	0.59	0.53	0.46	0.45	0.46	0.45	0.52	0.49	0.47	0.48	0.46
	5	45	<u>002</u>	071	903	<u>921</u>	529	651	575	645	642	432	527	989
	6	0.481	<u>0.45</u>	0.59	0.56	<u>0.45</u>	0.44	0.47	0.47	0.53	0.48	0.46	0.50	0.51
	7	54	331	685	094	<u>091</u>	437	577	547	809	106	744	974	174
	8	0.496	<u>0.44</u>	0.59	0.54	0.44	0.45	0.45	0.48	0.52	0.47	0.47	0.49	0.55
	9	25	636	439	101	821	394	623	615	906	700	501	853	025
	10	0.690	<u>0.45</u>	0.58	0.55	0.45	0.46	0.45	0.45	0.52	0.47	0.46	0.48	0.53
	11	58	<u>302</u>	565	384	728	105	311	674	980	230	897	471	456
12	15	1.003	<u>0.44</u>	0.59	0.54	0.45	0.46	0.45	0.45	0.53	0.47	0.46	0.47	0.50
	13	66	915	736	242	467	001	475	229	356	001	096	265	088

Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and multi scale factors, respectively. An underlined number and a bold number show a case of minimum MSSE value when the MGLF-S with $\delta = 2$ and the MGLF-M with $\delta = 3$ are respectively considered in a comparison with KALMAN, MGF, and GGF.

All filters are in a comparison consisting of the Kalman filter, the robust filter with mixture Gaussian noise (MGF), the robust filter with generalized Gaussian noise (GGF) and the proposed robust filters, MGLF-S and MGLF-M. The MGF and GGF involve a heavy-tailed distributed measurement noise term. The MGF is assumed a measurement noise term has a mixture Gaussian distribution (Yatawara, Abraham, and MacGregor, 1991). In this study, the mixture measurement noises were determined by a probability of outliers occurred that sets to 0.05. The GGF is developed by using a generalized Gaussian distributed noise and assuming all measurement noises are independent (Niehsen, 2002).

The simulation results in Table 1 illustrate the effect on MSSE values of all five filters for various system noise and measurement noise correlations, ρ_W and ρ_V , and the tolerance factor δ . When $\delta_{outlier}$ is small, MSSE values of the Kalman filter do not dramatically change as those of the robust filters do. This implies that the Kalman filter is robust to small magnitudes of measurement outliers. MSSE values of the Kalman filter also tend to increase obviously when $\delta_{outlier}$ grows up. In contrast, those of all the other four robust filters are consistent to all magnitudes of measurement outliers. Further, the correlation coefficients of the noise terms influence the effectiveness of all filters, i.e. MSSE values of those filters get large when correlation coefficients of noise terms are inflated.

To compare the performance of the robust filters, a suitable tolerance factor δ might be chosen to obtain the optimal MGL filters that achieve a minimum MSSE. Based on the studied model in this investigation resulted in Table 1, in most cases when $\delta = 2$, the MGLF-S produces the lowest MSSE against all δ and the MGLF-M does as $\delta = 3$. However, the effectiveness of both MGL filters get worse when ρ_W or ρ_V become large. Meanwhile, the MGF performs well in this situation. Furthermore, when ρ_V is small or moderate, the MGLF-M with $\delta = 3$ performs superior to the MGLF-S with $\delta = 2$ in most cases.

Without the tolerance factor ($\delta = 1$), the MGL filters have large values of MSSE since the state estimates of the filters are down weighed heavily by the scale factors although those measurements are not outliers. In addition, it could be noticed that the efficiency of the MGL filters can be improved by choosing a suitable value of the tolerance factor. For example,

in a such simulation under the studied model, a value of the tolerance factor should be set to 2 or 3 as resulted in Table 1. However, a suitable value of δ could be varied by a model. Thus, an appropriate value of a such factor should be found out to attain a minimum mean square of the state error.

Conclusion

To address the linear filtering problem when measurement noise outliers occur, it was assumed that the measurement noise follows a multivariate generalized Laplace distribution, and the MGL filters depending on a single and multi scale factors were developed. The performance of the MGL filters is shown to improve significantly when the measurement noise covariance matrices are also adaptively estimated. The evidence from a Monte Carlo investigation reveals that the proposed MGL filters are in fact robust against measurement outliers. However, their performances are deteriorated by effects of both noise term correlations. MSSE values of the MGL filters tend to be extensive when a large magnitude of the tolerance factor is applied. Thus, an effectiveness of the MGL filters are relied on a chosen suitable value of the tolerance factor that achieves a minimum MSSE filter.

Acknowledgements

This work is supported by Faculty of Science, Silpakorn University which is greatly acknowledged. The anonymous reviewers are acknowledged with their critical comments and helpful revisions that helped the manuscript to be greatly improved.

References

- Duncan, David B. and Susan D. Horn. (1972). “Linear dynamic recursive estimation from the viewpoint of regression analysis.” *Journal of the American Statistical Association* **67**: 815-821.
- Ernst, Michael D. (1998). “A multivariate generalized Laplace distribution.” *Computational Statistics* **13**: 227-232.
- Fang, Kai.-Tai., Samuel Kotz, and Kai W. Ng. (1990). *Symmetric Multivariate and Related Distributions*. New York: Chapman & Hall.
- Kalman, Rudolf E. (1960). “A new approach to linear filtering and prediction problems.” *Journal of Basic Engineering* **82(D)**: 35-45.

- Kovacevic, Brako, Zoran Banjac, and Kostic Kovacevic. (2016). "Robust adaptive filtering using recursive weighted least squares with combined scale and variable forgetting factors." *EURASIP Journal on Advances in Signal Processing* 37: 1-22.
- Meinhold, Richard J. and Nozer D. Singpurwalla. (1989). "Robustification of Kalman filter models." *Journal of the American Statistical Association* 84: 479-486.
- Niehsen, Wolfgang. (2002). "Robust Kalman filtering with generalized Gaussian measurement noise." *IEEE Transactions on Aerospace and Electronic System* 38: 1409-1412.
- Pena, Daniel and Irwin Guttman. (1988). "Bayesian approach to robustifying the Kalman filter." In *Bayesian Analysis of Time Series and Dynamic Models*, 227-253. Edited by James C. Spall. New York: Marcel Dekker.
- Sorenson, Harold W. and Daniel L. Alspach. (1971). "Recursive Bayesian estimation using Gaussian sums." *Automatica* 7: 465-479.
- Ting, Jo-Anne, Evangelos Theodorou, and Stefan Schaal. (2007). "Learning an outlier-robust Kalman filter." CLMC Technical Report, University of Southern California, USA.
- Yang, Yuanxi and Xianqiang Cui. (2008). "Adaptively robust filter with multi adaptive factor." *Survey Review* 40: 260-270.
- Yatawara, Nihal, Bovas Abraham, and John F. MacGregor. (1991). "A Kalman filter in the presence of outliers." *Communications in Statistics-Theory and Methods* 20: 1803-1820.