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Abstract

In quantum theory, the photon and graviton are colloquially referred to as having spin
t+h and =£2h, respectivety.1 Spin is associated with properties of the electromagnetic and
gravitational fields related to their angular momentum or the way they transform under
rotations. We review some of these properties and establish connections among them that
explain the terms “spin 1”7 and “spin 2”. In particular, we show how helicity (& measure of
how waves transform under rotations) is related to the eigentensors of Dirac’s infinitesimal
rotation operator. We also examine systems emitting gravitational radiation to analyze the
angular distribution of energy and angular momentum in circularly polarized plane waves
and gain insight into the spin-2 nature of the gravitational field.
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Introduction

Gravity is often referred to as a “spin-2” field when analyzing gravitational waves in the
“linearized” or weak field approximation in general relativity. Such discussions seldom convey
insight into the connection between the vector or tensor nature of a field and its “spin-1” or
“spin-2” characteristics. For example, Dirac [2] sketches how the infinitesimal rotation operator acts
on the metric tensor, infers its eigenvalues, and concludes that

“the components (of the metric) that contribute to the energy thus correspond to
spin 2.7

Weinberg [3] remarks that

“the electromagnetic wave can be decomposed into parts with helicity +1 and O.
However, the physically significant helicities are +1, not O, just as for gravitational

"More precisely, photons and gravitons have helicity +# and +2A, respectively. To quote Sidney Coleman: “Spin is a
concept that applies only to particles with mass, because only for a particle of non-zero mass can we Lorentz transform
to its rest frame and there compute its angular momentum, which is its spin. For a massless particle, there is no rest
frame, so we can't talk about the spin. We can however talk about its helicity, the component of angular momentum
along the direction of motion.” (Chen (2019), Chap. 19, p. 400). [1]
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waves they are #2, not +1 or 0. This is what we mean when we say, speaking
classically, that electromagnetism and gravitation are carried by waves of spin 1
and spin 2, respectively.”

Ohanian and Ruffini [4] state that

“circularly polarized waves carry angular momentum . . . proportional to the amount
of energy carried by the wave: angular momentum = 2/w X energy . . . (This) result
cannot be obtained directly from [the plane wave solution]; this solution ignores
the boundaries of the wave in the transverse direction, and it is precisely the
boundary region that is crucial for the transport of angular momentum. The quantum
mechanical interpretation . . . is that the quanta of the gravitational field, or gravitons,
have spin 2h.”

In this paper we explore these observations and develop insight into the description of classical

”

fields as “spin 1”7 and “spin 2”. In particular, we show that:

1. The metric of a gravitational wave is a linear combination of eigentensors of Dirac’s
infinitesimal rotation operator R. In this decomposition, basis eigentensors with eigenvalue +A1
(A =0,1,2) have coefficients with helicity +A. Notably, only the eigentensors with A = +2 represent
physical waves in the spacetime geometry.

2. A monochromatic, circularly polarized gravitational wave packet carries angular momentum
equal to +2/w times its energy, compared to +1/w for electromagnetic waves. This result is used
to study the flux of angular momentum from a radiating system and obtain insight into the
distribution of angular momentum in the radiation field.

We conclude with some open questions arising from this study.

Results and discussion
Notation

- “Geometrized units” are used throughout this paper in the analysis of both gravitational and
electromagnetic phenomena. Thus, we take ¢ =G =1 as explained in the next two points.

- The speed of light ¢ is dimensionless and equal to 1. The standard unit of time t (seconds)
is replaced by x° (meters), defined by x° = ct, where ¢ =3 x 108.

- The gravitational constant G is dimensionless and equal to 1. In Sl units G = 6.67 X
107 m3kg=1s72. Since time x° =ct is measured in meters, we convert seconds to meters
using 1second = ¢ meters. Hence, G = 6.67 x 10711 m3kg™1s72 x (1/c?) m™2s%. For G to be
dimensionless, we convert mass m in kg to units of mass m measured in meters. Therefore,

12 mk
G =6.67 x 10711 m3kg~1s72 x &

X .
c?m?  m meters
This equals unity if m =m x 6.67 x 10711 x ¢~2. Therefore, the conversion formula is:

m meters = (G/c?)g X mkg =743 x 10728 x mkg.
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- Greek indices run over O, 1, 2, 3. Latin indices run over 1, 2, 3.

- The Einstein summation convention is used, so repeated indices are summed over. Thus:
A*B, = A°By + A'B; + A*B, + A®B;, Qkr = Q11+ Q22 + 033

- Partial derivatives may be denoted by a comma; e.g, ¢, =d¢/oxH.

- The metric n,, = diag(1,—1,—1,—1) is used.

A. Review of gravitational waves

We review the basic theory of gravitational waves in a weak field (“linearized gravity”) and
properties of harmonic coordinates.

§1. The weak field approximation

We assume the curvature of spacetime is small, which means the g,, are approximately

constant and Igm,,pl « 1. Then E€instein’s vacuum equation R,; = 0 becomes?®
Roe = 9" (9pouv + Guv.p0 = Jupve = Guovp) =0, (1)
or using the d’Alembertian operator, [lgp = g*'¢p 0
Roe = Udpoe + 9" (Guv.ps = Gupvo = Guowp) = 0. (2)
We work in harmonic coordinates which satisfy3
ghT, =0. (3)

The Christoffel symbol is defined in terms of the metric:

1
Ffw = Egal(g/lu,v + v — guv,/l) . 4)

Substituting this into (3) and multiplying both sides by g,3, we obtain a condition for harmonic

coordinates in terms of the metric:

g,uv (gup,v - %guv,p) =0. (5)

Differentiating (85) with respect to x and retaining terms up to first order in the derivatives of
Iuv'

1
g (gup,va _Eguv,pa) =0. (6)
Interchanging the indices p and o in (6) and adding the equations, we obtain

g (guv,pa —Y9upve — g;w,vp) =0. @)

2Dirac (1975), €q. (33.1).
*Dirac (1975), Chap. 22.
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€gs. (2) and (7) give the d’Alembert equation:
Dgpa = ngng”uv =0. (8)

§2. Linearized gravity

If the curvature of spacetime is small, we may write gu, =Ny + by with [y |, [hyy | < 1.
Note that

™ = R¥)(yp + hyp) = 85 + 0(hw %)
which implies
g =n* = + 0(Jhy 1) . 9
Then (1) becomes, neglecting terms of 0(|h,“,||hm,,po.|):4
" (oo v + huv,pe = Mupve = Puovp) =0 (10)
and (8) becomes
n”vhpalw =0. (11)

The weak field approximation is referred to as linearized gravity, since (10) and (11) are systems
of linear differential equations for hy, or g,,.
§3. Harmonic coordinates in a weak field
We can write the harmonic coordinates condition (56), keeping terms up to order |hm,|:
1
hg,v_Eh

,=0 (12)

where
h= hﬁ =n*"hy,

is the trace of hy,. Writing h, =nph, and raising the index p, (12) becomes

P, = n"Phy, = 0. (13)
Define
Yy = by = Ml (14)
so (13) becomes
Yr, = 0. (15)

“We can reasonably assume the second derivatives hyuvpo are bounded. We ignore pathological waves such as
f&tx) = e(t — x)? exp[—(t — x)?] sin[1/(t — x)]
that have the property that |f], [fol = O(e) but |fagl is unbounded. Such waves are unphysical.
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This is analogous to the Lorenz condition A, = 0 for the electromagnetic 4-potential AV = (¢, A),
where ¢ and A are the electric and magnetic vector potentials.

The trace of ¥, has the property that
Y=l =¥ =0 (hyy = Suvh) = h—2h = —h (16)
soO we can easily recover huv from ¥, via
My = P + vk = Py = ) - (17)
Because of (106), ¥y, is called the trace-reversed metric perturbation.

§4. The field equations in linearized gravity

Putting g#” =n*V — h¥¥ into (4) and keeping terms up to first order in |hy,| and [k 4l
we have:

Iy = 0 (hagy + havy — huva) - (18)

Inserting this into the expression for the Ricci tensor® R, and dropping the IT terms, we obtain:
Ry = %(Dhuv +huy = hiey — hﬁ.au) ’
R=n*Ry,, =0h—h% 5.
Therefore, the Einstein tensor takes the rather complicated-looking form:
Guv = Ry = 30w R = 5(Ohyy + by = Bty = = 1 TR+ 1, h ). (19)
Using the harmonic coordinates condition (12) this simplifies to
26,y = Ohyy = 51,0 0h = Oy,
Therefore, the Einstein field equation Gy, = —8mTy, in linearized gravity takes the form
Uy, = —167Ty, . (20)
Note that the vacuum equations (8) and (11) can easily be recovered from (20):
0 = Otpyy = Ohyy — 10k = Ohyy + 1™ Dipap = Ohyy
§5. The wave equation and wave vector
By (11), g, satisfies a wave equation with velocity v = 1:

nuvgpa,,uv = Yps,00 — Vz.gpo =0. (21)

Dirac (1975), €q. (14.4).
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The wave equation

L o V2f =0 (22)
v2 9 (x0)2 f=
has a plane wave solution f(x) = f(ksx%) = f(kox® —KkeXx).

Note that we use n*¥ to raise and lower indices, so ko = k° and k,, = —k™. By convention
we assume ko > 0. This is a wave traveling in the k = (k1,k? k3) direction. Inserting this solution
into (22), we obtain the relation

ki —vi(kZ+ki+k3) =0, (23)
or v=ky/k where k = |K|.
A monochromatic plane wave is a solution of the form
f(x) = Asin(k;x°) + B cos(kysx?) . (24)
ko is the angular frequency, usually designated w.
We call k and k* = (k%K) the wave vector and wave 4-vector respectively. The quantity
E=kyx® =kox"—Kkex

is the phase, which marks where exp(ik,x?) falls on the unit circle. This is plainly coordinate
invariant, hence a scalar. Since k, =¢,, plainly k, is a vector.

In the case of waves traveling with speed v =1, (23) gives
k2 — (k? + k2 + k2) = npakpk“ =ksk° = (25)
so k% is a null vector.

§6. The metric derivative u,

Consider a plane wave solution gy, to (21) with wave 4-vector ks. Then g, is a function
of the variable & = kqsx?. We define u,, = dg,,/d¢, so that

_ 4G 9§

g#v,p = d—fﬁ = u#vk

0 -
In general, u,, is not a tensor. If it were, then g,,, would be a tensor by the quotient theorem
(since kp is a vector), which it is not’® Indeed, gl’w will not be a function of the variable &' =¢

under an arbitrary coordinate transformation; hence, u,’w is not even defined.

A partial derivative of the metric transforms:
, ox* a8 [ox® oxP ax® oxP 9x* d (0x* axP
Givr = 377 7\ 97 98 | = 5P 527 577 b ¥ 9t 5377 \ oW 57 )

Thus, g,y e cannot transform as a tensor for arbitrary coordinate transformations.



k—-\x?”““ﬁa&ﬂ‘gﬂ Thai Journal of Physics Vol. 42 No. 1 (2025) 1-47
i T

Note that we can always recover gy, from u,, via
9 = [t (26)
where the constant of integration can be determined by the value of gm,(x) at any x; for example,
Juv = Ny 8t infinity.
§7. An important coordinate transformation

Consider the coordinate transformation

x'* = xt 4+ bH(x), |bupls by pel <1 27)

The product

ax"™
(68 = 54) Gz = (8 — b, )(6% + 5%,) = 8 + 01

shows that

ox?*

Ix'™ = 6/? - ba,u + O(Iba,,ulz)

The reason for assuming |by ,q| < 1 will appear shortly. Keeping terms up to order |bg,l:

, ax* 9xP a o F; 8 8 o
Iuv = Gap mm = gaﬁ(5u —b ,,u) (61/ —b ,v) =9u — g,uﬁb v Javb 7R

In the weak field approximation, the metric commutes with partial derivatives. More precisely, if
up = Mg + hup with |hy, | K1, then guﬁbﬁ’v=bu’v+0(|hm,||bﬁ‘v|). Thus, to first order in the

small quantities || and |bgy |, we have
glltv =Yuv — bu,v - bv,u . (28)
This gives the transformation of the metric under the coordinate transformation (27).

Note that if b, = b,(£), then

db, 3¢ .
uy = d_fax" = b,u(f)kv
where a dot [ denotes differentiation with respect to & Hence, Juv is also a function of &.
Moreover:
dgy, d 0x* 0xP\ dgep 0x* 9xF o d [0x®\ dxF
ae ae\9 B x " ax” ) T Tde axPax” " 9B\ ox'F ) ox"”
a B a_ pa
=dga,; d0x% 0x 29 d(du b k”)((Sﬁ—bﬁk)
d§ ax'Fox” ' "Ik dé v v

B dgap 0x“ axP

. ﬁ .
& 3x7 5~ ok (8% - bPk,).




Eﬁg‘l““ﬁa&ﬂ‘gﬂ Thai Journal of Physics Vol. 42 No. 1 (2025) 1-47
i T

Hence,

, ax% 9xP ..
um, = U.aﬁ mm + O(bﬂ) .

Note that b, , = b#kp and by p5 = B#kpka. Therefore, the conditions |b,,| < 1, |bypel K 1

are equivalent to |l3u| < 1, |Bu| & 1. We also have |u,| <1, since gue = Upks and |guy ol K
1. Therefore, for u,, to transform as a tensor with respect to the coordinate change (27), we
require Bﬂ =b,,s =0. In other words, we must have b,(§) =A,§+B,, where A, and B, are

constant vectors; that is, bﬂ must be linear in ¢.
Note that (27) and (28) leave Ruv unchanged. To see this, we have from (1) and (28):
Roo = 9" (Gpouv + Guvpo = Gupve — Guovp) - (29)
To find an expression for g"w, consider the product
(9ur = bup = ban) (9™ + 977b% 5 + 977b" o) = 6} + 0(Iby,0 1)
This shows that the inverse of g, = guy — byy — by, is, to first order in |b, 4l:
9" =g" + g"bt ; + ghbY ;.
This can be written more neatly as
g™ = g*v 4+ b*V + hVH (30)

where

ob*  ob¥ 0x°
dx, 0x9 dx,

v = = g°Vb* .

The last equality follows by comparing the two expressions

dx, , dx° = g°dx, .
Thus, from (29), we find that R,; = R,, to first order in |b,y| and g5 uvl-

§8. Harmonic coordinates by a coordinate change x'" = x* + b*(x)

It is always possible to find coordinates in which (3) holds Locally.7 In the weak field case,
we can also find harmonic coordinates using the transformation (27) with an appropriate choice
of b*. We calculate:

"Weinberg (1972), §7.4.
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g (g;m,v - %gl’W,P) =g [«%u,v ~bp v = bypv — %(guv,p — byyp — bv.up)]
= (g,uv + bH*V + bv'#) (gpu,v - %guv,p - bp,uv)

1
= 9" (Gouv = 2Guvp) — Tbp + 0Ubuul1Guvp 1) + O Uy 1By 0] -
If we choose bp such that

1
Dbp =g (gp,u,v - Eg;w,p) ) (€29

then

g,uv (g;)u,v - %g;,w,p) =0

H = x* + b*(x) are harmonic since

to first order in |byyl, |byuyl @nd |guypl- The coordinates x'
they satisfy (5).

Note that if x* are harmonic coordinates, then x'#

providing that Ulb, = 0.

= x* + b*(x) are also harmonic

B. Polarization of gravitational waves

We analyze the polarization of gravitational plane waves and deduce that the metric g,

(or metric derivative w,,) has only two independent components.

§1. Components of uy,

Putting guy = guv(ksx?) into the harmonic coordinates condition (8), we obtain
Uuypk? — Zuk, = 0 (32)

where u = gt = uj;. The equation gy, = Ouy, =0 consists of 10 equations in 10 independent
components w,,. The 4 equations (32) for 0 <p <3 reduce this number to 6. But it turns out
that there are only two distinct degrees of freedom that represent the propagation of physical
waves, as opposed to coordinate waves.

§2. Coordinate waves

Wave-like behavior of g,, may arise from the propagation of a physical disturbance in the
spacetime geometry or from a choice of coordinates, or both. Consider flat spacetime with cartesian
coordinates x'* = (t',x',y',z").? Let x* be another coordinate system defined by t=t', x = x’,
y=y', and z=2z+ (¢/w)cosé, where £ =w(t—2z) and |e| K 1. Then:

Swe will occasionally write x* = (t,x,y,2), but the time coordinate is always measured in units of distance.
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ds? = dt? — dx? — dy? — [dz — esin & (dt — dz)]?
= Nydx*dx’ — 2e siné dtdz + 2esiné dz* + 0(e?)
= (M + hy)dx*dx? + 0(e?),

where
0O 0 0 -1
. 0O 0 O
hy, = esin§ 0 0 0 o
-1 0 0 2

The oscillatory behavior of the metric could be mistaken for a wave propagating in the Z direction,
but this is a flat spacetime metric. This coordinate wave is a manifestation of the coordinate
system.

§3. Polarization of g,, waves

Let x* be harmonic coordinates. Consider the coordinate change (27) with b#* = b#(§).
From (28) we have:

g;’w =9uw — bukv - bvku ’
therefore,
Uy = Uyy — Bﬂkv - kau . (34)

u

The coordinates x'® are harmonic, from the remark at the end of section A §8 and the fact that

Ob, = 1¥b, 0 = n* byk,ky, = bk, k* = 0.

Consider a monochromatic plane wave traveling in the Z direction with k, = w(1,0,0,—1).
The harmonic coordinates condition (32) gives the following relations:

1
u00+u03=5u, u02+u23=0,

(35)

Ugs +ui3 =0, Ug3 +u33=—%u.
Since wy, = Uy, we focus on the components with u < v (the upper triangle). Subtracting the last
equation in (385) from the first gives ugg — U3z = U = Uy — Uq1 — Uy — Uz3. Hence,
U1+ U =0. (36)
Adding the first and last equations in (35) gives
2ugz = —(ugo +uszsz) - (37)

€gs. (36)-(37) allow us to express uqz, Uz, Ugz and Uy, in terms of the other components:

U13 = —Upz, Uz3 = —Up2,

(38)

_ _ 1
Uz = —Upq, Up3 = —5(Uoo + U33) .
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Thus, only six components of w,, are independent: uyq, Uiz, Ug1, Ugzs Uge aNd uUzz. If we make

the change of coordinates (27), we can calculate uy, for these six components using (34):

. . .
U1 = U1, Ugy = Ugy — byw,
. . .
Uyp = Ugz, U3z = U3z + 2b3w),
, . , .
u01 = u01 - blﬂ) y uOO == uOO - Zboﬂ) .

Notice that only uy; and u;, are unaltered by the coordinate change. By a suitable choice of by,

we can make the other four components vanish. Choose b, such that

e S S Y S - Y S
by=—=, by=—=, by=-o", by=-". (39

Then in the x' coordinate system:

! ! ! ! !

Upg = —Upy = Uqq, Uy = Uy = Uqa, all other u;,, =0.
Thus, all uy, vanish except uj; = —uj, and uj, =uy;. Hence, in the x' coordinate system, u,
has only two independent components.Q

In the x' coordinate system (henceforth dropping the primes), U,y Is a linear combination

Uy (1) = up1 () +up2(9)Q,, (40)
where & = x% —x3, and
0O 0 0 O 0O 0 0 O
+ _[0 1 0 O « [0 0 1 0
‘Q’W “lo 0o -1 0]’ Q,uv 10 1 0 0 (1)
0O 0 0 O 0 0 0 O

€quivalently, recovering huv from w,, using (26), we have
Ry (§) = hy1(O)Q, + hi2(O)Q), (42)

Q;[v and Q;jv are the two independent polarization states of uy,, or hy,.

The x' coordinate system is called the transverse traceless (TT) gauge, since in these
coordinates the perturbation hm, is traceless and perpendicular to the direction of propagation of
the wave (the fourth row and column are zeros). Note that hy, remains transverse and traceless
regardless of the direction of the wave vector K. (A rotation of the axes is just a change of
basis, under which the trace of a matrix is invariant.)

°Note that the requirements |bul, |byol < 1 of (27) are satisfied. Using guv,p = Uk, and the assumption |gu, |l < 1, we
have |uy,| < 1; therefore |5H| &1 by (39). Thus:

b, = fii#(/l)d/l &1, b= fb#(/l)d/l &1,  byg=Dbyk,«<1.
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Note also that hy, satisfies hg, = h,o =0 in the TT gauge, which remains true for any K,

since matrix multiplication by a spatial rotation does not affect the first row or column.

C. Infinitesimal rotations and spin-2 fields

We introduce Dirac’s infinitesimal rotation operator and obtain a relation between its
eigenvalues on specific vector subspaces and the helicity of elements of the subspace. In particular,
we look at gravitational plane waves (with spacetime metric g,,) and electromagnetic plane waves

(with electromagnetic 4-potential 4,).

§1. Finite rotations

Consider a change of coordinates xH - x'H

resulting from a rotation of the x* axes by
an angle O around the x3® axis. The change of coordinates x'* = R¥,(8)xY is a linear

transformation:

" 1 0 0 0

X o
RK, () = _ 0 C(.)SQ sind 0
axv 0 sin@ cosf@ O
0 0 0 1

lts inverse is obtained by replacing 8 by —8:
. 1 0 0 0
dx 0 cos@ sinf O
H = =

R,7(9) ax" 0 —sin@ cos@ 0
0 0 0 1

R*,(8) and R,%(@) are Lorentz transformations, also denoted by A, and A,¥. This notation is
consistent with the rules for raising and lowering indices, since

APR = D (1 ngp0a®) = 0% (ppha” D) = ™V Nay = 6 -
(The third equality is the defining property of a Lorentz transformation.) Thus, Az” and A¥, (or
R, and R*,) are inverses.

To check how uy, transforms under this rotation, note that (see footnote &)

, dx* 9xP 9x* ] N 8
o = ax_,ummuaﬁk/l t 957 [R.“(O)R,F (0)]

or

ox* dxP

v, = ax—,umuaﬁké-
Comparing this with g,y = wwks, we deduce that

, ax® oxF ap B
u,w = ax—,#mu(xﬁ = R# Rv uaﬁ . (43)
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Thus, wy, transforms as a tensor.

Note that the rotation R#V(O) obviously leaves k; = w(1,0,0,—1) unchanged:
k. =R, k; = kg

Therefore, a rotation does not alter the harmonic coordinates condition (32), since

1
“u'k!

’ "vo_ B _ B _ B (1 _1 _
uy k' = R,*R,Pugpk” = R,Pugpk® = R, (Eukﬁ) = suk, =u'k,.

Hence u,, satisfies (32).

A rotation of coordinates can be viewed as an operator R(8) on scalars, vectors and
tensors, with one rotation R#“ for each rank. From the transformation rule for a covariant tensor

Tyva.. we have

ax* dxP axY

ox ox” oXT | _ B
b7 3 95 97 = Topy-R.“(O)IR,P (O)RY (0) (44)

R(O)(Ty.) = Tipp. = T

Scalars, vectors and rank-2 tensors transform under R(08) as follows (in operator and component

notation):
S" = R(6)(S) S'=S
V' =R(O)(V) V. =R,V,
U' =R(6)(U) U = R,ORPUp

§2. Dirac’s infinitesimal rotation operator

In his treatise on quantum mechanics,'© Dirac defined the infinitesimal rotation operator R:

R =im RO 1 45
= lim————. (45)
This can also be expressed

R56 = R(69) — 1. (46)

We write R to avoid confusion with the finite rotation operator R(8). Boldface symbols
distinguish operators from matrices. The form which R(6) takes varies according to whether it

operates on a vector V, or a tensor Uy, as shown in (44). In particular, the operator R(6) on

nvs
a rank-2 tensor cannot be represented by a matrix; it is an object with four indices.

For a vector V=1, (46) gives

'""Dirac (1958), §25. [5]
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R,%(0) — 6% 1 0 ) ° 0
- . R, % ., .. 1[0 cos6-1 sind 0
R(V)u—él_r}(l) 0 V“_(lall%g 0 —sinf@ cos8—1 0 v
0 0 0 0
0O 0 0 O
{o o 1 0\, .5
=10 -1 o o V=RV),,
O 0 0 o
where R is the matrix
0O 0 0 O
- {0 0 10
R= 0O -1 0 O (47)
O 0 0 O

Thus, for a vector V, we have R(V) = RV. We write R for the operator (45) and R for the matrix
(47) to avoid potential confusion, which will become evident in a moment.

For a tensor U =U,

v, (45) gives

R,“(6)R,F(6) — 636F
9 ap -

R,y = lim (48)

We are careful not to interpret R(U) as the matrix product RU. The matrix product RU has entries
(ﬁU)m, = ZAR;MU/W’ whereas ﬁ(U),W is given by (48) and requires two applications of the rotation
matrix R,*(6).

We can find a formula for K’(U),W as follows. For a finite rotation, (44) gives
Uiy = R, “(OIR,F (0)Usp, (49)
which we can write as a matrix equation:
U' = R(O)UR(O)T. (50)
Applying (60) and (46) with an infinitesimal rotation 88, we have the matrix equation:
U'—U=(R66+1)URT66 +1)—-U.
So, to first order in 66:
U'—U=(RU+URT)86. (51)
Using (47), we calculate:

Uy Upp+Uy Uy —Upy U3
—Uy Uypp— Uy —Upp— Uy —Usz

RU + URT = (52)
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From (45), we have
R(86)(Uyn) = R,“(80)R,F (86)Usp,
so with (49) and (46), we also have the operator equation:
U' —U=R(560)(U)—IU) =RU)SO . (53)
Comparing (61) and (563) we see that
R(W), = (RU+UR"),, . (54)
Now it is clear why we are careful to distinguish between the operator R and the matrix

R. The R appearing on the left-hand side of (564) is the operator of (48), not the matrix (47).
Otherwise, (54) would read (RU),, = (RU + URT),, — a nonsensical result.'’

§3. €igenvalues of R

If V=Vu is a vector, then

0 0 0 0\ /Y% 0
s _ sy |0 0 1 0)[W Vv,
R(V) =RV = 0 -1 0 ofJ\Va] |\ -1,
0 0 0 0/ \I 0

Therefore, the operator R? (and the matrix R?) has eigenvalues -1 and O, with corresponding
eigenvectors (0,Vy,V,,0) and (V,,0,0,V3), each spanning a 2-dimensional subspace. Hence, (iR)? =
—R? has eigenvalues 1 and O, so that iR has eigenvalues +1 and O.

Now consider R operating on u,,. With R as the map given by (54) and (52), —R? acts

as follows:

Upg Upr Uz Ups 0 Upq Ugy 0

u u u u -R? u 2(up —u 2(uqp +u u

10 Uir Ug2 Usg 10 2(uny 22) (U2 21) 13 | (55)

Uzp U1 Uz Up3 Uzo  2(uiz +Uz1) —2(upr —Uzz) Uss

U3zp U3p U3z Usz 0 Uz U3z 0
Since Uz, = —uUp; and uUp; = Uj,, we see that —R? has the following effect on various blocks of
Uy
uv

/ i

Block A:  u,, — 4uy,

uv
_R?
| H A H | Block B:  w,, — uy,, (56)

—R?

\ BlockC: w, — 0

""Notice that R(U) = RU — UR, the commutator of the matrices R and U.
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Therefore, iR has eigenvalues 2, +1 and O when applied to Blocks A, B and C, respectively.

Dirac observed that “the components of ugg that contribute to the energy [Block Al thus correspond

912

to spin 2.7 The remainder of this section is devoted to clarifying and understanding this comment.

§4. Wave helicitym’
The components of uy, transform under a finite rotation R(0) according to (44):

uy, = cos 20 uyq +sin260 uy,, ugp; = cos B ugy +sinfugy,, Upo = Ugo »

Uy, = —sin20 uy; + cos 260 uq,, Uy, = —sinf uy; + cos O uy;, Us3 = Uzsz .
The other components ujs, Ujs, Upz and uj, can be found using (38). Notice that
uyy Fiug, = e (uyy F i)
ugy F iugy = e (uoy F iugy) -
If we define

Fy =uqq F iug, 57)
Gy = Upy + iug

then under the action of R(6):
Fi — eiszi

. (58)
G = e*G, .

A wave function ¢ that transforms under a rotation R(8) about the direction of wave propagation
according to ¢’ = e ¢ is said to have helicity h.

€ach component of u,, can be written in terms of w1, Ujp, Upy, Upz, Uge aNd Uzz uSing
(38). These in turn can be written in terms of Fy, G4, uge and uzz by (67). It follows that any
U,y can be decomposed into a sum of waves with helicities £2, +1 and O.

= x* + b*(&) we can arrange for

We saw earlier that by making a coordinate change x'
all uy, to vanish except u;; and uq,. The waves of helicity £1 and O are therefore coordinate
waves; they are not physical. Only the waves of helicity +2 are actual disturbances of the

spacetime geometry.

Using (67)-(68), the components of a wave

Upy () = ug1 (Q + U2

'2Dirac (1975), Chap. 34.
"SAdapted from Weinberg (1972), §10.2.
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transform under R(8) as follows

U = S[(Fi + FDQL, + i(Fy — FOQ ]
= %[(un —iug)(Q + iQﬁv)ezw + (ugg + iug) (Qfy — iﬂ;fv)e_zw]

_ ( cos260  sin 29) (un Uqo

_p A
—sin26 cos26 ) =R, (20)wyy -

Uiz —Upg

Thus, R() acting on u,, causes Block A of u,, (1 <u,v<2) to undergo a rotation by 20.'"
This reflects the spin-2 character of the gravitational field, which is physically determined only by
the Block A components of uy,.

§5. Polarization of electromagnetic waves

We pause to highlight the analogy with €M waves. Let 4, = A,(§) be a plane wave
solution for the potential, with & = k,x?. Inserting this into the wave equation I:IA# =0 and the

Lorenz condition AY, =0, we obtain the relations

ksk? =0, u, kY = (59)
where u, = dA, /d¢. The relation u,kY =0 reduces the number of independent components of wu,
and A, from 4 to 3.

The Lorenz condition is satisfied by taking any solution A4, and setting 4, = 4, — ¢, where

Dd):/ﬂ‘_u. This leaves Fy, =A,, —A,, unchanged, with A", =0. We can make a further

alteration of the potential:
A;/ (5) =4, (5) + b,v (f)

for some b(§). Since b is a function of & =ksx° we have [Jb=0. This leaves F,, unchanged

and also preserves the Lorenz condition:

A%, = (A +1"b,)y =AY, + 1" Db, = 0.

Then
, d /0b ..
u, =u, +6_§(6x") =u, + bk, .
The equation
ul, = u, + bk, (60)

reduces the number of independent components of u, (and 4,) from 3 to 2.

"“Blocks B and C of Uy, would similarly undergo rotations by 6 and O, respectively. These are of less interest since

only Block A represents a physical wave.
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To illustrate this, consider a monochromatic plane wave traveling in the Z direction with
ks, = w(1,0,0,—1). The condition u,kY =0 means that uy = —us. This is analogous to what we
did in (38) to express uy3, U3, Upz and Uy, in terms of the other six components. Hence,

w, =u;(0,1,0,0) +1,(0,0,1,0) +us(—1,0,0,1). (61)
The vectors
oM =0,1,00 0?=(,010 o =(-1001) (62)

are the independent polarization vectors. From (60) we have:

i li

u; =uq, u, =u,, u; =uz; — bw.

By choosing B=u3/a) we can make uj = 0. Thus, only u; and u, have physical significance;
ug(f)ﬂ,(f) is a coordinate wave, since it can be eliminated by a change of coordinates. Therefore,

only Qf,l) and 91(,2) appear in the physical fields.

The components of u, transform under a rotation R(8) according to u, = [R(8)(wW)], =
R,” (@)u,,. Therefore:

uy = u;cosf +u,sinb

u;, = —uysinf +u, cosf ,

Uy = Uy, uj; = us.
If we define G, =uy Fiu,, then Gy = e*®G,. Thus, G, has helicity 1, analogous to the G, in
(67). We can_sotve for uy and u_z in term_s of G4 a_nd express u, as a sum of waves ?Nith
helicities +1 and O. Then only the components of u_v with helicity =1 are present in the physical

wave, just as in the case of gravitational waves only the components with helicity +2 have physical

significance.
The components of the wave
w, () = w (O +u (DO

transform under R(8) as follows:

W= (S cose) lug) = R .

This reflects the spin-1 (vector) character of the electromagnetic field.

§6. Helicity from the infinitesimal rotation operator

Using (62), (63) and (564), if ul’w is the result of an infinitesimal rotation R(68) operating

on Uyy:
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0 Ug2 —Upq 0
_ _ | Uoz 2u;;  —2ugp Ups
(Sum,—um, = —Upp —2Uy; —2Upp U3 %0
0 Uys —Uj3 0
where we have used the symmetry of u,, and the relation u;, = —uyq. Using the functions Fj

and G4 defined in (87), we have:
O0Fy = Fi — Fy = Suyq Fi6uy, = 2(uqp + iug1)660 = +2iF, 66
8Gy = Gy — Gy = upy Fi6ug, = (Ugy  iug;)80 = +iGL66 .
This implies, to first order in 66:
Fi = (1 £ 2i80)F, = e*?1¥9F,
Gy =(11i86)G, = e*0¢,

which is the infinitesimal version of (68). Thus, Fy and G4 have helicity =2 and =1 under
infinitesimal rotations. We can recover (68) from these relations, since for a finite rotation 6, we
have (writing 66 = +6/n):

Fi = lim R"Fy = lim (1 4 2i6/n)" Fy = e**%F, .
- - n—-oo =T T

n—-oo

§7. €igenvalues of iR and helicity

Consider R acting on a rank-2 tensor. If Z is an eigentensor of iR with eigenvalue A, then
iRZ)=i(RZ+ZR")=2Z.

From (62) we have a system of 16 equations:

0 Zo2 —Zo1 0 Zoo Zo1 Zoz Zos

= | Zao ZiztZpn Zyp—Zin Zy3 Zio Z11 Ziz Zi3
iR(Z) =i =1 . 63
OD=U 7, Zyp—Zy ~Ziy—Zy s Zoo 7o Zoy s 63)

0 Z3; —Z3 0 Z3o Zz1 Zzp Zs3

The 16-dimensional vector space of real 4x4 matrices Uy, is a direct sum of the subspaces
S4 D S D S of matrices with entries in Blocks A, B and C; see (66). Solving (63) yields a basis
of eigenmatrices Zy,+-,Z1¢ that spans these subspaces. The eigenmatrices Z; have complex entries,
so for real Uy, the coefficients ' in the expansion U ={'Z; + -+ {*€Z;4 will be complex valued.

We solve for the Z; in Blocks A, B and C separately.
Block A: We have
Ziy + 72y = —idZq = i1Z5,
Zoy — 211 = =M1y = —idZ,, .

If 2# 0, then Zyy = —Z3, and Zy, = Z,1. Therefore, the central 2x2 submatrix of Z,, must have
the form
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(o 22)=( %)

Hence, 28 = —ida and 2a = iAB. This implies A2 =4, or A = 42. Hence, f = ia, so we have the

two independent solutions
1 —i 1 i
zo=(5 0) 2=( 4)

with eigenvalues A4 = £2 respectively.

If A=0, then Z;; =Z5, and Z;;, = —Z51. Then we have the independent solutions

10 0 -1
Z"(o 1) Z"‘(1 0)'
The four matrices Z,, Z_, Z;, Z;; form a basis that spans S4. A real 2x2 matrix U can be written

as a linear combination:

CHHCTHG i =g - z”) P

Ui U2\ _ 4 - I Hy _
(U21 Uzz)_Z Zet L CLHC Z”‘(t(z——(+)+z” —t—+

Solving for the coefficients in terms of the Uy:
{*t= %[Un = Upz + iUz + Uz1)], {'= %(Un +Uz2),
= %[Un —Uyy —i(Uyz + Uz1)], "= %(U21 —Usz).
In the case of gravitational waves, Uy, = u,, and this simplifies to

1 . 1
(+=5(u11+1u12)=5F_, {'=o0,

1 . 1
("= 5(“11 —iug,) = §F+ ) f” =0.

Thus, the decomposition (64) reduces to

(u11 Ugr

_1
o uzz) = (F.Zy +F.Z).

We see that the S, basis matrices with eigenvalue +2 have coefficients (which are functions of
the u,,) with helicity +2.
Block B: We have
Zoy = —iAZyq, Zyy = A2y,
Zzg = _iAZ]_3 y 213 = iAZz3 .
Thus Zﬂv(lz—l) =0 for every (u,v) in Block B. Hence, either all Z,, =0 (not interesting) or
A = +1. Therefore, we have the relations:
A - +1: ZOZ == _iZ01 ZZO - _izlo 223 - —iZl3 Z32 - _iZ31
A = _1: ZOZ = iZOl ZZO = iZlO 223 = iZl?, Z32 = iZ31 .

20
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There are 8 matrices forming a basis of S, each one with a (1,%i) in one of the four regions
of Block B and zeros elsewhere:
[Za+]ij = 60i01j — i80;62;
[Zp+]ij = 61i60j — 16280
[Zc4)ij = 61103 — 16,63
[Za+]ij = 63101 — 183,06,

Zg_ ]U 80i61j + 180;02;
Zp-lij = 61100 + 16260
Zo_)ij = 01i03; + 16203
Zg-)ij = 0381 + 10305

where + in the subscript denotes the eigenvalue A =+1. Any U € §z is a linear combination:

Uw = Z (O Zay + (P2 Zyy + {2y + {24y (65)
/ 0 (a+ + Ca_ _l-(a+ + l-(a— 0 \
_ | ¢b* +¢P- 0 0 ¢+ |
T it +ighn 0 0 SIS
\ 0 (d+ + (d— —i€d+ + izd— 0 /

Solving for the coefficients in terms of the Uuw we find:
¢t = %(Um * iUo2), ¢t = %(U13 tiUs3),
(bi = %(Ulo * iUz), Zdi = %(U31 * iUs2)
For Uy, = uyy, this simplifies to:
5ai=5bi=—fc+ (d+——(u01+lu02) % F

and the decomposition (65) reduces to:
1
Ez Gx(Zas + Zps = Zex — Zay) -
+_

We see that the Sp basis matrices with eigenvalue +1 have coefficients with helicity 1.
Block C: We have
0=2A2y = AZy3 = A3y = AZ33
Hence, either all Zuv =0 or A=0. This yields the trivial basis
[Zalij = 80i00;  [Zplij = 60ib3;  [Zy]ij = 63605  [Zslij = 83183

and the trivial decomposition:

U

uv = UOOZGI + U03ZB + U3ozy + U33Z§ .

These results are summarized in Table 1 (omitting Z; and Z;; whose coefficients are zero).
Since only u;; and uq, (the Block A components of w,,) are physically significant, any plane

wave U, can be decomposed

21
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Uy = (+(Z+);w + (_(Z—);w
where Z, are eigenmatrices of iR with eigenvalues 1 = +2, and the coefficients ZJ—’ have helicity

h=-1"

Table 1 Relationship among eigenmatrices and eigenvalues of iR and coefficients in the eigenbasis
expansion of u,, for Blocks A, B, C

Coefficients {% in the expansion | Coefficient ¢

Block €igenmatrices of iR Eigenvalue
g g Uy = (%2, helicity
A 7y +2 ¢t =2F; 2
Zatr Zps (== %Gi
B T *1 ) ]
Zew) Zax (=04 = _5G$

=1up,lf=u
c Zar 25, 2y, Zs 0 o ) ” 0
{¥ =usp,¢° =ugs

D. Angular momentum in electromagnetic plane waves

We show that a circularly polarized wave packet with frequency w has spin equal to +1/w
and +2/w times its energy for an electromagnetic wave and a gravitational wave.
§1. Polarization of electromagnetic waves (continued)

For an EM plane wave traveling in the Z direction, we found in section C §5 that

dA,
as

where Q,(,l) and Q,(,Z) are the two independent polarization vectors. We re-examine this case,

u, (&) = =2 = 1, ()P +u, (P,

focusing on the fields E = —VA° —dA/dt and B = curlA as a prelude to calculating the energy
and angular momentum densities of a wave packet for electromagnetic and gravitational waves.

Consider the monochromatic plane wave
A, = AQ, sin[w(t — 2)] (66)

with real amplitude A and polarization vector ,. We saw in section C §5 that £, is not arbitrary,
since putting (66) into the Lorenz condition AY, =0 gives Qo = —Q3. Therefore, Q, is a linear

combination of the polarization vectors

"*This differs from the linear combination w,, = uy; (E)Qh, +u1(§)Q, of the two independent polarization states, which

reveals information about the wave’s effect on the spacetime geometry but not its behavior under a rotation of coordinates.

22
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o =0,1,00 0P =010 o =(-1001.
Let & =ksx° = w(t —z). For the wave
AW = 20W siné = 4(0,1,0,0) sin ¢,

the electric and magnetic fields are:

E1=F10=A1’0_A0’1=A(1)COSE E2=E3=0 ( )
67
BZ=F31=A3,1_A1,3=A(UCOS§ Bl=Bz=0
or
EW =Eycoséx B =E,coséy (68)

where E, = Aw. The electric and magnetic fields have equal amplitude and phase and are
perpendicular to K and to each other.

Similarly, for the wave
AD = 40P sin¢ = 4(0,0,1,0) sin ¢,

the fields are

E2=F20=A2’0_A0’2=A(UCOS§ E1=E3=0
(69)
Bl=F23=A2'3_A3'2=_A(UCOS§ BZ=B3=0
or
E® =E,cosé¢y B@® =—E,cosé%. (70)

The third wave A,(,3) =AQ1(,3) sin¢ is not a physical wave, since F, = 0.

We write the fields as complex functions, e.g., ED = Eoe_ifi, where it is understood that
we take the real part only. Now let

EW = Eje %%
E® = Epe~#¥+in/2y = jFe~¥y
so that E@ differs in phase from E® by m/2. We define the circularly polarized waves
E; =EW +E®@ =Ee %@ +iy). (71)
Taking real parts, we have
E; = Ey(coséX £5siny). (72)

E; has constant magnitude Ej, and at z =0 makes an angle with the x-axis of twt. Thus, from
the point of view of the wave source, E, rotates clockwise and has positive helicity (or is right-
handed) and E_ rotates counterclockwise and has negative helicity (or is left-handed). We can
easily recover E® and E® from E, and E_.

23
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§2. Momentum density in electromagnetic plane waves

The energy-momentum tensor of the electromagnetic field is:
! (E? + B?) ! ExB
/811 4 \

1
_ExB mn
41 T

T =

where the stress tensor
T = (4m)"t [25™n(E2 + B?) — EME" — B"B"|

Therefore, the plane wave (68) has energy density € and momentum density p given by:

2 2
E=T0 = E—Ocosz &, p = (T, T92,T9) = E—Ocosz §z.
4 41

All components of T™" vanish except T332 = (EZ/4m) cos?&. Hence, the wave has momentum flux
in the Z direction. The energy flux T°3 is equal to the momentum flux T33, which corresponds to
the guantum mechanical view that photons have energy and momentum E = p.

The infinite plane wave (68) has momentum density
p=(4n)'ExB= (4m) 1E%2.

Therefore, the angular momentum density r X p at a point on the z-axis is zero.'® This is so even
for a circularly polarized wave.

Now consider a plane wave like (68):
E = EO(x: y)e—iw(t—z)f B = EO(x: y)e—iw(t—z)y

of finite transverse extent, in the shape of a cylinder of radius Ry, around the z-axis. Suppose
Ey, = Ey(p) is constant for p < Ry — &, decreases in the annulus Ry — & < p < Ry, and vanishes for
p = Ry, using cylindrical coordinates with p? = x? + y2.

At t =0, the E and B fields point in the X and ¥ directions in the plane z =0, and point in the
—X and —9y directions in the plane z = w/w. Therefore, the field lines in the planes z =0 and
z=mn/w must connect to form closed loops. (Likewise for all pairs of planes z =2z, z =25+
T/w.)

Therefore, the E and B fields have a z-component in the annulus Ry —e <p <Ry E and B are
not perpendicular in this annulus; they may be nearly parallel, so that EX B may be small
Nevertheless, the momentum density (4m) 'E X B in the annulus has a transverse component, so
there is a transverse energy flux.

'°Off the z-axis there will be nonzero orbital angular momentum density, but the total angular momentum within a volume
symmetric about the z-axis is, of course, zero.

24
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Now consider the circularly polarized electromagnetic wave in (71)-(72):
E; = Eje @D+ i) By =Eee @EDFHFir). (73)
Note that
E, =4iB; or B, =TFiE,. (74)
The fields in (73) have a vector potential
A, = —%e—iw“—z)@ +iy). (75)

To represent a wave packet with finite transverse extent, we modify (75):

iE,(x, .
A=D1 ) 76)
where Ey(x,y) is constant throughout the wave packet except near the boundary, where it tapers

off to zero. Now B, picks up a Z component:

042  9AL _l[i 0Ey(x,y) +6E0(x,y)
w

B dy = 0Ox

3 —iw(t—z)
7 ox y ] ¢ '

By (74), Ex now has a Z component

. L|0Eo(x,y) | OEo ()| i
E} = +iB3 ZZ[ P +i % e-lw(t-2) (77)
Therefore, the electric and magnetic fields are:'’
JdE JdE .
E; = (Eo(x+ iy) +— [8 O+ 3 0] z)e““)(t‘z)
Y (78)
Bi = ilEi
or, taking real parts:
dE, _
Ei =EycoséX + Eysinéy +— [—smf +—cos§]
(79)
JdE,
B, E051n€x+E0cos§y+—[+—cosf+—ysmf

§3. Angular momentum of an electromagnetic wave packet

The energy density € and angular momentum density M of a circularly polarized wave
packet traveling in the Z direction can be calculated from the energy-momentum tensor THY. Thus,
M, = xp, — ypy = xT°? —yT°L. We will confirm later that M, = M, = 0.

""This is the solution to Problem 7.20 in Jackson (1975), p. 333. [¢]
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Assume that Ey(x,y) is radially symmetric about the axis of propagation, so Ey(x,y) =
Ey(p) in polar coordinates, with x = pcos¢ and y = psin¢. Then:

(')EO (')EO ap +6E0 d¢ xan
ox (')p ax dp ax p ap

and similarly for 0E,/dy. We also assume that Ey(p) tapers off sufficiently gently at the boundary
of the wave packet so that

JE,
$<< wE, . (80)
Using E. and B, from (79):
oE, 0Ey\*
81T = E2 4 B2 = 2F2 ( ") (—0) :
s + 0 [ ox + 3y

Since
(0Ey/0x)? + (0Eo/0y)* = (0Ey/0p)? K w?E§
we have 4nT% ~ E,(x,y)?, or

E= ! Eo(x,y)?
= amg OV
We also calculate
E, 0E, E, 0,
4nT°* = E,B, —E,B, = w9y 4nT%% = E,B, — ExB, = ——x

Therefore,
E JE JE, E, OE
4M. = xT92 — yTO1 — _ 0( bt} _0)___0 il
Integrating over the x-y plane,
4JMdA fEaEOZ ™2 ., —Z”JEZd—leZdA
T = oaPP— w dp’o P—w oPP—w 0 .

We will show below that the wave packet has no x- or y-angular momentum. Therefore,
fMdV— 2 JEZdV (81)
T 4nw ) 0T

The total angular momentum in (81) is independent of the coordinate r, so we identify M as spin
angular momentum density, denoted by S. Hence, the ratio of z-spin angular momentum to energy
of the wave packet is

[S;dV _ (4nw)™' [E§dV 1 -
[edv ~ (4m)[E¢dV (82)
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If we had used E_ instead of E, we would have obtained —1/w. €q. (82) reflects the
qguantum mechanical view that a photon has spin +hA and energy hw.'®

To complete the analysis, we confirm that the wave packet has no x- or y-angular
momentum. Since

4nT% = E,B, — E,B, = E§

we have:

E, OE E, OE
4TM, = yT93 — 2T = yEZ + Zzoa—xo = E¢psing + Z;Oa—pOCOSCP-

Integrating over the x-y plane, remembering that E, = Ey(p):
2 . EO an
41'[fo dA = f (Eopsm(,b +Z——cos¢)pdpd¢> =0.
w dp
Similarly, 41TfMy dA = 0. Thus, the angular momentum of the wave packet has only a z-component.

§4. Angular momentum of a gravitational wave packet
Our goal is to derive the ratio

[S,dv
[eav

—+2 83
=i= (83)

for circularly polarized, gravitational plane wave pachet]Q Consider a monochromatic wave packet
g*v =n* + h* traveling in the Z direction. We work in the transverse-traceless gauge, so h =
Y =0, hyy =9y from (17), p*¥ , =0 from (15), and PH® =% = 0. Let the metric perturbation
be

l/)uv — Q[.l.l/(x, y)e—ia)(t—z)
where we take the real part as the wave.

For an infinite plane wave, we know from (42) that Qm,(x,y) is a linear combination
an{v +bﬂl>fv of the polarization tensors (41); and if a and b are complex numbers, then ,, may
be elliptically or circularly polarized. However, for a finite wave, Qw(x,y) and ¥, are more

complicated.
The harmonic coordinates condition (15) gives

a0kt 9OH2
+
dx dy

Y, = <—iwﬂ”° + + in”3> e~lw(t-2) =

'86q. (82) can also be obtained by writing rXxp=rx (ExXB) =r x [EX (VX A)] and using vector analysis to isolate
the spin angular momentum; see Ohanian (2007) §12.3 [7], Ohanian (1986) [8], and Rohrlich (2007) §4.10 [?]. This
approach does not easily extend to the gravitational field; see Barnett (2014) [10].

"°Adapted from Barker (2017) [111.
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Hence, for m=1,2,3:

anl anZ
wQ™ =0, 84
o + 3y +iw (84)
The general solution to (84) is
i [oQll 0012
Qll , QlZ : _

(x, y) (x,y) w[ax + ay]

i [001?2 09022
ar=| e 0%(xy) 5[ ——+ ay] (85)

1 [62911 62912 62922]

-— 2
w?| 0x? + dxdy + dy?

where the lower triangle is completed by symmetry. We set

Q1 (x,y) = —0%2(x,y) = ¥Y(x,y)
(86)
0% (x,y) = Q1 (x, y) = i¥(x,y)

where W(x,y) is a real-valued function that is constant in some finite region of the x-y plane
and tapers off to zero at the boundary. We choose W(x,y) to be symmetric about the z-axis, so
Y(x,y) = W(p) in polar coordinates, with x = pcos¢ and y = psin¢. We have:

0WYop dVYodp x
x =g oot =)
’ dpox O0¢pox p

XX

x0¥, x 0 /x x0d(cosp¥,) x?
R

= ==—(= =y
pdp pdp\p p dp p? PP

and similarly for ¥,, ¥y, and ¥,,. We also choose Y(p) to taper off sufficiently gently at the
boundary of the wave packet so that

alp<< LY azq]« aqj« 2y (87)
p wV¥, p? a)ap w¥.

Then Q33 is negligible compared to the other Q™" and we have
Y(r,y) P(ry) i ' [V,+i¥,]
= Y= e —W(ay) 0 iW, -] |e ¢ (88)
0
where & = w(t — z). Taking real parts:
Y(x,y)cosé W(x,y)siné w_l[‘{{x sin§ — ¥, cosf]

Ymn = —W(x,y)cosé —w W, cos& + W, siné] |- (89)

0

28



1 (2025) 1-47

Eﬁ?ﬂﬁﬁﬁﬁ;ﬁf Thai Journal of Physics Vol. 42 No.
& T

Notice that, except near the boundary, we have

Yy 0 0 0 ¥ O '
0 —¥ 0]+il¥ 0 0 |te™®
0 0 O 0 0 O

Yy = Pe 0Dl +iQX),

Ymn =

or

which is a circularly polarized wave analogous to E, in (73).

The energy and angular momentum densities of the wave packet can be calculated from

the components of an appropriate energy-momentum pseudotensor t*V. As a first approach, we try

the Einstein energy-momentum pseudotensor, which for a plane wave has the form:

32tV = (uaﬁu"‘ﬁ — %uz) kH kY.
Since hapgo = Japo = Uapks, We have from (16) and (17):
—Yo=hs =0%hyps = n"Pugpk, = uk,,
Uggks = hapo = Yapo — %naﬁlp,a :
Therefore:
32mty, = ua/;k#u“ﬁkv - %ukﬂukv
= (Wapu = 3Map¥u) (W, — %Py ) = 2 (—1,) (=1,)
= Yapu¥® , = Wby

In the TT gauge, this simplifies to
32mty, = lppa_ulpp"” .
Therefore, since Yo = Yoy = 0
32Mtog = YrsoWrso = 202 ¥P2(x,y) + 2W35 + 2¥35 ~ 20*WP2(x,y)

on account of (87). Therefore,

2

w
E=t% =ty =—¥2%(x,y).
00 = Jer )

However, a problem arises when (?91) is used to compute the transverse

the momentum density. For tyq, we obtain

2%Dirac (1975), €q. (33.9).

20

(90)

(CEY

(92)

components of
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2 2 (yx? —x?%y
321ty = ll)rs,olprs,l = Z (lp,ytp,xx - Lp,xtp,xy) = Z

03 >q},pq{pp =0.

Similarly, tg, = 0. The problem is that (90)-(91) is the energy-momentum pseudotensor for an
infinite plane wave, in which there is no momentum component perpendicular to the direction of
propagation. For a finite wave packet

PR (E) = O (x,y)e 00
with Q#V given by (88), glV(r) = n*v + YH*(r) is not a function of & = w(t — z), so (90) is not an
appropriate starting point.

We use the Landau-Lifshitz energy-momentum pseudotensor:m

16mth” = h#V hP? o — hHP JhYC 5 — hye'HhVPO — h,oV AP0 + 77p0h"p,;LhV°"’1 ©3)
1 Aop 1 Ay Lpp ol 1, po, v _Lypuyov

+ 09 (Shapoh?P = ThpghP7H + ThE ,hSH) + ThPT by — THEFRTY

In the TT gauge we have hy, =1, so we may replace hy, with . Since P*¥ =0 and ¢ =

0, the 1%, 2™ 8" and 10" terms vanish, and we are left with:
L6mtF = — g P — g Y0 + 1pgpHP 7

(94)
1 1 1
ad (Ell))lp,alpla'p Zl/)pa,llppa'l) El/)pa,ulppa.v _

To see how (94) generalizes (91), note that for an infinite plane wave in the Z direction, ¥4 2
vanishes unless A = 0 or 3, while lppa vanishes unless p,o = 1 or 2. Hence, in this case the

1%, 2" and 4" terms of (94) vanish. Additionally, the 3™ term contains the factor
l/Jup Al/)va,/l — uupkluvak/l
which vanishes, since k;Lk)'L = 0. Likewise, the 5" term vanishes. Thus, for an infinite plane wave,

(?4) reduces to (91).

Using (94), we recalculate t%° to confirm that the previous expression (92) for £ remains
correct. Since 1/)0" = 0, the first three terms vanish, and we are left with

1 1 1
16mt%° = Elplr,swls'r - Z’ubrs,llprs'l + Elprs,olprs,o . (95)

We examine the terms in reverse order. In the calculation leading up to (92) we found that
Yrso¥rso = 20°W2 Hence, the third term = w?¥2

The second term is proportional to YrsoWrso — YrsiWrs- Note that 1,[)55,0 —1/)$S,3 = 0, since

0 and x3 appear only in the combination w(t — z). Thus

l/Jrs,oll)rs,o - l/Jrs,llljrs,l = _lprs,mlprs,m (Sum onm =1, 2) .

X

2lLandau and Lifshitz (1975), 896 [12].
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Note that

Y111 =¥, cosé K w¥

l/)12,1 = LIJ,X Sinf <K w¥

Y131 = 0 H( Wy siné — ¥, cos€) < 0¥
and so on. In general, Yps;m K 0¥ for m=1,2. Hence, the second term in (95) is negligible
compared to the third term.

The first term is proportional to ¥, sYs,. Considering all combinations of 1 <1I,7,5 < 3,
we find that Yy s, K w?W¥?2. Hence, this term is also negligible compared to the third term.

Thus, we have confirmed that (92) is correct.

Using (94), we now calculate t°1. We have:
1
16wt = ll)rs,olplr,s - Elprs,olprs,l . (96)

Now we see precisely why (91) fails to detect the transverse components of angular momentum.
€q. (91) gives 32mt% = —YrsoPrs1, Which corresponds to the second term in (?6) and vanishes;
see the calculation following (92). It is the first term that matters, as we now see.

Since YrsoPrs1 =0, we have
lomt®! = YrsoPir,s - (97)

We calculate:
1 _ ) 1
YrsoWirs = 20¥Y,, + le’y (‘l{xx sin” & + ¥, cos E) — Z‘P’x‘}{xy cos 2&
1 .
oo (PP = 29, Wy — Wi Wy ) sin 28 .
Time-averaging over multiple cycles, we have
- 1 1
lprs,olplr,s =20¥Y, + %q’,y(q’.xx + qj.yy) =¥y [quj + 20 (lp.xx + qj.yy)]

1
= l{l’y (Za)‘P + Zq{pp) .

Since ¥,, < w?¥, we ignore the second term. Therefore, Vs oW1rs = 20PY,, so

— W
t0l =—yy_ 98
8r Y (98)

A similar calculation shows that

- 1
YrsoWors = —20¥¥, — %q},x(q{xx +W¥yy)
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Yo
W
t02 = ——yy_ 99)
T
Therefore,
TTe oy — 4707 _ ol - @ @
M,(x,y) = xt0% — yt01 = —g(x‘}"{{x +y‘P‘P_y) = —gp‘lﬂl{p.

Integrating over the x-y plane:

w [ d¥Y?

fﬁdA:—quﬂp p2dp = -2 [ £ 2dp=gjq12pdp=£f‘lﬂd14
z 4 P 8) dp 4 8m '

We will see below that the wave packet has no x- or y-angular momentum. Therefore,
— wZ
fMdV=—f‘P2dV. (100)
8r
The total angular momentum in (100) is independent of the coordinate r, so we identify this as

spin angular momentum, denoted by S.

Using (92), the ratio of z-spin angular momentum to energy is

JS,av  (8m)'w [E}dV 2 (101)
feav  (16m)lw? [E¢dV o

If we had chosen Q2(x,y) = —i¥(x,y) in (86), then Y*¥’ would be circularly polarized
like E_ in (72) and we would obtain a minus sign in (101). This establishes (83), which reflects
the guantum mechanical view that a graviton has spin +2h and energy hAw.

To complete the analysis, we confirm that the wave packet has no x- or y-angular
momentum. Using (94) we calculate t°3:

1
16mt?3 = ¢rs,01p3r,s - Elprs,olprss . (102)

Straightforward calculation shows that

wrs,olp?,r,s = _lplp,xx - qjqj_yy - IP?C — lp?,
1
_Ell)rs,olprsS = w?P? + LP?C + LP?, .

Hence,
16mt? = Y2 -9YY, — WYY,

Since YW, and Y¥,, are K w?¥? we ignore these terms. So

2
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Therefore,

Zw oS ¢ pw? sin ¢
A AN L VS
8r ¥ 16m 8m P 16m

Integrating over the x-y plane:
—16nJM_di = f(Zza) cosp WY, + pw?sin¢g) pdpdp = 0.

Likewise, [ M, dA = 0.

€. Radiating systems

An electromagnetic or gravitational plane wave packet can be imagined by considering a
(finite) system of charges or masses in accelerated motion, radiating energy. Far from the system,
which we take to be located near the origin of our coordinate system, waves traveling in a
particular direction T are plane waves, occupying a solid angle 6Q enclosing the ray pointing in
the T direction During a time interval At, a wave packet is generated traveling in the T direction,
enclosed within §Q with length cAt. If the system radiates circularly polarized waves in the F
direction, then the wave packet will be circularly polarized.

The energy and angular momentum contained in the wave packet is equal to the energy
and angular momentum lost by the system during the interval At. We examine whether (83) can
be derived from an understanding of the energy and angular momentum of the system.

§1. Electromagnetic dipole and quadrupole radiation

We recall the formulae for €M dipole and gquadrupole radiation. The general solution to

the wave equation
LIA#(t,r) = 4nJ* (¢, 1)

is given by the retarded potentiat22

JHt—Ir—r'|,r)
Ir —r'|

AHt(t,r) = av’.

Suppose the origin lies near the system and r = |r| is much greater than the size T of the system,
so that

= !

[r—r'|~r—~Ffer

Neglecting terms of 0(1/r?) and retaining only terms of O(1/r), we have

1 1 1 fter 1
, ~ — ,=_+ 7 +...z_
[r=r'| r—~fer r r r

223ee any standard €M reference; for example, Ohanian (2007), Chap. 13-14.
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so we obtain a simplified expression:

1
AH*(t,r) = ;J]"(t —r+ter,r')dv’. (103)
From (103), we can calculate E=—VA® —0A/dt and B = curlA. Keeping terms up to 0(1/7),
we find:#°

B=-fx—, E=-fXxB.
ot

Note that E and B are perpendicular to each other and to f.

The 0(1/r?) terms discarded are of order JV'/r?, while the O(1/r) terms retained are of
order JV'/rT, where T is the “period” of the system, satisfying |8)/dt| = |J/T|. Therefore, in
neglecting the 0(1/r?) terms, we are assuming that A =T & r, where A is the wavelength of the
emitted radiation. Note A =T in units where ¢ = 1.

We make the further assumption that X <« A, which combined with A < r, automatically gives
us T K r2* This allows us to approximate J by its Taylor expansion in the first variable:
it —r,r’'
J( )+

Jt—r+ter,r')=Jt—rr')+ (Fer’) 5

The first and second terms in the expansion are of order [|J| and Z|J|/T, respectively. If £ <K A =T,
then the second term is small and the approximation is valid. Since X/T approximates the average
velocity of the particles in the system, £ <« A corresponds to v <« 1. In other words, the motion

of the system is assumed to be non-relativistic.

Using this Taylor expansion in (103), we obtain
1 11 .
A(t,r) = ;J[[]]] v’ + ;J(r er’)[0]/0t] AV’ + --- (104)

where [---] means the bracketed expression is evaluated at the retarded time t —r. The first term
in (104) corresponds to electric dipole radiation. We rewrite this term:

1 ! ! ! 1 ! ! 1 d ! ! 1 .
Aqp(61) == [1v'+ 11" av" =~ [10p/0er’ av’ =~ [ [plv" av' =~ [l

The first step follows from integration by parts. Thus, we find:

] P R
Adlp(tr r) = T ) Bdip(t; r) = _; X [[uﬂ ] Edip =—-TIX B .

231pid.,, §14.1.

**The assumption £ K A is equivalent to assuming that J does not vary too rapidly with time. For example, suppose
J(t',r") = Jysinwt’ Z. For the Taylor approximation to be valid, we require

[(Fer)oJ(t —rrx)/ot| L |J(t —r1")|

or Twjy K Jo; hence, w <K 271,
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The dipole power emitted into a solid angle df in the T direction is
dp —1E B AZdQ—lBZZdQ—l“ i) |2dQ
dip_E( XB)efr _El |“r —Eh'x[[ll]”

or

deip _ 1
dQ  4m

[ii]? sin? © (105)
where O is the angle between T and [ji]. The total power emitted from the system is?°
2 .
Pygip =§[[ll]] : (106)
The second term in (104) can be written®®

f)(dj[[]]]x ’dV’+1 dZ f[g(/\ ! ! IZ’\][[ ]]dV’
lae) 27" 6r dt? £err —r=lp '

These two terms correspond to magnetic dipole radiation and electric quadrupole radiation,
respectively. We will not be concerned with magnetic dipole radiation.

Define the vector q = q(F) by
q= f[3(f « ¥ — 12§ p V"
and the electric quadrupole tensor
Q1 = f(3x1'<xz' — Sur'?)pdv’.
Then
q=Qf or qx=0Qum

where Q denotes the matrix Qk; and T = (n4,n,,n3). The magnetic field is then

L S o
=T at  6r a-

The power emitted into a solid angle dQ in the T direction is:

1 S[-2 1 2..2 S a2
dPquaq = 7-|(E X B) « Flr?dQ = —|B|?r?dq = If x [4]12dQ.

144m

25Note that Pyip = (2/3c¢®)[ji]? in conventional units. This is easily inferred by dimensional analysis: the units of power
1 and the units of |ji|2 are [charge] %[distance] ?[time] ~*. Hence, [ji]2 must be multiplied by
c3 [distance] “3[time] 3. For a single charged particle, jL = qi¥ and we obtain the Larmor formula P = 2q%a2/3c2, where

a = |¥|? is the acceleration of the particle.

2%Ohanian (2007), §14.4-14.5.

are [charge] ?[distance] ~[time] =
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From Lagrange’s identity |a x b|? = |a|?|b|?> — (a ¢ b)?, we have

£ x [4]1* =% — (G« ).
Therefore,

APyyag 1 o
dq;;a = {adn 01 Qremminm — Qi QOmrnxrynyny | - (107)

This angular distribution is rather complicated. Integrating over all space, we obtain the total power
emitted by the system:

1 /o
Pauaa = 7777

Direct computation using n, = sin6 cos ¢, n, =sinf@sin¢, n, = cosf shows that®’

4 41
f nn dQ = ?Skl ) fnknlnmnr dQ = s (OkiOmr + SkmOir + Sker-Oim) - (108)

Plugging in the values of these integrals, we find:

1 1 ... ..
Pguad = 180 [0k 0ki] = 180 [Qk  Qx] (109)

where Qi = (Qkxs Qky» Qiz)- Note that Pyyaq = 0(1/c%), while Pgip = 0(1/c?); see footnotes 25 and
33.
§2. Example: a charge in uniform circular motion

We examine a system that generates circularly polarized waves along the z-axis. Consider
a charge g in uniform circular motion in the x-y plane with

r' =rycoswtX+rysinwty.

We have ji = qF' = —qw?r’. Then

de' 1 ~ . 2(,()4 ~ ,
—o X [ = L X [
_atotg

2 2 qin2 2 2 ;
= T ﬂn3 + nf sin“ wt + nj5 cos“ wt — n N, sin Zwt]] .

Taking the time average over many cycles:

dPgp _ q?w*ré <n2 N n? + n%)

dQ Ar 3 2

In spherical coordinates, we have n; =sinfcos¢, n, = sinfsin¢g, n; =cosf, so

2"These integrals also follow from symmetry arguments; see Landau and Lifshitz (19756), p. 189.
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dip _ 4 0 (1—lsin29).
dQ 41 2

The angular distribution of electric dipole radiation intensity is shown in Figure 1.

To calculate the angular distribution of quadrupole radiation, we need the quadrupole
tensor:

3cos?wt—1 3sinwtcoswt 0
Qi = qré | 3sinwtcoswt  3sinwt — 1 0 (110)
0 0 -1

and its third derivatives

sin2wt —cos2wt 0
Oy = 12qréw?® (— cos2wt —sin2wt 0)
0 0 0

After some algebra, and taking time averages:

............ q?wOry

dP,uad 1
< d(}‘;a ) = 14471 Hlekanlnm - leernknlnmnr]] =

(sin2 6 — Lsin* 9) . (111)

This angular distribution is shown in Figure 1. Note that the quadrupole power vanishes in the Z
direction.

Figure 1 Angular distribution of electromagnetic dipole and quadrupole radiation for a charge in
uniform circular motion in the x-y plane

§3. Radiation damping forces
For each charge g in the system, define the vector:

2
f q..

Q=5 g (112)
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Consider f; as a hypothetical force exerted on the particle g. Henceforth, we omit the subscript

q in rc’l, K, fg4. etc. The work done per unit time by this force on the system is
alW_Zf dr’_zf ,_22 ,_ZZ... ._22<d(. i I"IZ)
dt at v—3 quv—3 "u_B dtll s H)
q q q q q

The time average of (d/dt)(jue ju) is

T+T 1 T+T

(qveqv) =0

= lim =
T T-oo T T

d (e i) = I 1f”Td (e ide = 1 1(. 0
dt"u_Tl—{goTT FT e a
providing that the particle velocities and accelerations are bounded. Therefore,
- 2 _
dw/dt = —§|u|2 . (113)

Thus, dW /dt < 0; from (106) we see that the time-average rate of work done by f on the system
is precisely —Pgjp. Thus, each charge does work fedr' on the electric field and loses a

corresponding amount of energy through dipole radiation, so —f is the dipole radiation damping
force on q.
§4. Angular momentum lost through dipole radiation

We now calculate the angular momentum lost by the system through dipole radiation. For
each charged particle in the system, we have

M® =¢' xp +rxp =r'xf.

Therefore:
. 2q 2
Dﬂo — ,>< S X."_
E r —3 13 3 E pxp
q q

We use €° and M® to denote the total energy and angular momentum of the system.28 Since
pXp=(d/d)(mxji) —pXji the time-average rate of change of angular momentum of the
system due to dipole radiation is

5 2 ——
ndmp = _E;u><u.
Therefore, including (106), we have the formulae:
. 2 -— 2
O _ _Zya2 no _ 2= m
Edip = 3 [id| Mgip = 3 X (114)

2®Recall that €& and M were used to denote the energy and angular momentum densities of a plane wave. We will find

that the ratios l\'/lo/(‘fO and M/E are equal. Our notation avoids potential confusion.
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§5. Angular momentum lost through quadrupole radiation

We repeat the analysis for electric quadrupole radiation, using (109) instead of (106) for

the radiated power. Then the radiation damping force f satisfies the equation

Note that

Gl = (QMQM) Guli’ = t(éklé}d)

Taking time averages, we have

000 = 0,0

SO

L5
Zf v 180leQ '
q

We can express le this way:

[leQS)] + leQ(S) .

. d
Ot == ) (3ixi = 87" = ) a(3xiv] + 3viex] = 281"+ V)
q

SO

NG
2f0v= 1802q(6xkvl—26klr-v)Q()

q

In the last step we used (Sle(S) Q(S) =0, since Qy Is traceless.”’

Zf-v'=2fkv,; 3OZqQ

Thus, the radiation damping force f on q is:
fio= =50

We can now calculate M® =Yqr' xf. We have

. E:: c
ML'O = 2 gi]’k‘x]{fk = —% x le(S) — Ukz q (3x

q q

2°This is so because

Que = f(3x,;x,g — S Hpdv' = f(3x,;x,g —3r')pdV’' =0.

Sz

(I
ki X1Vk -

JlTIZ)Q(S)

Hence,

_Gijk
Eijk Z QﬂQ(S)
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where in the last step we used the fact that
5 5
Eijk5sz;(d) = fiij,(-k) =0
Observe that
(5) d (4) . .ee .o .ee
le le = E[Qﬂ le - lele] + lele .

Taking time averages:

sz Ql(c?) = sz Q.kl :

Therefore, including (109), we have the formulae:

. 1 —_— 1 —=
Equad = —1go Y (M) quaa = ~50 kit » (115)

or, using Qk = (Qkx Cky, Qkz):

1 . — m

Qk. Qk M(?uad = _%Qk X Qk . (116)

~ 0O

’Squad = _ﬁ

§6. Gravitational waves

We perform the same analysis for gravitational waves. Consider the radiation emitted by a
system of particles, making the same assumption that £ « A < 7, recalling that X «< 1 is equivalent
to v« 1. As in the EM case, the wave equation with source term,

Oy = —16mTH

is solved by the retarded potential

T*V(t—|r—-r'|,r")

PRV (L 1) = —4 j v’

Ir—r’|

As before, we take the origin near the system and assume £ <« 7, so [r—r'|"t =771 The
assumption ¥ « A allows us to approximate THYV by its Taylor expansion:

oT*(t —r,r’
Tt —rr) .

TH(t—1+Fer, 1) =Tt —7,1") + (For) -

(117)

The second term in the expansion is of order XT*V/A1 K TH*Y; therefore, the expansion is valid.

Then, keeping only the first term, we have

4
YH*(t,r) = —;f[[T’“’]] av’. (118)
To obtain a solution to (118), we use the identity
1 0%
f Tmn av = Eﬁ SystemTooxmxn av . (119)
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To establish (119), we separate the time and space components of v in the equation THY ), = 0:°°
T”OIO =-TH" . (120)

This yields the equations:m

me" dv = ——f(TmOx +TOx™) 4V
d
f(Tmox” + T™M0x™) dV = af TO0x™Mx™dV .

Combining these expressions gives (119) after lowering indices.

In a non-relativistic system, the energy density Tyo is approximately the rest mass density
Po, 8O (118) and (119) give

Ymn(t, 1) = J Loo(r)lxmxy dV'.

at2

This can be written

2

2 .. d 2 , ,
V(1) = = = [Grn] + Sn 5 [ 72D
where Q. is the mass quadrupole tensor
Qmn = J-(E’xrlnx;l - Smnrlz)po av’.

When r is large, Y, is a plane wave, whose only polarization states are Qf, and QX
neither of which is proportional to &,,,. Therefore, the second term on the right side does not
represent a disturbance in the spacetime geometry. Omitting this term, we have®?

2 .
lpmn(tr I‘) = _g [an]] . (121)

%OIn a general curved spacetime, the conservation of matter is expressed by the vanishing of the covariant divergence
TH., = 0. In the weak field approximation, this reduces to T*", = 0.

3'To obtain the first equation, use (120) and integrate by parts:
% f (TmOxm 4 TnoxmY gy — — f (T™K x4 THK ) qY = f (TSR 4 TS qY = J 27mn gy
To obtain the second equation, set u =0 in (120) and integrate by parts:
3t TOOx™Mxm dy = —fTOk,kxmx" dv = fTO"(xsz,f} + x5 dV = f(TO"xm + TOmx™) dV .

%2The reader may wonder why the first term in the expansion (117) gives rise to quadrupole radiation — what happened
to the dipole term analogous to Pgip = (2/3)[{i]* in electromagnetism? For gravity, the dipole moment fi =Y mi’ equals
the net external force on the system, which vanishes for an isolated system, so there is no dipole radiation. This implies
that an isolated system of electric charges with the same charge-to-mass ratio does not emit dipole radiation.
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The energy flux in the T = (ny,n,,n3) direction can be calculated using an appropriate energy-
momentum pseudotensor t*V; then the energy flux is

(t01’ t02, t03) ° i.‘ — tOSnS

For large 1, we can use the pseudotensor (?0) for an infinite plane wave. In the derivation
leading to (?1), we found:

1
327Ttuv = lpk/l,u’ubxl,v - 5’!’,#’#,1; . (122)

We cannot work in the TT gauge here, since we are dealing with radiation from an omnidirectional
source, and there is no coordinate system in which 1, is traceless. This is clear by contracting

the wave equation

Oy = —16nT}

which shows that i # 0 when there are sources. Also, YV is given by the retarded potential,
which is not traceless. However, we continue to work in harmonic coordinates, where Y’ = 0.

Therefore, we have

64Tt = —64mtys = =2, 0Pt + P s - (123)

From (121) we suspect that a useful expression may be obtained if each factor in (123) can be
expressed in terms of y;o « Qi /7. To this end, we separate the time and space components of

(%
641t% = =2 0Pr1s + 4Vko,0%ko,s — 2W00,0%00,s + P0¥s -
Since the mass quadrupole tensor is traceless, we have Yy, =0 by (121). Therefore, we have
Y= Uﬂvlp;w,s = Yoo,s — Yrks = Yoo,s
so that
641t% = =2 0Pkis + 4Wko,0¥ko,s — Poo,0Po0s - (124)

From (118), we have

x5 , 40 ,
l/)m,,s(t, l') = T_?’f[[T'uv]] av —;%J-[[T‘uv]] av’.

Since we assume 1 is large, we can ignore the first term, which is of order 1/r2. So, when
differentiating ,,,, the only dependence on r, hence on x5, occurs in the retarded time t—r
within [T, ] = T (t — 7,1"). Hence, we may write

0y, or
wuv,s = Twaxs = _lpuv,ons . (125)

We use (125) together with the harmonic gauge condition

0
’l’” 0 + lpm,ln =0 or lpu0,0 - lpun,n =0
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to manipulate the terms appearing in (124). Thus, we have

Yirs = —PrroNs

Yro0 = Vit = —Yriom

Yros = —Wko,ons = YrioMuns (126)
V00,0 = Yok = VoM™
Yoos = —Poo,0Ms = —PrioMMiNs -

Plugging (126) into (124), we obtain
64mt% = (lekl,ol/)kl,o — 4YroVkmoinm + lpkl,ol/)mr,onknlnmnr)ns . 127)
Using ngng =1, we have
641t ng = 2P, 0¥k10 — 4Wi1,0¥im,0MiMn + Y0 Pmr 0 MmNy -

Plugging in (121) gives

t%n, = —1
S 144n

So, the power per unit solid angle in the T direction is

ap . o 1 .o

10 t%ngr = Tadn [[Zlele 4Qy QmMnm + leernknlnmnr]] . (128)

Note how this differs from the angular distribution of electric quadrupole intensity (107).

The total radiated power is found by integrating over all Q:

E°=-P= kale (129)

To calculate the rate of change of angular momentum, as before, we need to determine the
damping force f which satisfies

z fev =£°= Q.klé.kl
m

and calculate M =Y r’' x f. But we already solved this problem in §5 with —1/180 in place of
—1/45 and q in place of m. So we have:

3‘3We may convert this formula to conventional units by making the changes d/dt — d/d(ct) and p = pG/c? to obtain

= (G/45c®)[0;, 0k ]. The right side contributes two factors of G/c> while the left side contributes one. The factor
G/c5 =2.75 X 10753 m~2s3kg~! explains why gravitational radiation is so weak.
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. 1. .. ; 2 —
£° = ~ 25 Qi Qi M;° = ~ 25 €kt Q- (130)

or, using Qg = (Qkx'Qkyr Qiz):
0} 1 eee .ee TO 2 ~ e
& =_EQk'Qk M =_EQkak'
§7. Angular momentum in circularly polarized gravitational waves

We repeat the example of §2 for a mass m in uniform circular motion in the x-y plane
with

r' =rycoswtX+rysinwty.

The quadrupole tensor is the same as (110) with q replaced by m:

—cos2wt —sin2wt 0 sin2wt —cos2wt 0
Qp; = 6mréw? (—sinZwt cos 2wt 0>, Qx = 12mr¢ w3 (—cosZwt —sin2wt O).

0 0 0 0 0 0
Therefore:
1 .. .. 1 ,.. 32m2riw®
° — _ 0
e = _EQMQM =1 (0% + 0y +203) = -5 (131)

We also have:

Q, = —6mréw?#, Q, = 6mr¢w?v’, G,=0,

.Qx = _12mr02a)3‘7, ] Qy = —12mT'02(1)3f’ y QZ = 0 .

The cross products Qk ><'Qk are all time-independent and point in the Z direction. Therefore,

32m?rgw®

: (132)

o 2 . 2 .. ..
M =_EQkak=_E(Qxex+nyQy)=_
Interestingly, we find that MZO/SO =1/w. Now, waves propagating in the Z direction are
circularly polarized, while waves propagating in the x-y plane are linearly polarized (no angular
momentum). Hence, for waves in the Z direction, we expect Mz/é >1/w. We will see that (101)
implies M,/€ = 2/w for waves in the Z direction.

The angular distribution of power is given by (128). Repeating a similar calculation to (111),
we find

dP  m?*rjw®

= — sin2 Lsint

) [4(1 sin 9)+251n 9]. (133)
This distribution is shown in Figure 2. Notice that the shape of gravitational guadrupole radiation
does not resemble electromagnetic quadrupole radiation at all; indeed, it looks more like the

peanut-shaped distribution of electromagnetic dipole radiation.
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Figure 2 Angular distribution of gravitational quadrupole radiation for a mass in uniform circular
motion in the x-y plane

We wish to compare dP/dQ in the Z direction to the average over all directions. From
(129):

), =l -

Setting f =2 =(0,0,1) in (128), we have

dP S 1 .. ..
<E>2 = {adn (2011011 — 40z Qiez + 02,022 ] = o [Q1Qa] -
Therefore, the power radiated in the Z direction is 5/2 times the power averaged over all directions:
(dP) _ 5 ( dP> (134)
dQ/;  2\dQ /e

Unfortunately, the angular momentum flow in the T direction cannot be determined solely
from the properties of the system, as we did for the energy flow in (128). €q. (127) shows that
the momentum density points in the F = (n4,n,,n3) direction, so the angular momentum density
M =r X p vanishes. This is to be expected, since we observed in section D §3-4 that the existence
of angular momentum in a wave packet is essentially a boundary phenomenon.

However, for the system studied in §7 consisting of a mass in uniform circular motion in
the x-y plane, we can ascertain the angular momentum flow in the Z direction. Let ®¢(F) and
@), () be the energy flux and z-angular momentum flux in the T direction. Then the energy and
z-angular momentum flowing through the solid angle 6Q at a distance r from the origin during a
time interval 8t is ®¢(F)r26Q8t and @, (F)r26Q6t.

Within a solid angle 6Q around the z-axis, during a time interval &t, the system generates a wave
packet of length cdt. Close to the system the radiation pattern is complicated, but far away the
wave packet is a circularly polarized plane wave. Within this wave packet, by (101):
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Oy(2) [MdV 2

de(2) [EdV W’

From (134), the energy flow ®¢(2) is 6/2 times the average over all directions. Hence, ®y(2)
must be & times the average. More precisely:

(DM (Z)

~ 5[1/ 32m?rjw®

2 5
qDE(Z) = 5 E(q)e(z))ave = 5 E 5 )] = 5(®y(2))ave

where we used (131) and (132) in the last two steps.

Alas, this deduction appears to be possible only for the Z direction.

Conclusion
The main results of this work are:

1. For gravitational plane waves, the eigentensors Z; of iR have eigenvalues +2 (section C
§7, Table 1).** For a plane wave uy, expressed in the eigenbasis

Z(‘Zi

the coefficients (i have helicity —A, where A is the eigenvalue of Z;. This establishes a connection
between the eigenvalues of iR and helicity.

2. The ratio of spin angular momentum to energy for a circularly polarized, gravitational wave
packet with frequency w is +2/w, compared with +1/w for an EM wave (sections D §3-4).

3. Information about the energy and spin of a gravitational wave packet should be inferable
from the distribution of energy and angular momentum in the radiation field of a system of masses.
In the case of a system emitting circularly polarized, gravitational waves in the Z direction, we can
determine the flow of angular momentum in the Z direction, using (83) from section D. The problem
of determining the general distribution of angular momentum radiated by a system remains unsolved,
whether in the case of EM or gravitational radiation.

The method of section €, regardless of which energy-momentum tensor (or pseudotensor) is
used, will always yield an angular momentum density of zero. Hence, it seems unlikely that a formula
for @y (F), analogous to (107) and (127), can be found to derive the ratios

ds, 1 ds,
= 4+ i —= =+ — (gravit 135
e -+ (electromagnetism) 7E (g y) (135)

by considering a system that radiates circularly polarized waves. Again, this is due to the angular
momentum in a wave packet being a boundary phenomenon.

*There are eigentensors with eigenvalues =1 and O, but these are unphysical, coordinate waves.
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Nevertheless, it is not inconceivable that (135) can be derived from the radiation properties
of a system of charges or masses. Compare the formulae for electric dipole radiation (114) and
gravitational quadrupole radiation (130). Notice that the formula for M® picks up an extra factor of
2 in the gravitational case. It is true that the same factor of 2 appears for electric quadrupole
radiation (118), which suggests that this factor of 2 may simply reflect the nature of quadrupole vs.
dipole radiation, rather than gravitational vs. EM radiation. On the other hand, notice that

1. The leading term in EM radiation is dipole; in gravitational radiation it is quadrupole.

2. The gravitational quadrupole field shown in Figure 2 closely resembles the electric dipole
field — not the quadrupole field in Figure 1!

3. In the case of a particle in circular motion in the x-y plane, EM quadrupole radiation
vanishes in the Z direction, where €M dipole and gravitational quadrupole radiation attain their
maximum intensity. This clue suggests that the factor of 2 in (130) vs. (114) reflects something more
than just quadrupole vs. dipole radiation.

This remains an open question for further study.
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