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Classification of plants with the technique of k-Nearest Neighbor (k-NN) and
the selection of appropriate agents with Genetic Algorithm (GA) using the

features of shapes and surfaces of leaves
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Abstract
There are many techniques in the classification of plant leaves such as C4.5, Naive

Bayes, k-Nearest Neighbor (k-NN), Genetic Algorithm (GA), Support Vector Machine (SVM), etc.
Each technique has its own different advantages and disadvantages depending on problems
and objectives of implementation to obtain the results. For the features of plant leaves, which
consist of leaf shapes, leaf veins, leaf apexes, leaf bases, leaf margins, and leaf sizes, the
researcher found that the various features of plant leaves could be used in the classification of
plants. This research presented the method of the classification of plants by using the
selection of appropriate agents with Genetic Algorithm (GA) and with the technique of k-
Nearest Neighbor (k-NN). The samples used in the experiment consisted of 30 species of 340
plant leaves. From the result of the experiment only with the technique of k-Nearest Neighbor
(k-NN), the accuracy in the classification of plants was by 79.12%, the recall was by 79.50%
and the precision was by 73.17% and with the selection of appropriate agents with Genetic
Algorithm (GA) as well as the technique of k-Nearest Neighbor (k-NN), the accuracy in the
classification of plants was by 86.27%, the recall was by 83.06% and the precision was by
84.06%.

Keywords: Classification, Genetic Algorithm, k-Nearest Neighbor (k-NN)

UNUI

aefiugvasiivniinisdrsarlulaninlasunisasdeiiuseunns 250,000 - 270,000 aeviug

)
(Guo et al, 2004) lunsiazszyvilavesiugialigndosainnisilinuiiuluiniegfadudeden

= v s A o ¢ =~ = =~ o o o
wniilasanateiugiiviuinuie Jagdugunsalinaluladuaznisdearsianuviuaiouin a1

'3

wealulagunldiswaslunisduuniugiy Jsiggusseziia wasdanuuiuglunsseyviiniug
ialel

%umau%%tﬁauﬁmiﬂﬁqm (k-Nearest Neighbors) (Daniel T. Larose, 2005; Xindong Wu et
al, 2008) Wuinslunsdauus rana lnsagsdnaulaineadlafiazunudouls viensdlva «q Lt
Wuismsniledniu widamusssnamiladduueumsiunin dmsu msduunnguuesdeyanliiiu
U997 w30 Foyatinszdnnszate Taevinnisnsiaasudiuiuy vres1uIuvesnsdiniodouled
wileuitu vie IndlAsstusnniign wihiusiuau k Aifesns Taemsmszezmailndae

Fumeuisneitugnsan (Genetic Algorithm : GA) lwdnmsinannmguinmsiimuinisves
Charles Darwin 1shedsiidinfiudsussiianaziloniadunenaeiussely Tagmis John H. Holland,
1975) Ifinanauendnnis uazaintiu (David E. Goldberg, 1989) It GA inu$utsaungUssyndls

[

funumamnssudunali GA Juiizdn wazthuuszgndldlusnuiuegrunswans Jagdu GA 19T

136



Veridian E-Journal, Science and Technology Silpakorn University aaniIngmansiazmalulad

Volume 3 Number 4 July - August 2016 (ISSN 2408 — 1248) Ul 3 atudl 4 ieunsngiru-Aawna 2559

mw%’wﬁqqLﬁaLﬁwﬁzaw%mwmié’umﬂﬁﬁmmmmia LL@%U'ﬁzﬁW%ﬂ’]WQQ%ﬁ (n5.07005 adALaY,
2546)
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Bhattacharjya, 2012)
functionGeneticAlgo()
{
Initialize population;
fitness function;

While(fitness value = termination criteria)

SelectionCrossover;
Mutation;Calculate

fitnesfunction;
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v

Analysis (PCA) Fausiavmadiaffidefuazdordeiunnsesiuluiuedivlgwmuasisnismuadns

137



aninermansuazinalulad Veridian E-Journal, Science and Technology Silpakorn University

Uit 3 aduii 4 WauNINYIAN-dmIAN 2559 Volume 3 Number 4 July — August 2016 (ISSN 2408 — 1248)

NATeRAgITemaiunssunsiafianisdnumnaieigg Ivatemaiagu lasagne
Uszaminea(Artificial Neural Network) (Hong and Chi, 2003;2006) Wﬂis‘&gﬂﬂ“ﬁ Artificial neural
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Junaudl 1. nsiiunasaseun wluie (Image Acquisition)
dwiudeyaimihinldlunismaasinisduunluivy Fanwluisusaglugnaiemendas

AnealaerimunfnuazBenil 720 x 920 pixel wazdniulioglugunuuuuana JPEG amlufiah

T Jungusinegnedl 30 aneiug sauvionun 340 Tu fRdeldlddoyaluiiy “Leaf” dataset dwsuldidu
Joyalun1smeass (Pedro F.BSilva et al, 2014)
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AMANENLE ANANYN=TUNS AMANE ANAMIOEAUAY
1 Eccentricity ! Average Intensity
2 Aspect Ratio 2 Average Contrast
3 Elongation 3 Smoothness
4 Solidity 4 Third moment
5 Stochastic Convexity 5 Uniformity
€ Isoperimetric Factor 8 Entropy
7 Maximal Indentation Depth
8 Lobedness
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3.3. nsdmidanTasluley (selection) Wudunoulunstuglasiulen parents iileidy
Uszannsgusiely Tngldsdeidemne (Roulette wheel selection) Tnshilsuiifienanumnzaniifinis
flomagnidenunnndt dsaunnsdi 2

R 10)
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f(x) o doyaateiinty
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r fio doyaiiinaInnIsneInsal

RY)

MnsAammaiandu f (x) lneyinnIsmuIum AL El
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3.4. N15A59d181985  (crossover) ABNT1saAUAIYDY tAstulausEniInaUseInsNle
Andontuegiuannuuinziluluniswaniudsudu anuinrsdulunsaduaieiug (Probabilities
of crossover: Pc) 35 crossover finaneisauideiaanlais Arithmetic crossover (AC)SHEUNSN 3

Child, =r* parentL+ (1—r)* parent2 Child, = (1—r)* parentL+ r * parent2 (3)

'
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Wie r AeAduagluyie [0,1]
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3.5. NMsNanenug (mutation) nsnaneugilunszuiunmsdy Amsfwesiniligu
Toeduludunddlaiazan fuuseiliiivuaanlaniaainaraudiazdulunisnaiewus (mutation

LY 9

probability) mmﬁwmﬂu‘iummmaﬁuﬁ (Probabilities of mutation: Pm)
Tngaulngiumisuags1uuenis mutation sduagiunsdy uidmiuaildly
n15 mutation tuenamealagldaunisd 4
After = Before + (1) * Before) (4)
Toedl After fio Bundaainns mutation
Before Ao Bunaun1s mutation

n fAe snsnsnaneiug -1<n <1

Taehludn i dwuslviansiifielaliflasiuley Offspring S8ufiuaneingnn Parents ann
Wuld A1 77 e1amanlalaesnisdy
3.6. Maviganai3eus (termination) HeulvlunsAuaanisvhanuiiu GA az Auganis
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= 1% ° Py ° A 1o A ™ =
wiaﬁjﬂ%mﬁ]% ﬂ']ﬁu@lﬁau’fjﬂﬂqiwqﬂqULNaﬂqﬂqmanlu nangy 9 iaUVINWUlI']‘,LlIlIﬂ']iLUaEJULLUaQ

141



aninermansuazinalulad Veridian E-Journal, Science and Technology Silpakorn University
Uit 3 aduii 4 WauNINYIAN-dmIAN 2559 Volume 3 Number 4 July — August 2016 (ISSN 2408 — 1248)

fumaudi 4. mswunnmluiisdsdunsuinifieutulndgn
1. mdhitlndfignaindeyad test Audeyail train Fsiailndfudeya test mnlan aveglu
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AuantAlndReignd oy k Mlnsagiitunoudwieluil
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4) Mvualseinnued @ nUszianves Pl AlAlnalAeange k 31w laedenain

Usziamiinuvesign
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=
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ANSAUNYRANY

HAN1TNARDY
HANINARBINTIRUNYIAvRivMmeTunauIsieutulnaaniunsdenfunulvinay

meduneuiimaiugnssulagldnuanuae sunsuasiuiivasluiy Ingluaidedliinnismeassiv
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k-NN Performance
66.33%

TL50%  ——_ 57.85%

66.47% o

71.18%

73.83% 63.20%

VB 76.17% 66.33%

75.88% & . & 68.38%

759.12% & o & 73.17%
Parameter Accuracy Recall Precision
e K=10 66.47% 66.33% 57.85%
K=7 71.18% 71.50% 63.20%
i =5 73.24% 73.83% 66.33%
B K =3 75.88% 76.17% 68.38%
e k=1 79.12% 79.50% 73.17%

a

AN 6 waUsEANSAMIUNTTLUNAIETE k-NN
1) §3delalavinmasedeglitunuitiveutulndgalunsiuunyiaivlagldldfiden

[
@

fmnzaunnduneudaiugnssulagldnudnuue 14 gadnvazvesluiiy nansmaasmuiileusu
Amsdiees K = 1 agldnadnsinnian nadwsaugndies (accuracy) 79.12%  AiANATURIY
(recall) 79.50% wazAIAULLIUET (precision) 73.17%

2) {Aseldvinsmaaedlaslifidonfimnzannduneuitdaiugnssusuiutuneuls

~ v v ° a A = Y] =
LWBUUqUELﬂaq@IUﬂqiﬁnLLUﬂ%u%W%I@EJ@JNaﬂ']ﬁV]WaaQ(ﬂQﬂ']‘WCV] 7

| Genetic Algorithm Leaf K-NN Performance

{Pop__slze Pc Pm Attributes | Parameter | Accuracy | Recall | Precision
50 0.9 0.05 9 k=1 86.27% | 83.06% | 84.06%

|

AN 7 1ausEENSAWIUNITIUNAIEID k-NN 571U GA

KATINASTIAABINT B IUIUNMSTUREURIBsugnITy TagldusuAmsdme ey
wnzan laenmuali pop size = 50 , pc = 0.9 , pm = 0.05 LLaxmﬂ@mé’ﬂwmzﬁy’wm 14
audnwazvadluiiy Woruvuiunsidendunuivnzauililddudenfivuzay 9 aadnvny
ﬁﬂﬁ 1. Eccentricity 2. Aspect Ratio 3. Elongation 4. Stochastic Convexity 5. Isoperimetric Factor
6. Maximal Indentation Depth 7. Average Intensity 8. Smoothness 9. Third moment Falvinadns
Anugnaeslunsduunviinvesiiy (accuracy) 86.27% A1ANATUNIU (recall) 83.06% WagA1AIY

Wwaiuen (precision) 84.06%

dsduazanusiena
lunuideillidnaueduunsiinvesigsristunsuisiioutiulndge srufunsidendiunu

Mmngaumetunewinidaiugnssulagldnudnuae sunsaasiuRivesluiy Ingluauidedlaviinig
naaeaiuluiiy 30 aneud J1uu 340 Tu Mnuan1eaedlagnwideillddunewisdaiugnssuluns

Wenmunuimangay warlitunawisiveudiulndanlunisduunviinvesisdlvinadnsainugnaes
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Tunsduunvilnaesiv  (accuracy) 86.27%  A1AINATUIU(recall) 83.06% LAYAIAIILLLIUEN
(precision) 84.06% WowUssuifleuifunmsliduneudtifontnlndiedunssuunslaiiviieets
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rglumadensaunuiiovnngauiiliussdvsnmnissuuneinfivietuneuiBifeutwlndaniany
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