

Subalgebras of algebras determined by polymorphisms of unary central relations or by polymorphisms of non-trivial equivalence relations^{*}

Worakrit Supaporn^{**}

Pakamas Pawong^{***}

Abstract

The set of all clones on an arbitrary set forms a complete lattice under the set inclusion. Its co-atoms are called maximal clones. All maximal clones on a finite set are classified by I. G. Rosenberg into 6 classes by 6 types of relations. Two of them are non-trivial equivalence relations and central relations. Consider a finite algebra that all fundamental operations are polymorphisms of non-trivial equivalence relations. We describe all subalgebras of such an algebra. Moreover, all subalgebras of a finite algebra that all fundamental operations are polymorphisms of unary central relations are investigated.

Key words: algebra, clone

Introduction and Preliminaries

For each n -ary operation f on a set A and each h -ary relation ρ on A , we say that f preserves ρ (or f is a polymorphism of ρ) if $(f(a_1^1, \dots, a_n^1), \dots, f(a_1^h, \dots, a_n^h)) \in \rho$ whenever $(a_i^1, \dots, a_i^h) \in \rho$ for all $1 \leq i \leq n$. For a set Q of relations on a set A , the set of all polymorphisms of all relations in Q is denoted by $Pol_A Q$. It is clear that $Pol_A Q = \bigcap_{\rho \in Q} Pol\{\rho\}$.

The set of all finitary operations on a set A is denoted by O_A and the set of all projections on a set A is denoted by J_A . A clone on a set A is a subset of O_A which is closed under composition and contains all projections. Then an arbitrary intersection of clones is a clone. For any subset F of O_A , the clone on A generated by F , denoted by $\langle F \rangle$, is an intersection of all clones that contain F . The set of all clones on a set A is denoted by

^{*} To disseminate research results.

^{**} Department of Mathematics, Faculty of Science, Silpakorn University, Sanam Chan Palace Campus, Nakorn Pathom, 73000 email: supaporn_w@su.ac.th

^{***} Department of Mathematics, Faculty of Science, Silpakorn University, Sanam Chan Palace Campus, Nakorn Pathom, 73000 email: pawong_p@su.ac.th

$\text{Clone}(A)$. It forms a complete lattice under the set inclusion where the greatest element is O_A and the least element is J_A . The co-atoms of the lattice $(\text{Clone}(A); \subseteq)$ are called maximal clones. A subset C of O_A is a clone on A if and only if $C = \text{Pol}_A Q$ for some set Q of relations on A ; see Pöschel (1980). I. G. Rosenberg (1970) classified all maximal clones on a finite set into 6 classes of 6 types of relations. Two of them are non-trivial equivalence relation and central relation.

A binary relation ρ on a set A is said to be an equivalence relation if it is reflexive, symmetric and transitive. The diagonal relation $\Delta_A := \{(a, a) | a \in A\}$ and the universal relation $\nabla_A := A \times A$ are equivalence relations and said to be trivial. An h -ary relation ρ on a set A is said to be totally reflexive if it contains a set $\{(a_1, \dots, a_h) \in A^h | |\{a_1, \dots, a_h\}| < h\}$. An h -ary relation ρ is said to be totally symmetric if for any permutation s on $\{1, \dots, h\}$, we have $(a_1, \dots, a_h) \in \rho$ if and only if $(a_{s(1)}, \dots, a_{s(h)}) \in \rho$. A center $C(\rho)$ is a set of all $a \in A$ such that $(a, a_2, \dots, a_h) \in \rho$ for all $a_2, \dots, a_h \in A$. We say that a relation ρ on A is a central relation if it is totally reflexive, totally symmetric and $\emptyset \neq C(\rho) \subset A$. In the case that ρ is a unary relation on A , ρ is a central relation if $\emptyset \neq \rho \subset A$; see Lau (2006).

An algebra $\underline{A} = (A; F^A)$ is a pair consisting of a nonempty set A and a set F^A of operations on A . The set A is called the universe of \underline{A} and each element in F^A is called a fundamental operation of \underline{A} . The clone on A generated by F^A is called a clone of term operations denoted by $T(\underline{A})$, and its elements are called term operations of \underline{A} . A nonempty subset B of A is a subuniverse of \underline{A} if it is closed under all fundamental operations of \underline{A} . If B is a subuniverse of \underline{A} , then $\underline{B} = (B; F^B)$, where F^B is the set of restrictions of all operations in F^A to B , is called a subalgebra of \underline{A} . The set of all subuniverses of \underline{A} together with empty set is denoted by $\text{Sub}(\underline{A})$ and it forms a complete lattice under set inclusion; see Denecke and Wismath (2002).

The complete lattice $(\text{Sub}(\underline{A}); \subseteq)$ is a useful tool to check a categorical equivalence of clones; see Koppitz and Supaporn (2013). A categorical equivalence of clones was introduced by Denecke and Lüders (1995). It is developed from a categorical equivalence of varieties by consider the clone of term operations of an algebra that generates a variety. Two varieties are categorical equivalence if there is an equivalence functor between them. Many algebraic properties are preserved by an equivalence functor; see Davey and Werner (1983).

Main Results

In this section, we describe all subuniverses of a finite algebra \underline{A} where $T(\underline{A}) = Pol_{\underline{A}} Q$ such that Q is a set of unary central relations on \underline{A} and a set of non-trivial equivalence relations on \underline{A} , respectively.

The first theorem was appeared in Koppitz and Supaporn (2013) but with a short proof. The full proof of this theorem is allowed by the journal to be republished and it is shown as follows.

Theorem 2.1 Let Q be a set of unary central relations on a finite set A . If $\underline{A} = (A; F^{\underline{A}})$ is an algebra where $T(\underline{A}) = Pol_{\underline{A}} Q$, then $Sub(\underline{A}) = \{A\} \cup \{\bigcap \beta \mid \beta \subseteq Q\}$.

Proof Let $S \in Sub(\underline{A})$ where $\phi \neq S \subset A$. Then there is $a \in A \setminus S$. Assume that S is not a subset of B for all $B \in Q$. Let $f : A^{|S|} \rightarrow A$ be defined by

$$f(x_1, \dots, x_{|S|}) = \begin{cases} a & ; \{x_1, \dots, x_{|S|}\} = S \\ x_1 & ; \{x_1, \dots, x_{|S|}\} \neq S. \end{cases}$$

For each $B \in Q$ and each $x_1, \dots, x_{|S|} \in B$, we have $\{x_1, \dots, x_{|S|}\} \subseteq B$. Then $\{x_1, \dots, x_{|S|}\} \neq S$, thus $f(x_1, \dots, x_{|S|}) = x_1 \in B$. These imply that f preserves B for all $B \in Q$. Hence $f \in Pol_{\underline{A}} Q$. By the definition of f , we have that S is not closed under the term operation f of \underline{A} because $a \in f(S^{|S|})$ but $a \notin S$. So S is not a subuniverse of \underline{A} . This is a contradiction. Then there is $B \in Q$ such that $S \subseteq B$. Thus $\{B \mid B \in Q\}$ and $S \subseteq B \neq \phi$ and $S \subseteq \bigcap \{B \mid B \in Q\}$ and $S \subseteq B$.

Assume that $S \subset \bigcap \{B \mid B \in Q\}$ and $S \subseteq B$. Then there is $b \in \bigcap \{B \mid B \in Q\}$ and $S \subseteq B$ but $b \notin S$. Let $g : A^{|S|} \rightarrow A$ be defined by

$$g(x_1, \dots, x_{|S|}) = \begin{cases} b & , \{x_1, \dots, x_{|S|}\} = S \\ x_1 & , \{x_1, \dots, x_{|S|}\} \neq S. \end{cases}$$

For each $\bar{B} \in Q$ and each $x_1, \dots, x_{|S|} \in \bar{B}$, we have $\{x_1, \dots, x_{|S|}\} \subseteq \bar{B}$. If $\{x_1, \dots, x_{|S|}\} \neq S$, then $g(x_1, \dots, x_{|S|}) = x_1 \in \bar{B}$. If $\{x_1, \dots, x_{|S|}\} = S$, then $S \subseteq \bar{B}$ and $g(x_1, \dots, x_{|S|}) = b$, thus $g(x_1, \dots, x_{|S|}) \in \bigcap \{B \mid B \in Q\}$ and $S \subseteq B \subseteq \bar{B}$. These imply that g preserves \bar{B} for all $\bar{B} \in Q$. Hence $g \in Pol_{\underline{A}} Q$. By the definition of g , we have that S is not closed under the term operation g of \underline{A} because $b \in g(S^{|S|})$ but $b \notin S$. So S is not a subuniverse of \underline{A} . This is a contradiction. Then $S = \bigcap \{B \mid B \in Q\}$ and $S \subseteq B$. Thus $Sub(\underline{A}) \subseteq \{A\} \cup \{\bigcap \beta \mid \beta \subseteq Q\}$.

For each $B \in Q$, we have f preserves B for all $f \in F^{\underline{A}}$. Then B is closed under all fundamental operations of \underline{A} , thus B is a subuniverse of \underline{A} . These imply that $Q \subseteq Sub(\underline{A})$. Then $\{A\} \cup \{\bigcap \beta \mid \beta \subseteq Q\} \subseteq Sub(\underline{A})$.

Therefore, $Sub(\underline{A}) = \{A\} \cup \{\bigcap \beta \mid \beta \subseteq Q\}$.

Example 2.2 Let $A = \{a, b, c, d, e, f\}$ and $Q = \{\{a, b, c\}, \{c, d, e\}, \{a, e\}\}$. By the definition of $Pol_A Q$, an n -ary operation f on A is an element of $Pol_A Q$ if and only if f preserves all elements in Q ; i.e. $f(\{a, b, c\}^n) \subseteq \{a, b, c\}$, $f(\{c, d, e\}^n) \subseteq \{c, d, e\}$ and $f(\{a, e\}^n) \subseteq \{a, e\}$. By Theorem 2.1, we get $Sub(\underline{A}) = \{\emptyset, A, \{a, b, c\}, \{c, d, e\}, \{a, e\}, \{c\}, \{a\}, \{e\}\}$.

The last theorem, we describe all subuniverses of a finite algebra \underline{A} where $T(\underline{A}) = Pol_A Q$ such that Q is a set of non-trivial equivalence relations on A . The result surprised us that the set $Sub(\underline{A})$ does not depend on a number of non-trivial equivalence relations.

Theorem 2.3 Let Q be a set of non-trivial equivalence relations on a finite set A . If $\underline{A} = (A; F^A)$ is an algebra where $T(\underline{A}) = Pol_A Q$, then $Sub(\underline{A}) = \{\emptyset, A\}$.

Proof Clearly, $\{\emptyset, A\} \subseteq Sub(\underline{A})$. Let $S \in Sub(\underline{A})$. Assume that $S \neq \emptyset$ and $S \neq A$. Then $\emptyset \neq S \subset A$. Thus there is $a \in A \setminus S$. Let $f: A \rightarrow A$ be defined by $f(x) = a$ for all $x \in A$. For each $\theta \in Q$ and each $(x, y) \in \theta$, we have $(f(x), f(y)) = (a, a) \in \theta$. These imply that f preserves θ for all $\theta \in Q$. Then $f \in Pol_A Q$. By the definition of f , we have that S is not closed under the term operation f of \underline{A} because $a \in f(S)$ but $a \notin S$. So S is not a subuniverse of \underline{A} . This is a contradiction. Then $S = \emptyset$ or $S = A$. Therefore, $Sub(\underline{A}) = \{\emptyset, A\}$.

References

- [1] Davey, B. A. and H. Werner. (1983). “Dualities and Equivalences for Varieties of Algebras, Contributions to lattice theory.” *Colloq. Math. Soc.*, 8: 1-15.
- [2] Denecke, K. and O. Lüders. (1995). “Category equivalences of clones.” *Algebra Universalis*, 34: 608-618.
- [3] Denecke, K. and S. L. Wismath. (2002). *Universal Algebra and Applications in Theoretical Computer Science*. United States of America: Chapman & Hall / CRC.
- [4] Koppitz, J. and W. Supaporn. (2013). “Category Equivalences of clone of operations preserving unary operations.” *Comptes rendus de l'Académie bulgare des sciences*, 66(2): 177-184.
- [5] Lau, D. (2006). *Function algebras on finite sets: Basic course on many-valued logic and clone theory*. Berlin: Springer.
- [6] Pöschel, R. (1980). *A general Galois theory for operations and relations and concrete characterization of related algebraic structures*. Berlin: Report 1980 1 Akademie der Wissenschaften der DDR Institut für Mathematik.

[7] Rosenberg, I. G. (1970). “Über die funktionale Vollständigkeit in den mehrwertigen Logiken.” *Rozpravy Československé Akad. věd, Ser. Math. Nat. Sci.*, 80: 3-93.