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Abstract
It is well known that the Kalman filter fails to provide optimal state estimates in the

sense of minimum mean of squared state error, when measurement outliers occur in a linear
stochastic system. This is primarily due to the usual Gaussian assumptions made on the
measurement noise term in the state space model. In this manuscript, robust filters are
derived by using generalized Laplace measurement noise with single and multi scale factors to
replace Gaussian assumptions. The performance of the proposed robust filters is compared to

the Kalman filter and other robust filters through Monte-Carlo simulations.
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Introduction
In real-time applications, data is frequently collected one at a time. Hence, any

suitable technique proposed to analyze real-time data is required to utilize the information

from the current measurement and the prior knowledge of the system. To deal with problems

of linear filtering and prediction, a linear discrete-time stochastic systems possesses properties
of observability and reachability, represented by

Xip1 = AX + W, (1)

Y, =CX, +V; (2)

where Zt and m are the measurement noise and the system noise with the covariance

matrices ZV and ZW, respectively. Also, both noise terms are assumed to be independent

over time. The most celebrated Kalman filter (Kalman, 1960) was proposed as a recursive
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estimation procedure. By means of orthogonal projections, the optimal filter was derived in
the sense of minimum average loss when a linear Gaussian stochastic system is considered.
The traditional Kalman recursive formula of the state estimate and its covariance are
respectively given as

)_?tlt - tht—l + Kt(Xt - CtXtIt—l)

~ Ptjt = - KtCt)Ptlt—l

where Xije—1 = AeXe )61

Pipor = A1 Peoqje—14eo1 + 2w

Ke = Pee-1Co(CePreaCe + 5y)

Unfortunately, in the presence of outliers, the noise terms are obviously non-Gaussian. This
causes the Kalman filter to be no longer optimal.

To overcome the problem of having to deal with a non-Gaussian measurement noise
term, robust filtering algorithms have been constructed and, consequently, many different
robust filtering theories have emerged. One class of approaches considers the noise term to be
distributed as a non-Gaussian heavy-tailed random variable to account for the outliers. For
example, in early work, the distribution of the noise term was assumed to be a mixture of
Gaussian components (Sorenson and Alspach, 1971; Pena and Guttman, 1988; Yatawara,
Abraham, and MacGregor, 1991), a mixture of Student-t distributions (Meinhold and
Singpurwalla, 1989), or a generalized Gaussian distribution (Niehsen, 2002).

An alternative technique was proposed by using a weighting factor in the covariance
matrix of the measurement noise term. The weight is used to balance the disparity between
the measurement and the predicted state estimate. Ting, Theodorou, and Schaal (2007)
constructed a filter by using a weighted least squares-like approach with a single weight for all
variables. Kovacevic, Banjac, and Kovacevic (2016) also proposed the robust filter using the
recursive weighted least squares. The suitable single weight was obtained by Huber’s robust
estimation method. A drawback of these filters is that all variables, although some may not
have outliers in them, get treated by the same weighting factor. To improve the filter's
performance, Yang and Cui (2008) developed a robust filter with multi weights.

In this manuscript, a robust filter is developed by assuming that the measurement
noise term follows a multivariate generalized Laplace (MGL) distribution, which is a class of
symmetric multivariate models depending on a shape parameter. By a scale factor depending
on an estimated value of the shape parameter at each time, the noise covariance matrix of

the measurement noise term can be calculated adaptively such that the proposed robust
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filter could account for measurement outliers in the system. Moreover, algorithms for a such

robust filtering are provided considering single and multiple scale factors.

Multivariate Generalized Laplace Distribution

The multivariate generalized Laplace (MGL) distribution was introduced by Ernst
(1998) as a class of symmetric elliptically contoured models consisting of several distributions
depending on the value of a shape parameter. This shape parameter A distinguishes between
members of the family such as the Laplace (/1 = 1), the normal (/1 = 2) and the
uniform (/1 - oo) distributions.

Let X be a k X 1 random vector, U be a k X 1 vector of constants, and

Y= [(O-ij)] beak Xk non-negative definite matrix. Suppose the random vector X has

an MGL distribution with the mean vector U, the scale parameter matrix 2, and the shape

parameter A, denoted by X"*MGLk (M, 2, /1), with the joint density of X defined as
A

k . £

A= _1 _ 2
1) = e -[o-0) 5 0]
2ron(4
where F() denotes a gamma function. The mean vector and the covariance matrix of the

MGL random vector X are given respectively by

E(Y)=p ad  Cov(Y) = 1%)

kal = (Zl(lxkl); Z2(1x(k—k1))) having a mean vector [Ikxl =
(El(lxkl)' Ez(lx(k—kl))), and scale parameter matrix

z

Furthermore, let a partitioned random vector

211(k1><k1) le(klx(k—kl))

Y= be given. Then, the conditional MGL

ZZl((k—kl)xkl) ZZZ((k—kl)x(k—kl))

density of ¥; |XZ = X; is defined as
rEres)

1
12112172
PIr(rtk)

Fnly=9)=
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X expy— [(X1 - ELZ) Z112 (X1 - ELZ) + (Xik - Ez), 232 (3_’; -

~

4

g+ [(3 — 1) 333 (93— )| o

— -1 * — -1
where [y = H1 + ZqpX7; (Xz - ﬁz) and X113 = X171 — ZgpXp3 Xpq. The
mean vector and the covariance matrix of ¥; |XZ = y; are given respectively by

r(ki+2
= ( Aklgzn.z-

E (Zl |X2 = )_1;) =y and Cov (Z1 |XZ = X;) m

See further details on the elliptically contoured distribution in Fang, Kotz, and Ng (1990).

MGL filter
Consider a linear discrete-time stochastic system given by equations (1) and (2). In

this derivation, Zt is assumed to be distributed as a zero mean MGL random vector with a
scale parameter Xy, and a shape parameter AV: denoted by Zt'VMGLk (Q, Xy, AV) and
the system noise term V_Vt is assumed to be a Gaussian random vector, denoted by
M'VMGLT (g, 2w, 2). The scale parameter matrices Xy and Xy are known positive
definite. Also, both noise terms are assumed to be independent over time point. By least
squares technique (Kalman, 1960; Duncan and Horn, 1972), an unbiased minimum variance
state estimate and its covariance can be easily derived. These provide a recursive formulae of

the MGL filter as given by the following equations.

tht = tht—l + Kt(Xt - Cttht—l) (5)
Ptlt = - KtCt)Ptlt—l (6)
where Xrjt-1 = AeXp—1)e-1
: 1
Ptlt—l = At—lpt—llt—lAt—l + EZW
r @) -
, , AV
K = Ptlt—ICt Ctpt|t—1Ct + —kzv
kl"(/l—)
\%4

In practice, the shape parameter of the measurement noise term /1V has to be estimated

from data at each time point.
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Algorithms of MGL filters
The MGL filter with a single scale factor (MGLF-S) is constructed by using only one

factor for all variables. Consider an innovation, defined by §t = Xt — _?t = Zt —
Cttht—l- If §t is Gaussian, this implies that the system has no outliers in the measurement
noise term. Thus, to deal with measurement outliers, §t is assumed to follow an MGL
distribution ~ with  a  time-varying  shape  parameter /1$(t)’ denoted by
§t~MGLk(Q, 25,/15(@) where 25 is the scale parameter matrix in case when §t is
supposed to be Gaussian, given by 25 =2 (Ctptlt—lci + %ZV) This leads to MGLF-S
obtained by replacing /1V with /15(,:), where /15(,:) is the maximum likelihood estimator of
AS(t)r obtained by maximizing the negative logarithm of the likelihood as in equation (3), i.e.
As(e)

k s
log | AspT (5— ) | + (S:Z57S:) 2 | =0
dAsce Aso)

. 1
where X = 267 (CtPt|t—1Ct + EZV) and & is a known constant, named a tolerance
factor and used to improve the performance of the filter.
To develop the MGL filter with multi scale factors (MGLF-M), the jth element of an

innovation is obtained to construct a diagonal matrix of the scale factors. Define a partitioned

k-variate MGL random vector Et = (Sjt; §Z‘) where
§t* = (Sltr Sot ---'S(j—l)t: S(j+1)t» ---»Skt) is a vector of the rest of innovations
9 Zj
excluding Sjt with the corresponding block scale parameter matrix ZS = D for
J

j= 1,2, ...,k. Then, the  conditional density function of Sjt given S = g{f is

distributed as a zero mean univariate generalized Laplace random variable with scale
parameter O'jz = 0jj — 2}'2*‘12}* and shape parameter /15(0, denoted by Sjtlg =
5; ~MGL, (0, O'jz, ASj(t))’ where the conditional variance of Sjtlgg = §Zf is given by

r 3
2 (lsj(t)) 2

O-Sjt|§;=§; = (—)0'] .Inpractice, the /15].(0 are replaced by the maximum

1
lSj(f)

likelihood estimates ASj(t) for j = 1,2, .., K, which are obtained by maximizing the
negative logarithm of the likelihood of Sjt|££k = §; with O'jz = 252(0']-]- -
Z}"Z*”Z}‘) that follows the conditional density in equation (4).
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The followings are outlines of the algorithms which can be used to implement the

MGL filter with single scale factor and with multi scale factors.

1. Enter the initial estimates )_(tlt—l and Ptlt—1~

2. Collect a new measurement Xt

3. Approximating the shape parameter

Compute an innovation, §t = Zt - Xt = Xt - Ct)_(tlt—l where Qt is

distributed as an MGL random vector, denoted by §t~MGLk (Q, X, /15(15)).

a.

Single scale factor

Obtain a maximum likelihood estimator /15].@) with the scale parameter matrix 25
. 1

defined by X¢ = 267 (CtPt|t—1Ct +EZV) where § is a known constant

tolerance factor.

Multi scale factors

Obtain maximum likelihood estimators Asj(t) forj =1,2 ..., k corresponding to a

conditional random variable S't given SZ‘ = §Z‘ with the scale parameter O'jz

defined byO'j = 252( Z*_lz )

4. Calculating the filter gain

a.

Single scale factor

: : ~ -1
Compute the filter gain K; = Pt|t—1Ct(CtPt|t—1Ct +(1)ZV) where

lH(Ak+z )
As(t)

is a scale factor. The covariance matrix of the measurement noise
kF(L)
As(t)

term C’U\ZV is also adaptively estimated at this stage.

D =

Multi scale factors
, - ale A 7!
Compute the filter gain K; = Ptlt—lct (CtPt|t_1Ct + QZZVQZ) where

F(Ak+2 ) F<Ak+2 > F(Ak+2 )
N0 As,(6) A3, (t)

is a diago al atrix of
(‘LS ) (‘LS > A
1(0 Z(t) Sk(t)
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the multi scale factors. Obtain the adaptive covariance matrix of the measurement

noise term.

5. State vector update

Update the state estimate )_(tlt and state error covariance matrix Ptlt by

tht = tht—l + Kt(Zt - CtXtIt—l)
Ptlt = (1 - KtCt)Ptlt—l

6. Time update
Compute the one step ahead state estimate )_(t+1|t and state forecast error covariance

matrix Pt+1|t given by

~ ~

)_(t+1|t = At)_(tlt
1
Pt+1|t = AtPtItAt + EEW

7.Lett =t 4+ 1 and go to step 2.

Clearly, when the MGLF-S is used, its performance is inferior as it tends to influence
some variables that are devoid of outlier effects. However, the MGLF-M may be implemented
to alleviate such outlier effects. In the next section, the performances of the proposed MGL
filters are investigated and compared with the classical Kalman filter as well as other robust
filters through Monte Carlo simulations. In addition, the effects of the tolerance factor and the

scale factor are discussed.

Performance study
The performance of the MGL filtering technique in comparison to the Kalman filter

could be illustrated by using Figure 1 that belongs to the bivariate linear stochastic system
with measurement outliers occurred in the first variable at time 35, 40, 55, 75, and 80 in the
series of length 100. As shown in Figure 1(a), the states from the Kalman filter are significantly
affected by measurement outliers, whereas the MGLF-S and MGLF-M show resistance to
outliers. However, a major drawback of having a single scale factor in the MGL filter is that
both the first and the second variables are down weighed by the same weighting factor even
though the second variable is not affected by outliers. As shown in Figure 1(b), the values of
the shape parameter in the MGL distribution used to calculate the single scale factor is less

than 2 for each variable. This tends to produce under estimates for the states of the second
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variable which is not affected by outliers. In the MGLF-M, each variable is influenced by their
own shape parameter, see Figure 1(c) for the first variable with outliers and Figure 1(d) for the
second variable with no outliers. However, even under this scenario, the values of the shape
parameter shown in Figure 1(d) are not significantly different from 2.

An investigation of the filter performance by a Monte Carlo simulation is established
by assuming the outliers occur in the 5-variate linear discrete-time Gaussian system defined as
Xis1 = X, + W
Y, =X+V,
with the usual assumptions on the parameters. A simulation consisting of 2,000 iterations with
the mean of squared state error (MSSE) as a preferred criterion for comparisons was conducted

under following conditions.

First variable MGLF-S
o
Q "
. ‘ [ ‘
9 i i |
0 -] | | |
E | | |
0] © | | |
K] 5ol | | |
s o - I | |
’ 2
£34
0
o |
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Time
(b)
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£ £
go g o
3 £
a a
n n
£ 37 £ 37
[l 0]
o o
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0 20 40 60 80 100 0 20 40 60 80 100
Time Time
() (d

Figure 1 The states of the Kalman filter (solid line), the MGLF-S (dotted line) and the MGLF-M

(dashed line) and the corresponding shape parameters.
1. System noise variances O'V%/ = 0.01 and correlation coefficients of system noise
terms Py = 0.1, 0.4, and 0.8,
2. Measurement noise variances 0'13 =1 and the corresponding correlation

coefficients of the measurement noise terms Py =0.1,04,and 0.8,

21



aninermansuazinalulad Veridian E-Journal, Science and Technology Silpakorn University

Ui 3 atiuil 6 oungadnieu-sunau 2559 Volume 3 Number 6 November -~ December 2016 ISSN 2408 - 1248

3. Magnitude of additive measurement outliers is defined by Soutliero-V where
Ooutlier = 2 3,4, 5,10, and 15,

4. Five additional measurement outliers occur only in the first variable at times
35, 40, 55, 70, and 80 in the time series of length 100,

5. The mean of squared state error in each iteration computed by
100

1 N , ~
MSSE = mzo_{t - )_(tlt) ()_(t - )_(tlt)
t=1

and averaged over 2,000 iterations.
The structure of both noise covariance matrices is formed by assuming X =

0'2(1 - p)] + O'Zp] where [ is an identity matrix and J is a matrix of ones.

Table 1 MSSE values of the filters for various correlation coefficients of the system noise terms
(pW), correlation coefficients of the measurement noise terms (pV), and

tolerance factor (5)

MGLF-S MGLF-M
(pw> P Soutiil KAL | MGF  GGF | 1 2 3 4 5 1 2 3 4 5
MAN
(0.1, 2 | 0454 | 045 047 | 054 | 045 | 045 | 045 | 0.45 | 0.64 | 0.47 | 0.45 | 045 | 0.45
0.1) 65 | 467 623 | 445 | 023 | 421 | 244 | 335 | 783 | 062 | 605 | 167 | 313

3 0.460 | 045 046 | 053 | 046 | 046 | 0.46 | 046 | 0.63 | 047 | 0.45 | 045 | 0.45
49 967 985 | 931 | 007 | 141 | 449 | 249 | 799 | 600 | 487 | 851 | 952
a 0.478 | 0.47 047 | 054 | 046 | 048 | 0.47 | 048 | 0.63 | 047 | 0.45 | 046 | 0.47
14 270 001 | 531 | 732 | 034 | 875 | 451 | 993 | 775 | 845 | 022 | 288
5 0.507 | 0.48 047 | 055 | 046 | 048 | 050 | 050 | 0.64 | 046 | 0.45 | 045 | 0.47
75 423 463 | 157 | 033 | 944 | 141 | 035 | 589 | 903 | 763 | 914 | 029
10 | 0696 | 045 047 | 055 | 0.45 | 0.46 | 050 | 0.59 | 0.64 | 0.47 | 0.44 | 0.45 | 0.45
86 482 057 | 091 | 992 | 483 | 668 | 004 | 309 | 363 | 657 | 144 | 757
15 0.994 | 045 046 | 054 | 045 | 045 | 046 | 050 | 0.63 | 0.46 | 0.44 | 0.44 | 0.44
32 309 799 | 847 | 336 | 531 | 881 | 912 | 931 | 544 | 426 | 090 | 675

(0.1, 2 0.427 | 042 047 | 050 | 042 | 042 | 042 | 042 | 059 | 044 | 0.42 | 042 | 0.42
0.4) 63 751 352 | 829 | 486 | 527 | 629 | 629 | 862 | 308 | 617 | 495 | 551
3 0.436 | 043 047 | 050 | 0.42 | 0.43 | 0.44 | 0.43 | 059 | 0.44 | 0.42 | 043 | 043

53 477 160 | 923 | 747 | 440 | 145 | 786 | 057 | 134 | 430 | 125 | 296

i 0.454 | 0.44 047 | 050 | 043 | 045 | 046 | 045 | 059 | 044 | 0.42 | 043 | 043

58 324 041 | 828 | 619 | 387 | 039 | 914 | 538 | 710 | 875 | 189 | 951

5 0488 | 0.44 047 | 051 | 043 | 045 | 047 | 048 | 059 | 044 | 0.42 | 042 | 043

31 377 640 | 685 | 381 | 392 | 387 | 153 | 743 | 171 | 754 | 255 | 645
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15

(0.1, 2
0.8)

10

15

0.704
80
1.052
63

0.341
19
0.371
a7
0.399
90
0.440
26
0.795
67
1.384
72

242

0.47
140
0.46
457

0.47
448
0.47
660
0.47
332
0.46
741
0.46
866
0.47
149

0.51
682
0.51
060

0.39
704
0.41
182
0.40
328
0.39
959
0.39
925
0.41
286

0.43
162
0.42
393

0.34
090
0.34
917
0.34
909
0.34
383
0.33
582
0.33
409

0.45
686
0.43
297

0.34
246
0.36
922
0.37
563
0.37
019
0.34
428
0.33
641

@vInemansuaznalulad

Ui 3 atudt
0.50 | 0.59 | 0.44
546 379 262
0.45 | 059 | 0.43
567 085 862
0.34 | 0.47 0.35
345 580 604
0.36 0.47 0.35
396 806 849
0.39 0.47 0.35
428 026 437
0.41 0.46 0.36
068 227 392
0.35 0.46 0.35
392 784 732
0.34 | 0.48 0.35
240 212 391

6 WaUNgAINIBU-5UIAY 2559

0.41 | 042 | 042
881 | 302 | 603
0.41 | 041 | 042
763 | 636 | 074

0.33 | 033 | 0.34
949 | 907 | 059
0.34 | 035 | 0.34
575 | 528 | 897
034 | 0.36 | 0.36
785 | 415 | 927
034 | 0.36 | 0.38
782 | 871 | 553
033 | 0.35 | 0.37
845 | 490 | 281
0.33 | 0.33 | 0.36
679 | 929 | 174

Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the

mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and

multi scale factors, respectively. An underlined number and a bold number show a case of

minimum MSSE value when the MGLF-S with & = 2 and the MGLF-M with & = 3 are

respectively considered in a comparison with KALMAN, MGF, and GGF.

Table 1 Continued.

MGLF-S MGLF-M

(Pw» P Oouriil KAL | MGF  GGF | 1 2 3 4 5 1 2 3 4 5
MAN

(0.4, 2 0.421 | 042 044 | 050 | 042 | 042 | 042 | 042 | 059 | 044 | 042 | 042 | 0.42

0.1) 07 | 107 176 | 892 | 434 | 063 | 603 | 230 | 837 | 351 | 164 | 566 | 193

3 0.438 | 0.43 044 | 051 | 043 | 043 | 043 | 043 | 060 | 044 | 0.42 | 042 | 043

14 804 645 | 905 | 179 | 408 | 239 | 387 | 838 | 485 | 847 | 746 | 117

a 0.449 | 0.44 043 | 050 | 043 | 045 | 045 | 044 | 059 | 044 | 0.43 | 043 | 043

26 331 941 | 856 | 691 | 121 | 119 | 127 | 328 | 597 | 142 | 378 | 107

5 0.464 | 0.44 043 | 050 | 043 | 045 | 047 | 047 | 0.58 | 044 | 0.42 | 0.43 | 0.44

74 246 248 | 343 | 524 | 615 | 338 | 250 | 021 | 262 | 599 | 455 | 325

10 | 0647 | 042 043 | 050 | 042 | 043 | 047 | 054 | 058 | 0.44 | 0.41 | 042 | 042

09 359 715 | 857 | 901 | 680 | 413 | 577 | 579 | 008 | 883 | 344 | 764

15 0937 | 042 043 | 051 | 042 | 042 | 044 | 047 | 059 | 043 | 0.41 | 041 | 041

65 532 678 | 522 | 625 | 600 | 254 | 214 | 465 | 656 | 556 | 421 | 500
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(0.4, 2 0451 | 045 050 | 054 | 045 | 044 | 045 | 0.45 | 059 | 046 | 0.44 | 045 | 0.45
0.4) 74 165 481 | 642 | 330 | 890 | 680 | 412 | 163 | 912 | 978 | 583 | 355

3 0.467 | 0.46 050 | 055 | 045 | 046 | 0.46 | 046 | 059 | 046 | 0.45 | 045 | 045
36 614 899 | 446 | 782 | 473 | 100 | 412 | 727 | 790 | 609 | 270 | 897
4 0.488 | 047 051 | 055 | 045 | 047 | 048 | 047 | 059 | 046 | 0.45 | 045 | 045
02 639 085 | 473 | 803 | 397 | 208 | 371 | 366 | 578 | 461 | 828 | 612
5 0.501 | 0.46 050 | 054 | 046 | 047 | 050 | 050 | 0.58 | 047 | 0.44 | 046 | 0.46
82 484 380 | 627 | 429 | 480 | 481 | 674 | 574 | 429 | 990 | 048 | 341
10 | 0692 | 045 050 | 054 | 0.46 | 045 | 047 | 052 | 058 | 0.47 | 0.44 | 045 | 0.46
12 395 207 | 430 | 152 | 592 | 770 | 170 | 620 | 084 | 537 | 105 | 197
15 1.000 | 045 049 | 055 | 045 | 045 | 046 | 048 | 059 | 046 | 0.44 | 044 | 045
15 240 937 | 080 | 425 | 710 | 001 | 207 | 378 | 498 | 990 | 438 | 422

(0.4, 2 0.428 | 0.42 057 | 051 | 041 | 042 | 043 | 043 | 0.54 | 044 | 0.42 | 043 | 0.42
0.8) 18 732 418 | 158 | 992 | 212 | 281 | 015 | 335 | 497 | 690 | 070 | 756
3 0.446 | 0.43 057 | 051 | 042 | 043 | 044 | 044 | 054 | 044 | 044 | 0.44 | 0.44

73 265 447 | 643 | 369 | 156 | 015 | 598 | 237 | 683 | 109 | 097 | 207

il 0477 | 0.42 057 | 051 | 042 | 042 | 044 | 0.46 | 054 | 044 | 0.43 | 046 | 0.47

76 735 782 | 579 | 157 | 593 | 731 | 566 | 519 | 588 | 946 | 483 | 344

5 0502 | 0.41 056 | 050 | 0.43 | 042 | 0.44 | 047 | 052 | 045 | 044 | 046 | 0.48

79 929 855 | 412 | 045 | 709 | 607 | 439 | 965 | 393 | 034 | 817 | 927
10 | 0797 | 0.41 056 | 050 | 0.43 | 0.42 | 042 | 0.44 | 054 | 0.44 | 042 | 0.44 | 0.49
61 971 891 | 244 | 050 | 159 | 835 | 312 | 050 | 390 | 799 | 952 | 906
15 1277 | 0.42 056 | 052 | 042 | 042 | 041 | 043 | 054 | 044 | 042 | 042 | 0.47
84 379 812 | 033 | 229 | 451 | 773 | 334 | 720 | 227 | 697 | 933 | 086

Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the
mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and

multi scale factors, respectively. An underlined number and a bold number show a case of

minimum MSSE value when the MGLF-S with & = 2 and the MGLF-M with & = 3 are
respectively considered in a comparison with KALMAN, MGF, and GGF.
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Table 1 Continued.

MGLF-S MGLF-M

(Pw, P Ooutiil KAL | MGF  GGF | 1 2 3 4 5 1 2 3 4 5
MAN

(0.8, 2 0334 | 033 035 | 040 | 033 | 033 | 032 | 033 | 045 | 034 | 0.33 | 0.32 | 0.33

0.1) 45 462 044 | 124 | 456 | 284 | 948 | 423 | 739 | 838 | 357 | 883 | 400

3 0337 | 033 034 | 039 | 034 | 034 | 034 | 034 | 045 | 035 | 033 | 0.33 | 0.34
37 681 414 | 823 | 631 | 302 | 235 | 389 | 070 | 767 | 796 | 832 | 188
4 0354 | 035 034 | 040 | 034 | 035 | 035 | 0.35 | 046 | 034 | 0.33 | 0.34 | 0.34
24 020 851 | 628 | 162 | 194 | 609 | 418 | 049 | 849 | 700 | 162 | 526
5 0368 | 035 034 | 039 | 033 | 035 | 036 | 0.37 | 044 | 034 | 0.33 | 0.33 | 0.34
07 021 290 | 628 | 934 | 993 | 621 | 352 | 386 | 477 | 598 | 614 | 992
10 | 0511 | 033 034 | 040 | 034 | 034 | 036 | 042 | 044 | 034 | 033 | 032 | 033
21 603 501 | 202 | 163 | 772 | 911 | 922 | 953 | 942 | 343 | 974 | 760
15 | 0744 | 033 034 | 040 | 033 | 034 | 034 | 037 | 045 | 034 | 033 | 032 | 0.32
57 735 666 | 530 | 879 | 152 | 949 | 204 | 417 | 470 | 192 | 734 | 640

(0.8, 2 0.409 | 040 046 | 049 | 042 | 042 | 041 | 041 | 049 | 0.43 | 0.42 | 0.40 | 0.41
0.4) 42 | 942 189 | 525 | 088 | 288 | 002 | 807 | 541 | 333 | 410 | 954 | 755

3 0419 | 041 046 | 049 | 043 | 042 | 042 | 041 | 049 | 044 | 041 | 042 | 041
98 932 312 | 971 | 299 | 493 | 835 | 989 | 751 | 217 | 942 | 316 | 673
a 0.439 | 043 046 | 051 | 042 | 042 | 044 | 043 | 050 | 043 | 0.41 | 042 | 0.42
14 264 683 | 686 | 412 | 436 | 460 | 820 | 614 | 144 | 078 | 677 | 435
5 0.448 | 0.42 046 | 050 | 041 | 043 | 044 | 045 | 049 | 042 | 0.41 | 041 | 0.42
97 267 390 | 318 87 | 456 | 541 | 766 | 642 | 416 | 805 | 4as | 865

10 0584 | 0.42 045 | 050 | 042 | 043 | 043 | 046 | 050 | 043 | 0.42 | 0.41 | 042

65 051 790 798 531 016 493 057 025 113 158 816 335

15 0803 | 0.41 046 | 050 | 042 | 042 | 042 | 043 | 050 | 0.42 | 0.41 | 0.41 | 041

96 11 623 868 399 783 907 395 699 881 948 956 827

(0.8, 2 0.440 | 044 058 | 053 | 045 | 045 | 044 | 045 | 052 | 048 | 047 | 0.44 | 045
0.8) 44 099 962 775 256 670 186 015 476 445 119 973 149
3 0.456 | 0.45 059 | 053 | 046 | 045 | 046 | 045 | 052 | 049 | 047 | 048 | 0.46

45 002 071 903 921 529 651 575 645 642 432 527 989

4 0.481 | 0.45 059 | 056 | 045 | 044 | 047 | 047 | 053 | 048 | 046 | 050 | 0.51

54 331 685 094 | 091 | 437 577 547 809 106 744 974 174

5 0.496 | 0.44 059 | 054 | 044 | 045 | 045 | 048 | 052 | 047 | 047 | 049 | 055

25 636 439 101 821 394 623 615 906 700 501 853 025

10 0.690 | 0.45 058 | 055 | 045 | 046 | 045 | 045 | 052 | 047 | 046 | 048 | 053

58 302 565 384 728 105 311 674 980 230 897 471 456

15 1.003 | 044 059 | 054 | 045 | 046 | 045 | 045 | 053 | 047 | 046 | 0.47 | 0.50

66 915 736 242 a67 001 475 229 356 001 096 265 088
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Note that KALMAN, MGF, GGF, MGLF-S, and MGLF-M represent the Kalman filter, the
mixture Gaussian filter, the generalized Gaussian filter, the robust MGL filters with a single and
multi scale factors, respectively. An underlined number and a bold number show a case of
minimum MSSE value when the MGLF-S with & = 2 and the MGLF-M with & = 3 are
respectively considered in a comparison with KALMAN, MGF, and GGF.

Al filters are in a comparison consisting of the Kalman filter, the robust filter with
mixture Gaussian noise (MGF), the robust filter with generalized Gaussian noise (GGF) and the
proposed robust filters, MGLF-S and MGLF-M. The MGF and GGF involve a heavy-tailed
distributed measurement noise term. The MGF is assumed a measurement noise term has a
mixture Gaussian distribution (Yatawara, Abraham, and MacGregor, 1991). In this study, the
mixture measurement noises were determined by a probability of outliers occurred that sets
to 0.05. The GGF is developed by using a generalized Gaussian distributed noise and assuming
all measurement noises are independent (Niehsen, 2002).

The simulation results in Table 1 illustrate the effect on MSSE values of all five filters
for various system noise and measurement noise correlations, Py, and Py, and the tolerance
factor 0. When 5outlier is small, MSSE values of the Kalman filter do not dramatically
change as those of the robust filters do. This implies that the Kalman filter is robust to small
magnitudes of measurement outliers. MSSE values of the Kalman filter also tend to increase
obviously when 5outlier grows up. In contrast, those of all the other four robust filters are
consistent to all magnitudes of measurement outliers. Further, the correlation coefficients of
the noise terms influence the effectiveness of all filters, i.e. MSSE values of those filters get
large when correlation coefficients of noise terms are inflated.

To compare the performance of the robust filters, a suitable tolerance factor )
might be chosen to obtain the optimal MGL filters that achieve a minimum MSSE. Based on
the studied model in this investigation resulted in Table 1, in most cases when 6= 2, the
MGLF-S produces the lowest MSSE against all 0 and the MGLF-M does as & = 3. However,
the effectiveness of both MGL filters get worse when Py or Py become large. Meanwhile,
the MGF performs well in this situation. Furthermore, when Py is small or moderate, the
MGLF-M with & = 3 performs superior to the MGLF-S with O = 2 in most cases.

Without the tolerance factor (6 = 1), the MGL filters have large values of MSSE
since the state estimates of the filters are down weighed heavily by the scale factors although
those measurements are not outliers. In addition, it could be noticed that the efficiency of the

MGL filters can be improved by choosing a suitable value of the tolerance factor. For example,
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in a such simulation under the studied model, a value of the tolerance factor should be set to
2 or 3 as resulted in Table 1. However, a suitable value of O could be varied by a model.
Thus, an appropriate value of a such factor should be found out to attain a minimum mean

square of the state error.

Conclusion
To address the linear filtering problem when measurement noise outliers occur, it

was assumed that the measurement noise follows a multivariate generalized Laplace
distribution, and the MGL filters depending on a single and multi scale factors were developed.
The performance of the MGL filters is shown to improve significantly when the measurement
noise covariance matrices are also adaptively estimated. The evidence from a Monte Carlo
investigation reveals that the proposed MGL filters are in fact robust against measurement
outliers. However, their performances are deteriorated by effects of both noise term
correlations. MSSE values of the MGL filters tend to be extensive when a large magnitude of
the tolerance factor is applied. Thus, an effectiveness of the MGL filters are relied on a

chosen suitable value of the tolerance factor that achieves a minimum MSSE filter.
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