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Abstract 
 It is well known that the Kalman filter fails to provide optimal state estimates in the 
sense of minimum mean of squared state error, when measurement outliers occur in a linear 
stochastic system. This is primarily due to the usual Gaussian assumptions made on the 
measurement noise term in the state space model. In this manuscript, robust filters are 
derived by using generalized Laplace measurement noise with single and multi scale factors to 
replace Gaussian assumptions. The performance of the proposed robust filters is compared to 
the Kalman filter and other robust filters through Monte-Carlo simulations.  
 
Key Words: recursive estimation, measurement outliers, heavy-tailed distribution 
 
Introduction 
 In real-time applications, data is frequently collected one at a time. Hence, any 
suitable technique proposed to analyze real-time data is required to utilize the information 
from the current measurement and the prior knowledge of the system. To deal with problems 
of linear filtering and prediction, a linear discrete-time stochastic systems possesses properties 
of observability and reachability, represented by 

𝑋𝑡   𝐴𝑡𝑋𝑡  𝑊𝑡     (1) 

𝑌𝑡  𝐶𝑡𝑋𝑡  𝑉𝑡              (2) 

where 𝑉𝑡  and 𝑊𝑡 are the measurement noise and the system noise with the covariance 

matrices  𝑉 and  𝑊 , respectively. Also, both noise terms are assumed to be independent 
over time. The most celebrated Kalman filter (Kalman, 1960) was proposed as a recursive 
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estimation procedure. By means of orthogonal projections, the optimal filter was derived in 
the sense of minimum average loss when a linear Gaussian stochastic system is considered. 
The traditional Kalman recursive formula of the state estimate and its covariance are 
respectively given as 

𝑋̂𝑡|𝑡  𝑋̂𝑡|𝑡   𝐾𝑡(𝑌𝑡  𝐶𝑡𝑋̂𝑡|𝑡  ) 
        𝑃𝑡|𝑡  (𝐼  𝐾𝑡𝐶𝑡)𝑃𝑡|𝑡   

where   𝑋̂𝑡|𝑡   𝐴𝑡𝑋̂𝑡  |𝑡   

𝑃𝑡|𝑡   𝐴𝑡  𝑃𝑡  |𝑡  𝐴𝑡  
′   𝑊 

     𝐾𝑡  𝑃𝑡|𝑡  𝐶𝑡
′ (𝐶𝑡𝑃𝑡|𝑡  𝐶𝑡

′   𝑉)
  

 
Unfortunately, in the presence of outliers, the noise terms are obviously non-Gaussian. This 
causes the Kalman filter to be no longer optimal. 
 To overcome the problem of having to deal with a non-Gaussian measurement noise 
term, robust filtering algorithms have been constructed and, consequently, many different 
robust filtering theories have emerged. One class of approaches considers the noise term to be 
distributed as a non-Gaussian heavy-tailed random variable to account for the outliers. For 
example, in early work, the distribution of the noise term was assumed to be a mixture of 
Gaussian components (Sorenson and Alspach, 1971; Pena and Guttman, 1988; Yatawara, 
Abraham, and MacGregor, 1991), a mixture of Student-t distributions (Meinhold and 
Singpurwalla, 1989), or a generalized Gaussian distribution (Niehsen, 2002). 
 An alternative technique was proposed by using a weighting factor in the covariance 
matrix of the measurement noise term. The weight is used to balance the disparity between 
the measurement and the predicted state estimate. Ting, Theodorou, and Schaal (2007) 
constructed a filter by using a weighted least squares-like approach with a single weight for all 
variables. Kovacevic, Banjac, and Kovacevic (2016) also proposed the robust filter using the 
recursive weighted least squares. The suitable single weight was obtained by Huber’s robust 
estimation method. A drawback of these filters is that all variables, although some may not 
have outliers in them, get treated by the same weighting factor. To improve the filter's 
performance, Yang and Cui (2008) developed a robust filter with multi weights. 
 In this manuscript, a robust filter is developed by assuming that the measurement 
noise term follows a multivariate generalized Laplace (MGL) distribution, which is a class of 
symmetric multivariate models depending on a shape parameter. By a scale factor depending 
on an estimated value of the shape parameter at each time, the noise covariance matrix of 
the measurement noise term can be calculated adaptively such that the proposed robust 
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filter could account for measurement outliers in the system. Moreover, algorithms for a such 
robust filtering are provided considering single and multiple scale factors. 
 
Multivariate Generalized Laplace Distribution 
 The multivariate generalized Laplace (MGL) distribution was introduced by Ernst 
(1998) as a class of symmetric elliptically contoured models consisting of several distributions 

depending on the value of a shape parameter. This shape parameter 𝜆 distinguishes between 

members of the family such as the Laplace (𝜆   ), the normal (𝜆   ) and the 

uniform (𝜆  ∞) distributions.  

 Let 𝑌 be a 𝑘    random vector, 𝜇 be a 𝑘    vector of constants, and 

  [(𝜎𝑖𝑗)] be a 𝑘  𝑘 non-negative definite matrix. Suppose the random vector 𝑌 has 

an MGL distribution with the mean vector 𝜇, the scale parameter matrix  , and the shape 

parameter 𝜆, denoted by 𝑌 𝑀𝐺𝐿𝑘 (𝜇   𝜆), with the joint density of 𝑌 defined as 

𝑓 (𝑦)  
𝜆 (

𝑘
 )

 𝜋
𝑘
  (

𝑘
𝜆
)

| | 
 
 𝑒𝑥𝑝 { [(𝑦  𝜇)

′
   (𝑦  𝜇)]

𝜆
 
}  (3) 

where  ( ) denotes a gamma function. The mean vector and the covariance matrix of the 

MGL random vector 𝑌 are given respectively by 

𝐸(𝑌)  𝜇 and 𝐶𝑜𝑣(𝑌)  
 (
𝑘  
𝜆
)

𝑘 (
𝑘
𝜆
)
 . 

 Furthermore, let a partitioned random vector 

𝑌𝑘  
′  (𝑌 (  𝑘 ) 𝑌 (  (𝑘 𝑘 ))) having a mean vector 𝜇𝑘  

′  

(𝜇 (  𝑘 ) 𝜇 (  (𝑘 𝑘 ))), and scale parameter matrix 

  [
   (𝑘  𝑘 )    (𝑘  (𝑘 𝑘 ))

   ((𝑘 𝑘 ) 𝑘 )    ((𝑘 𝑘 ) (𝑘 𝑘 ))
] be given. Then, the conditional MGL 

density of 𝑌 |𝑌  𝑦 
   is defined as 

𝑓 (𝑦 |𝑦  𝑦 
 )  

 (𝑘 ) (
𝑘 𝑘 
𝜆
)

𝜋
𝑘 
  (𝑘

𝜆
) (𝑘 𝑘  )

|     |
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 𝑒𝑥𝑝 { [(𝑦  𝜇   )
′
     
  (𝑦  𝜇   )  (𝑦 

  𝜇 )
′
   
  (𝑦 

  

𝜇 )]
𝜆
 
 [(𝑦 

  𝜇 )
′
   
  (𝑦 

  𝜇 )]

𝜆
 
}  (4) 

where 𝜇    𝜇        
  (𝑦 

  𝜇 ) and                 
     . The 

mean vector and the covariance matrix of 𝑌 |𝑌  𝑦 
  are given respectively by 

𝐸 (𝑌 |𝑌  𝑦 
 )  𝜇    and 𝐶𝑜𝑣 (𝑌 |𝑌  𝑦 

 )  
 (
𝑘   
𝜆
)

𝑘  (
𝑘 
𝜆
)
     . 

See further details on the elliptically contoured distribution in Fang, Kotz, and Ng (1990). 
 
MGL filter 
 Consider a linear discrete-time stochastic system given by equations (1) and (2). In 

this derivation, 𝑉𝑡 is assumed to be distributed as a zero mean MGL random vector with a 

scale parameter  𝑉 and a shape parameter 𝜆𝑉 , denoted by 𝑉𝑡 𝑀𝐺𝐿𝑘(   𝑉 𝜆𝑉) and 

the system noise term 𝑊𝑡 is assumed to be a Gaussian random vector, denoted by 

𝑊𝑡 𝑀𝐺𝐿𝑟(   𝑊  ). The scale parameter matrices  𝑉 and  𝑊 are known positive 
definite. Also, both noise terms are assumed to be independent over time point. By least 
squares technique (Kalman, 1960; Duncan and Horn, 1972), an unbiased minimum variance 
state estimate and its covariance can be easily derived. These provide a recursive formulae of 
the MGL filter as given by the following equations. 

𝑋̂𝑡|𝑡  𝑋̂𝑡|𝑡   𝐾𝑡(𝑌𝑡  𝐶𝑡𝑋̂𝑡|𝑡  )   (5) 

𝑃𝑡|𝑡  (𝐼  𝐾𝑡𝐶𝑡)𝑃𝑡|𝑡       (6) 

where   𝑋̂𝑡|𝑡   𝐴𝑡𝑋̂𝑡  |𝑡   

𝑃𝑡|𝑡   𝐴𝑡  𝑃𝑡  |𝑡  𝐴𝑡  
′  

 

 
 𝑊 

      𝐾𝑡  𝑃𝑡|𝑡  𝐶𝑡
′ (𝐶𝑡𝑃𝑡|𝑡  𝐶𝑡

′  
 (𝑘  

𝜆𝑉
)

𝑘 ( 𝑘
𝜆𝑉
)
 𝑉)

  

 

In practice, the shape parameter of the measurement noise term 𝜆𝑉 has to be estimated 
from data at each time point. 
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Algorithms of MGL filters 
 The MGL filter with a single scale factor (MGLF-S) is constructed by using only one 

factor for all variables. Consider an innovation, defined by 𝑆𝑡  𝑌𝑡  𝑌̂𝑡  𝑌𝑡  

𝐶𝑡𝑋̂𝑡|𝑡  . If 𝑆𝑡 is Gaussian, this implies that the system has no outliers in the measurement 

noise term. Thus, to deal with measurement outliers, 𝑆𝑡 is assumed to follow an MGL 

distribution with a time-varying shape parameter 𝜆𝑆(𝑡), denoted by 

𝑆𝑡 𝑀𝐺𝐿𝑘(   𝑆 𝜆𝑆(𝑡)) where  𝑆 is the scale parameter matrix in case when 𝑆𝑡 is 

supposed to be Gaussian, given by  𝑆   (𝐶𝑡𝑃𝑡|𝑡  𝐶𝑡
′  

 

 
 𝑉). This leads to MGLF-S 

obtained by replacing 𝜆𝑉 with 𝜆̂𝑆(𝑡), where 𝜆̂𝑆(𝑡) is the maximum likelihood estimator of 

𝜆𝑆(𝑡), obtained by maximizing the negative logarithm of the likelihood as in equation (3), i.e. 

𝑑

𝑑𝜆𝑆(𝑡)
[𝑙𝑜𝑔 (𝜆𝑆(𝑡) (

𝑘

𝜆𝑆(𝑡)
))  (𝑆𝑡

′  𝑆
  𝑆𝑡)

𝜆𝑆(𝑡)
 ]    

where  𝑆   𝛿
 (𝐶𝑡𝑃𝑡|𝑡  𝐶𝑡

′  
 

 
 𝑉) and 𝛿 is a known constant, named a tolerance 

factor and used to improve the performance of the filter. 

 To develop the MGL filter with multi scale factors (MGLF-M), the 𝑗𝑡ℎ element of an 
innovation is obtained to construct a diagonal matrix of the scale factors. Define a partitioned 

k-variate MGL random vector 𝑆𝑡  (𝑆𝑗𝑡 𝑆𝑡
 )′ where 

𝑆𝑡
  (𝑆 𝑡 𝑆 𝑡   𝑆(𝑗  )𝑡 𝑆(𝑗  )𝑡   𝑆𝑘𝑡) is a vector of the rest of innovations 

excluding 𝑆𝑗𝑡 with the corresponding block scale parameter matrix  𝑆  [
𝜎𝑗𝑗  𝑗

 ′

 𝑗
   

] for 

𝑗        𝑘. Then, the  conditional density function of 𝑆𝑗𝑡 given 𝑆𝑡
  𝑠𝑡

  is  
distributed as a zero mean univariate generalized Laplace random variable with scale 

parameter 𝜎𝑗
  𝜎𝑗𝑗   𝑗

 ′     𝑗
  and shape parameter 𝜆𝑆(𝑡), denoted by 𝑆𝑗𝑡|𝑆𝑡

  

𝑠𝑡
  𝑀𝐺𝐿 (  𝜎𝑗

  𝜆𝑆𝑗(𝑡)), where the conditional variance of 𝑆𝑗𝑡|𝑆𝑡
  𝑠𝑡

  is given by 

𝜎𝑆𝑗𝑡|𝑆𝑡  𝑠𝑡 
  

 (  
𝜆𝑆𝑗(𝑡)

)

 (  
𝜆𝑆𝑗(𝑡)

)

𝜎𝑗
 . In practice, the 𝜆𝑆𝑗(𝑡) are replaced by the maximum 

likelihood estimates 𝜆̂𝑆𝑗(𝑡) for 𝑗        𝑘, which are obtained by maximizing the 

negative logarithm of the likelihood of 𝑆𝑗𝑡|𝑆𝑡
  𝑠𝑡

  with 𝜎𝑗
   𝛿 (𝜎𝑗𝑗  

 𝑗
 ′     𝑗

 ) that follows the conditional density in equation (4). 
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 The followings are outlines of the algorithms which can be used to implement the 
MGL filter with single scale factor and with multi scale factors. 

  1. Enter the initial estimates 𝑋̂𝑡|𝑡   and 𝑃𝑡|𝑡  . 

  2. Collect a new measurement 𝑌𝑡 . 
 
3. Approximating the shape parameter 

 Compute an innovation, 𝑆𝑡  𝑌𝑡  𝑌̂𝑡  𝑌𝑡  𝐶𝑡𝑋̂𝑡|𝑡   where 𝑆𝑡 is 

distributed as an MGL random vector, denoted by 𝑆𝑡 𝑀𝐺𝐿𝑘(   𝑆 𝜆𝑆(𝑡)). 
 
a. Single scale factor 

Obtain a maximum likelihood estimator 𝜆̂𝑆𝑗(𝑡) with the scale parameter matrix  𝑆 

defined by  𝑆   𝛿
 (𝐶𝑡𝑃𝑡|𝑡  𝐶𝑡

′  
 

 
 𝑉) where 𝛿 is a known constant 

tolerance factor. 
b. Multi scale factors 

Obtain maximum likelihood estimators 𝜆̂𝑆𝑗(𝑡) for 𝑗        𝑘 corresponding to a 

conditional random variable 𝑆𝑗𝑡 given 𝑆𝑡
  𝑠𝑡

  with the scale parameter 𝜎𝑗
  

defined by 𝜎𝑗
   𝛿 (𝜎𝑗𝑗   𝑗

 ′     𝑗
 ). 

 
4. Calculating the filter gain 

a. Single scale factor 

Compute the filter gain 𝐾𝑡  𝑃𝑡|𝑡  𝐶𝑡
′ (𝐶𝑡𝑃𝑡|𝑡  𝐶𝑡

′  𝜔̂ 𝑉)
  

 where 

𝜔̂  
 ( 𝑘  
𝜆̂𝑆(𝑡)

)

  ( 𝑘

𝜆̂𝑆(𝑡)
)

 is a scale factor. The covariance matrix of the measurement noise 

term 𝜔̂ 𝑉 is also adaptively estimated at this stage. 
b. Multi scale factors 

Compute the filter gain 𝐾𝑡  𝑃𝑡|𝑡  𝐶𝑡
′ (𝐶𝑡𝑃𝑡|𝑡  𝐶𝑡

′   ̂
 
  𝑉 ̂

 
 )
  

 where 

 ̂  𝑑𝑖𝑎𝑔(
 ( 𝑘  

𝜆̂𝑆 (𝑡)
)

  ( 𝑘

𝜆̂𝑆 (𝑡)
)

 
 ( 𝑘  

𝜆̂𝑆 (𝑡)
)

  ( 𝑘

𝜆̂𝑆 (𝑡)
)

   

 ( 𝑘  

𝜆̂𝑆𝑘(𝑡)
)

  ( 𝑘

𝜆̂𝑆𝑘(𝑡)
)

) is a diagonal matrix of 
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the multi scale factors. Obtain the adaptive covariance matrix of the measurement 
noise term. 
 

5. State vector update 

 Update the state estimate 𝑋̂𝑡|𝑡 and state error covariance matrix 𝑃𝑡|𝑡 by 

𝑋̂𝑡|𝑡  𝑋̂𝑡|𝑡   𝐾𝑡(𝑌𝑡  𝐶𝑡𝑋̂𝑡|𝑡  ) 
𝑃𝑡|𝑡  (𝐼  𝐾𝑡𝐶𝑡)𝑃𝑡|𝑡   

 
6. Time update 

Compute the one step ahead state estimate 𝑋̂𝑡  |𝑡 and state forecast error covariance 

matrix 𝑃𝑡  |𝑡  given by 

𝑋̂𝑡  |𝑡  𝐴𝑡𝑋̂𝑡|𝑡 

𝑃𝑡  |𝑡  𝐴𝑡𝑃𝑡|𝑡𝐴𝑡
′  

 

 
 𝑊 

 

7. Let 𝑡  𝑡    and go to step 2. 
 Clearly, when the MGLF-S is used, its performance is inferior as it tends to influence 
some variables that are devoid of outlier effects. However, the MGLF-M may be implemented 
to alleviate such outlier effects. In the next section, the performances of the proposed MGL 
filters are investigated and compared with the classical Kalman filter as well as other robust 
filters through Monte Carlo simulations. In addition, the effects of the tolerance factor and the 
scale factor are discussed. 
 
Performance study 
 The performance of the MGL filtering technique in comparison to the Kalman filter 
could be illustrated by using Figure 1 that belongs to the bivariate linear stochastic system 
with measurement outliers occurred in the first variable at time 35, 40, 55, 75, and 80 in the 
series of length 100. As shown in Figure 1(a), the states from the Kalman filter are significantly 
affected by measurement outliers, whereas the MGLF-S and MGLF-M show resistance to 
outliers. However, a major drawback of having a single scale factor in the MGL filter is that 
both the first and the second variables are down weighed by the same weighting factor even 
though the second variable is not affected by outliers. As shown in Figure 1(b), the values of 
the shape parameter in the MGL distribution used to calculate the single scale factor is less 
than 2 for each variable. This tends to produce under estimates for the states of the second 
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variable which is not affected by outliers. In the MGLF-M, each variable is influenced by their 
own shape parameter, see Figure 1(c) for the first variable with outliers and Figure 1(d) for the 
second variable with no outliers. However, even under this scenario, the values of the shape 
parameter shown in Figure 1(d) are not significantly different from 2. 
 An investigation of the filter performance by a Monte Carlo simulation is established 
by assuming the outliers occur in the 5-variate linear discrete-time Gaussian system defined as 

𝑋𝑡   𝑋𝑡  𝑊𝑡 
𝑌𝑡  𝑋𝑡  𝑉𝑡  

with the usual assumptions on the parameters. A simulation consisting of 2,000 iterations with 
the mean of squared state error (MSSE) as a preferred criterion for comparisons was conducted 
under following conditions. 

 
Figure 1 The states of the Kalman filter (solid line), the MGLF-S (dotted line) and the MGLF-M 

(dashed line) and the corresponding shape parameters. 

 1. System noise variances 𝜎𝑊
  = 0.01 and correlation coefficients of system noise 

terms 𝜌𝑊 = 0.1, 0.4, and 0.8, 

 2. Measurement noise variances 𝜎𝑉
  = 1 and the corresponding correlation 

coefficients of the measurement noise terms  𝜌𝑉 = 0.1, 0.4, and 0.8, 
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  3. Magnitude of additive measurement outliers is defined by 𝛿𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝜎𝑉 where 

𝛿𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 2, 3, 4, 5, 10, and 15, 
  4. Five additional measurement outliers occur only in the first variable at times 
35, 40, 55, 70, and 80 in the time series of length 100, 
  5. The mean of squared state error in each iteration computed by  

𝑀𝑆𝑆𝐸  
 

   
∑(𝑋𝑡  𝑋̂𝑡|𝑡)

′
(𝑋𝑡  𝑋̂𝑡|𝑡)

   

𝑡  

 

 and averaged over 2,000 iterations. 

The structure of both noise covariance matrices is formed by assuming   

𝜎 (  𝜌)𝐼  𝜎 𝜌𝐽 where 𝐼 is an identity matrix and 𝐽 is a matrix of ones. 
 
Table 1 MSSE values of the filters for various correlation coefficients of the system noise terms 

(𝜌𝑊), correlation coefficients of the measurement noise terms (𝜌𝑉), and 

tolerance factor (𝛿). 
     MGLF-S MGLF-M 

(𝜌𝑊 𝜌𝑉) 𝛿𝑜𝑢𝑡𝑙𝑖𝑒𝑟 KAL
MAN 

MGF GGF 1 2 3 4 5 1 2 3 4 5 

(0.1, 
0.1) 

2 0.454
65 

0.45
467 

0.47
623 

0.54
445 

0.45
023 

0.45
421 

0.45
244 

0.45
335 

0.64
783 

0.47
062 

0.45
605 

0.45
167 

0.45
313 

 3 0.460
49 

0.45
967 

0.46
985 

0.53
931 

0.46
007 

0.46
141 

0.46
449 

0.46
249 

0.63
799 

0.47
600 

0.45
487 

0.45
851 

0.45
952 

 4 0.478
14 

0.47
270 

0.47
001 

0.54
531 

0.46
732 

0.48
034 

0.47
875 

0.48
451 

0.63
993 

0.47
775 

0.45
845 

0.46
022 

0.47
288 

 5 0.507
75 

0.48
423 

0.47
463 

0.55
157 

0.46
033 

0.48
944 

0.50
141 

0.50
035 

0.64
589 

0.46
903 

0.45
763 

0.45
914 

0.47
029 

 10 0.696
86 

0.45
482 

0.47
057 

0.55
091 

0.45
992 

0.46
483 

0.50
668 

0.59
004 

0.64
309 

0.47
363 

0.44
657 

0.45
144 

0.45
757 

 15 0.994
32 

0.45
309 

0.46
799 

0.54
847 

0.45
336 

0.45
531 

0.46
881 

0.50
912 

0.63
931 

0.46
544 

0.44
426 

0.44
090 

0.44
675 

               
(0.1, 
0.4) 

2 0.427
63 

0.42
751 

0.47
352 

0.50
829 

0.42
486 

0.42
527 

0.42
629 

0.42
629 

0.59
862 

0.44
308 

0.42
617 

0.42
495 

0.42
551 

 3 0.436
53 

0.43
477 

0.47
160 

0.50
923 

0.42
747 

0.43
440 

0.44
145 

0.43
786 

0.59
057 

0.44
134 

0.42
430 

0.43
125 

0.43
296 

 4 0.454
58 

0.44
324 

0.47
041 

0.50
828 

0.43
619 

0.45
387 

0.46
039 

0.45
914 

0.59
538 

0.44
710 

0.42
875 

0.43
189 

0.43
951 

 5 0.488
31 

0.44
377 

0.47
640 

0.51
685 

0.43
381 

0.45
392 

0.47
387 

0.48
153 

0.59
743 

0.44
171 

0.42
754 

0.42
255 

0.43
645 
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 10 0.704
80 

0.42
801 

0.47
140 

0.51
682 

0.43
128 

0.43
162 

0.45
686 

0.50
546 

0.59
379 

0.44
262 

0.41
881 

0.42
302 

0.42
603 

 15 1.052
63 

0.42
197 

0.46
457 

0.51
060 

0.42
572 

0.42
393 

0.43
297 

0.45
567 

0.59
085 

0.43
862 

0.41
763 

0.41
636 

0.42
074 

               
(0.1, 
0.8) 

2 0.341
19 

0.33
987 

0.47
448 

0.39
704 

0.33
834 

0.34
090 

0.34
246 

0.34
345 

0.47
580 

0.35
604 

0.33
949 

0.33
907 

0.34
059 

 3 0.371
47 

0.35
242 

0.47
660 

0.41
182 

0.34
006 

0.34
977 

0.36
922 

0.36
396 

0.47
806 

0.35
849 

0.34
575 

0.35
528 

0.34
897 

 4 0.399
90 

0.33
579 

0.47
332 

0.40
328 

0.33
561 

0.34
909 

0.37
563 

0.39
428 

0.47
026 

0.35
437 

0.34
785 

0.36
415 

0.36
927 

 5 0.440
26 

0.33
392 

0.46
741 

0.39
959 

0.34
306 

0.34
383 

0.37
019 

0.41
068 

0.46
227 

0.36
392 

0.34
782 

0.36
871 

0.38
553 

 10 0.795
67 

0.33
409 

0.46
866 

0.39
925 

0.34
608 

0.33
582 

0.34
428 

0.35
392 

0.46
784 

0.35
732 

0.33
845 

0.35
490 

0.37
281 

 15 1.384
72 

0.34
050 

0.47
149 

0.41
286 

0.33
740 

0.33
409 

0.33
641 

0.34
240 

0.48
212 

0.35
391 

0.33
679 

0.33
929 

0.36
174 

               

 Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the 
mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and 
multi scale factors, respectively. An underlined number and a bold number show a case of 

minimum MSSE value when the MGLF-S with 𝛿    and the MGLF-M with 𝛿    are 
respectively considered in a comparison with KALMAN, MGF, and GGF. 
 
Table 1 Continued. 

     MGLF-S MGLF-M 

(𝜌𝑊 𝜌𝑉) 𝛿𝑜𝑢𝑡𝑙𝑖𝑒𝑟 KAL
MAN 

MGF GGF 1 2 3 4 5 1 2 3 4 5 

(0.4, 
0.1) 

2 0.421
07 

0.42
107 

0.44
176 

0.50
892 

0.42
434 

0.42
063 

0.42
603 

0.42
230 

0.59
837 

0.44
351 

0.42
164 

0.42
566 

0.42
193 

 3 0.438
14 

0.43
804 

0.44
645 

0.51
905 

0.43
179 

0.43
408 

0.43
239 

0.43
387 

0.60
838 

0.44
485 

0.42
847 

0.42
746 

0.43
117 

 4 0.449
26 

0.44
331 

0.43
941 

0.50
856 

0.43
691 

0.45
121 

0.45
119 

0.44
127 

0.59
328 

0.44
597 

0.43
142 

0.43
378 

0.43
107 

 5 0.464
74 

0.44
246 

0.43
248 

0.50
343 

0.43
524 

0.45
615 

0.47
338 

0.47
250 

0.58
021 

0.44
262 

0.42
599 

0.43
455 

0.44
325 

 10 0.647
09 

0.42
359 

0.43
715 

0.50
857 

0.42
901 

0.43
680 

0.47
413 

0.54
577 

0.58
579 

0.44
008 

0.41
883 

0.42
344 

0.42
764 

 15 0.937
65 

0.42
532 

0.43
678 

0.51
522 

0.42
625 

0.42
600 

0.44
254 

0.47
214 

0.59
465 

0.43
656 

0.41
556 

0.41
421 

0.41
500 
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(0.4, 
0.4) 

2 0.451
74 

0.45
165 

0.50
481 

0.54
642 

0.45
330 

0.44
890 

0.45
680 

0.45
412 

0.59
163 

0.46
912 

0.44
978 

0.45
583 

0.45
355 

 3 0.467
36 

0.46
614 

0.50
899 

0.55
446 

0.45
782 

0.46
473 

0.46
100 

0.46
412 

0.59
727 

0.46
790 

0.45
609 

0.45
270 

0.45
897 

 4 0.488
02 

0.47
639 

0.51
085 

0.55
473 

0.45
803 

0.47
397 

0.48
208 

0.47
371 

0.59
366 

0.46
578 

0.45
461 

0.45
828 

0.45
612 

 5 0.501
82 

0.46
484 

0.50
380 

0.54
627 

0.46
429 

0.47
480 

0.50
481 

0.50
674 

0.58
574 

0.47
429 

0.44
990 

0.46
048 

0.46
341 

 10 0.692
12 

0.45
395 

0.50
207 

0.54
430 

0.46
152 

0.45
592 

0.47
770 

0.52
170 

0.58
620 

0.47
084 

0.44
537 

0.45
105 

0.46
197 

 15 1.000
15 

0.45
240 

0.49
937 

0.55
080 

0.45
425 

0.45
710 

0.46
001 

0.48
207 

0.59
378 

0.46
498 

0.44
990 

0.44
438 

0.45
422 

               
(0.4, 
0.8) 

2 0.428
18 

0.42
732 

0.57
418 

0.51
158 

0.41
992 

0.42
212 

0.43
281 

0.43
015 

0.54
335 

0.44
497 

0.42
690 

0.43
070 

0.42
756 

 3 0.446
73 

0.43
265 

0.57
447 

0.51
643 

0.42
369 

0.43
156 

0.44
015 

0.44
598 

0.54
237 

0.44
683 

0.44
109 

0.44
097 

0.44
207 

 4 0.477
76 

0.42
735 

0.57
782 

0.51
579 

0.42
157 

0.42
593 

0.44
731 

0.46
566 

0.54
519 

0.44
588 

0.43
946 

0.46
483 

0.47
344 

 5 0.502
79 

0.41
929 

0.56
855 

0.50
412 

0.43
045 

0.42
709 

0.44
607 

0.47
439 

0.52
965 

0.45
393 

0.44
034 

0.46
817 

0.48
927 

 10 0.797
61 

0.41
971 

0.56
891 

0.50
244 

0.43
050 

0.42
159 

0.42
835 

0.44
312 

0.54
050 

0.44
390 

0.42
799 

0.44
952 

0.49
906 

 15 1.277
84 

0.42
379 

0.56
812 

0.52
033 

0.42
229 

0.42
451 

0.41
773 

0.43
334 

0.54
720 

0.44
227 

0.42
697 

0.42
933 

0.47
086 

               

 Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the 
mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and 
multi scale factors, respectively. An underlined number and a bold number show a case of 

minimum MSSE value when the MGLF-S with 𝛿    and the MGLF-M with 𝛿    are 
respectively considered in a comparison with KALMAN, MGF, and GGF. 
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Table 1 Continued. 
     MGLF-S MGLF-M 

(𝜌𝑊 𝜌𝑉) 𝛿𝑜𝑢𝑡𝑙𝑖𝑒𝑟 KAL
MAN 

MGF GGF 1 2 3 4 5 1 2 3 4 5 

(0.8, 
0.1) 

2 0.334
45 

0.33
462 

0.35
044 

0.40
124 

0.33
456 

0.33
284 

0.32
948 

0.33
423 

0.45
739 

0.34
838 

0.33
357 

0.32
883 

0.33
400 

 3 0.337
37 

0.33
681 

0.34
414 

0.39
823 

0.34
631 

0.34
302 

0.34
235 

0.34
389 

0.45
070 

0.35
767 

0.33
796 

0.33
832 

0.34
188 

 4 0.354
24 

0.35
020 

0.34
851 

0.40
628 

0.34
162 

0.35
194 

0.35
609 

0.35
418 

0.46
049 

0.34
849 

0.33
700 

0.34
162 

0.34
526 

 5 0.368
07 

0.35
021 

0.34
290 

0.39
628 

0.33
934 

0.35
993 

0.36
621 

0.37
352 

0.44
386 

0.34
477 

0.33
598 

0.33
614 

0.34
992 

 10 0.511
21 

0.33
603 

0.34
501 

0.40
202 

0.34
163 

0.34
772 

0.36
911 

0.42
922 

0.44
953 

0.34
942 

0.33
343 

0.32
974 

0.33
760 

 15 0.744
57 

0.33
735 

0.34
666 

0.40
530 

0.33
879 

0.34
152 

0.34
949 

0.37
204 

0.45
417 

0.34
470 

0.33
192 

0.32
734 

0.32
640 

               
(0.8, 
0.4) 

2 0.409
42 

0.40
942 

0.46
189 

0.49
525 

0.42
088 

0.42
288 

0.41
002 

0.41
807 

0.49
541 

0.43
333 

0.42
410 

0.40
954 

0.41
755 

 3 0.419
98 

0.41
932 

0.46
312 

0.49
971 

0.43
299 

0.42
493 

0.42
835 

0.41
989 

0.49
751 

0.44
217 

0.41
942 

0.42
316 

0.41
673 

 4 0.439
14 

0.43
264 

0.46
683 

0.51
686 

0.42
412 

0.42
436 

0.44
460 

0.43
820 

0.50
614 

0.43
144 

0.41
078 

0.42
677 

0.42
435 

 5 0.448
97 

0.42
267 

0.46
390 

0.50
318 

0.41
787 

0.43
456 

0.44
541 

0.45
766 

0.49
642 

0.42
416 

0.41
805 

0.41
448 

0.42
865 

 10 0.584
65 

0.42
051 

0.45
790 

0.50
798 

0.42
531 

0.43
016 

0.43
493 

0.46
057 

0.50
025 

0.43
113 

0.42
158 

0.41
816 

0.42
335 

 15 0.803
96 

0.41
911 

0.46
623 

0.50
868 

0.42
399 

0.42
783 

0.42
907 

0.43
395 

0.50
699 

0.42
881 

0.41
948 

0.41
956 

0.41
827 

               
(0.8, 
0.8) 

2 0.440
44 

0.44
099 

0.58
962 

0.53
775 

0.45
256 

0.45
670 

0.44
186 

0.45
015 

0.52
476 

0.48
445 

0.47
119 

0.44
973 

0.45
149 

 3 0.456
45 

0.45
002 

0.59
071 

0.53
903 

0.46
921 

0.45
529 

0.46
651 

0.45
575 

0.52
645 

0.49
642 

0.47
432 

0.48
527 

0.46
989 

 4 0.481
54 

0.45
331 

0.59
685 

0.56
094 

0.45
091 

0.44
437 

0.47
577 

0.47
547 

0.53
809 

0.48
106 

0.46
744 

0.50
974 

0.51
174 

 5 0.496
25 

0.44
636 

0.59
439 

0.54
101 

0.44
821 

0.45
394 

0.45
623 

0.48
615 

0.52
906 

0.47
700 

0.47
501 

0.49
853 

0.55
025 

 10 0.690
58 

0.45
302 

0.58
565 

0.55
384 

0.45
728 

0.46
105 

0.45
311 

0.45
674 

0.52
980 

0.47
230 

0.46
897 

0.48
471 

0.53
456 

 15 1.003
66 

0.44
915 

0.59
736 

0.54
242 

0.45
467 

0.46
001 

0.45
475 

0.45
229 

0.53
356 

0.47
001 

0.46
096 

0.47
265 

0.50
088 
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 Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the 
mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and 
multi scale factors, respectively. An underlined number and a bold number show a case of 

minimum MSSE value when the MGLF-S with 𝛿    and the MGLF-M with 𝛿    are 
respectively considered in a comparison with KALMAN, MGF, and GGF. 
 All filters are in a comparison consisting of the Kalman filter, the robust filter with 
mixture Gaussian noise (MGF), the robust filter with generalized Gaussian noise (GGF) and the 
proposed robust filters, MGLF-S and MGLF-M. The MGF and GGF involve a heavy-tailed 
distributed measurement noise term. The MGF is assumed a measurement noise term has a 
mixture Gaussian distribution (Yatawara, Abraham, and MacGregor, 1991). In this study, the 
mixture measurement noises were determined by a probability of outliers occurred that sets 
to 0.05. The GGF is developed by using a generalized Gaussian distributed noise and assuming 
all measurement noises are independent (Niehsen, 2002). 
 The simulation results in Table 1 illustrate the effect on MSSE values of all five filters 

for various system noise and measurement noise correlations, 𝜌𝑊 and 𝜌𝑉 , and the tolerance 

factor  . When 𝛿𝑜𝑢𝑡𝑙𝑖𝑒𝑟 is small, MSSE values of the Kalman filter do not dramatically 
change as those of the robust filters do. This implies that the Kalman filter is robust to small 
magnitudes of measurement outliers. MSSE values of the Kalman filter also tend to increase 

obviously when 𝛿𝑜𝑢𝑡𝑙𝑖𝑒𝑟 grows up. In contrast, those of all the other four robust filters are 
consistent to all magnitudes of measurement outliers. Further, the correlation coefficients of 
the noise terms influence the effectiveness of all filters, i.e. MSSE values of those filters get 
large when correlation coefficients of noise terms are inflated. 

 To compare the performance of the robust filters, a suitable tolerance factor   
might be chosen to obtain the optimal MGL filters that achieve a minimum MSSE. Based on 

the studied model in this investigation resulted in Table 1, in most cases when    , the 

MGLF-S produces the lowest MSSE against all   and the MGLF-M does as    . However, 

the effectiveness of both MGL filters get worse when 𝜌𝑊 or 𝜌𝑉 become large. Meanwhile, 

the MGF performs well in this situation. Furthermore, when 𝜌𝑉 is small or moderate, the 

MGLF-M with     performs superior to the MGLF-S with     in most cases. 

 Without the tolerance factor (   ), the MGL filters have large values of MSSE 
since the state estimates of the filters are down weighed heavily by the scale factors although 
those measurements are not outliers. In addition, it could be noticed that the efficiency of the 
MGL filters can be improved by choosing a suitable value of the tolerance factor. For example, 
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in a such simulation under the studied model, a value of the tolerance factor should be set to 

2 or 3 as resulted in Table 1. However, a suitable value of   could be varied by a model. 
Thus, an appropriate value of a such factor should be found out to attain a minimum mean 
square of the state error. 
 
Conclusion 
 To address the linear filtering problem when measurement noise outliers occur, it 
was assumed that the measurement noise follows a multivariate generalized Laplace 
distribution, and the MGL filters depending on a single and multi scale factors were developed. 
The performance of the MGL filters is shown to improve significantly when the measurement 
noise covariance matrices are also adaptively estimated. The evidence from a Monte Carlo 
investigation reveals that the proposed MGL filters are in fact robust against measurement 
outliers. However, their performances are deteriorated by effects of both noise term 
correlations. MSSE values of the MGL filters tend to be extensive when a large magnitude of 
the tolerance factor is applied.  Thus, an effectiveness of the MGL filters are relied on a 
chosen suitable value of the tolerance factor that achieves a minimum MSSE filter. 
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