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Abstract 
In quantum theory, the photon and graviton are colloquially referred to as having spin 

±ℏ and ±2ℏ, respectively.1 Spin is associated with properties of the electromagnetic and 
gravitational fields related to their angular momentum or the way they transform under 
rotations. We review some of these properties and establish connections among them that 
explain the terms “spin 1” and “spin 2”. In particular, we show how helicity (a measure of 
how waves transform under rotations) is related to the eigentensors of Dirac’s infinitesimal 
rotation operator. We also examine systems emitting gravitational radiation to analyze the 
angular distribution of energy and angular momentum in circularly polarized plane waves 
and gain insight into the spin-2 nature of the gravitational field. 

Keywords: Gravitational radiation, Angular momentum, Spin, Helicity 

 
Introduction 

Gravity is often referred to as a “spin-2” field when analyzing gravitational waves in the 
“linearized” or weak field approximation in general relativity. Such discussions seldom convey 
insight into the connection between the vector or tensor nature of a field and its “spin-1” or 
“spin-2” characteristics. For example, Dirac [2] sketches how the infinitesimal rotation operator acts 
on the metric tensor, infers its eigenvalues, and concludes that 

“the components (of the metric) that contribute to the energy thus correspond to 
spin 2.” 

Weinberg [3] remarks that 

“the electromagnetic wave can be decomposed into parts with helicity ±1 and 0. 
However, the physically significant helicities are ±1, not 0, just as for gravitational 

____________________________ 
1More precisely, photons and gravitons have helicity ±ℏ and ±2ℏ, respectively. To quote Sidney Coleman: “Spin is a 
concept that applies only to particles with mass, because only for a particle of non-zero mass can we Lorentz transform 
to its rest frame and there compute its angular momentum, which is its spin. For a massless particle, there is no rest 
frame, so we can't talk about the spin. We can however talk about its helicity, the component of angular momentum 
along the direction of motion.” (Chen (2019), Chap. 19, p. 400). [1] 
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waves they are ±2, not ±1 or 0. This is what we mean when we say, speaking 
classically, that electromagnetism and gravitation are carried by waves of spin 1 
and spin 2, respectively.” 

Ohanian and Ruffini [4] state that 

“circularly polarized waves carry angular momentum . . . proportional to the amount 
of energy carried by the wave: angular momentum = 2/ω × energy . . . (This) result 
cannot be obtained directly from [the plane wave solution]; this solution ignores 
the boundaries of the wave in the transverse direction, and it is precisely the 
boundary region that is crucial for the transport of angular momentum. The quantum 
mechanical interpretation . . . is that the quanta of the gravitational field, or gravitons, 
have spin 2ℏ.” 

In this paper we explore these observations and develop insight into the description of classical 
fields as “spin 1” and “spin 2”. In particular, we show that: 

1. The metric of a gravitational wave is a linear combination of eigentensors of Dirac’s 
infinitesimal rotation operator 𝑹𝑹� . In this decomposition, basis eigentensors with eigenvalue ±𝜆𝜆 
(𝜆𝜆 = 0, 1, 2) have coefficients with helicity ∓𝜆𝜆. Notably, only the eigentensors with 𝜆𝜆 = ±2  represent 
physical waves in the spacetime geometry. 

2. A monochromatic, circularly polarized gravitational wave packet carries angular momentum 
equal to ±2 𝜔𝜔⁄  times its energy, compared to ±1 𝜔𝜔⁄  for electromagnetic waves. This result is used 
to study the flux of angular momentum from a radiating system and obtain insight into the 
distribution of angular momentum in the radiation field. 

We conclude with some open questions arising from this study. 

Results and discussion 

Notation 

- “Geometrized units” are used throughout this paper in the analysis of both gravitational and 
electromagnetic phenomena. Thus, we take 𝑐𝑐 = 𝐺𝐺 = 1 as explained in the next two points. 

- The speed of light 𝑐𝑐 is dimensionless and equal to 1. The standard unit of time 𝑡𝑡 (seconds) 
is replaced by 𝑥𝑥0 (meters), defined by 𝑥𝑥0 = 𝑐𝑐𝑐𝑐, where 𝑐𝑐 = 3 × 108. 

- The gravitational constant 𝐺𝐺  is dimensionless and equal to 1. In SI units 𝐺𝐺 = 6.67 ×
10−11 m3kg−1s−2. Since time 𝑥𝑥0 = 𝑐𝑐𝑐𝑐 is measured in meters, we convert seconds to meters 
using 1 second = 𝑐𝑐 meters. Hence, 𝐺𝐺 = 6.67 × 10−11 m3kg−1s−2 × (1 𝑐𝑐2⁄ ) m−2s2 . For 𝐺𝐺 to be 
dimensionless, we convert mass 𝑚𝑚 in kg to units of mass 𝑚𝑚� measured in meters. Therefore, 

𝐺𝐺 = 6.67 × 10−11 m3kg−1s−2 ×
1 s2

𝑐𝑐2 m2 ×
𝑚𝑚 kg

𝑚𝑚�  meters
 . 

This equals unity if 𝑚𝑚� = 𝑚𝑚 × 6.67 × 10−11 × 𝑐𝑐−2. Therefore, the conversion formula is: 

𝑚𝑚�  meters = (𝐺𝐺 𝑐𝑐2⁄ )SI × 𝑚𝑚 kg = 7.43 × 10−28 × 𝑚𝑚 kg . 
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- Greek indices run over 0, 1, 2, 3. Latin indices run over 1, 2, 3. 

- The Einstein summation convention is used, so repeated indices are summed over. Thus: 

𝐴𝐴𝜇𝜇𝐵𝐵𝜇𝜇 = 𝐴𝐴0𝐵𝐵0 + 𝐴𝐴1𝐵𝐵1 + 𝐴𝐴2𝐵𝐵2 + 𝐴𝐴3𝐵𝐵3 , 𝑄𝑄𝑘𝑘𝑘𝑘 = 𝑄𝑄11 + 𝑄𝑄22 + 𝑄𝑄33 

- Partial derivatives may be denoted by a comma; e.g., 𝜙𝜙,𝜇𝜇 ≡ 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥𝜇𝜇⁄ . 

- The metric 𝜂𝜂𝜇𝜇𝜇𝜇 = diag(1,−1,−1,−1) is used. 

A. Review of gravitational waves 

We review the basic theory of gravitational waves in a weak field (“linearized gravity”) and 
properties of harmonic coordinates. 

§1. The weak field approximation 

We assume the curvature of spacetime is small, which means the 𝑔𝑔𝜇𝜇𝜇𝜇 are approximately 
constant and |𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌| ≪ 1. Then Einstein’s vacuum equation 𝑅𝑅𝜌𝜌𝜌𝜌 = 0 becomes2 

𝑅𝑅𝜌𝜌𝜌𝜌 = 𝑔𝑔𝜇𝜇𝜇𝜇(𝑔𝑔𝜌𝜌𝜌𝜌,𝜇𝜇𝜇𝜇 + 𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈) = 0 , (1) 

or using the d’Alembertian operator, 𝜙𝜙 ≡ 𝑔𝑔𝜇𝜇𝜇𝜇𝜙𝜙,𝜇𝜇𝜇𝜇: 

𝑅𝑅𝜌𝜌𝜌𝜌 = 𝑔𝑔𝜌𝜌𝜌𝜌 + 𝑔𝑔𝜇𝜇𝜇𝜇(𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈) = 0 . (2) 

We work in harmonic coordinates which satisfy3 

𝑔𝑔𝜇𝜇𝜇𝜇Γ 𝜇𝜇𝜇𝜇
𝜆𝜆 = 0 . (3) 

The Christoffel symbol is defined in terms of the metric: 

Γ 𝜇𝜇𝜇𝜇
𝛼𝛼 = 1

2
𝑔𝑔𝛼𝛼𝛼𝛼(𝑔𝑔𝜆𝜆𝜆𝜆,𝜈𝜈 + 𝑔𝑔𝜆𝜆𝜆𝜆,𝜇𝜇 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜆𝜆) . (4) 

Substituting this into (3) and multiplying both sides by 𝑔𝑔𝜌𝜌𝜌𝜌 , we obtain a condition for harmonic 
coordinates in terms of the metric: 

𝑔𝑔𝜇𝜇𝜇𝜇 �𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌� = 0 . (5) 

Differentiating (5) with respect to 𝑥𝑥𝜎𝜎 and retaining terms up to first order in the derivatives of 
𝑔𝑔𝜇𝜇𝜇𝜇 : 

𝑔𝑔𝜇𝜇𝜇𝜇 �𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌� = 0 . (6) 

Interchanging the indices 𝜌𝜌 and 𝜎𝜎 in (6) and adding the equations, we obtain 

𝑔𝑔𝜇𝜇𝜇𝜇(𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈) = 0 . (7) 

____________________________ 
2Dirac (1975), Eq. (33.1). 
3Dirac (1975), Chap. 22. 
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Eqs. (2) and (7) give the d’Alembert equation: 

𝑔𝑔𝜌𝜌𝜌𝜌 = 𝑔𝑔𝜇𝜇𝜇𝜇𝑔𝑔𝜌𝜌𝜌𝜌,𝜇𝜇𝜇𝜇 = 0 . (8) 

§2. Linearized gravity 

If the curvature of spacetime is small, we may write 𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 + ℎ𝜇𝜇𝜇𝜇 with |ℎ𝜇𝜇𝜇𝜇|, |ℎ𝜇𝜇𝜇𝜇,𝜌𝜌| ≪ 1. 
Note that 

(𝜂𝜂𝜇𝜇𝜇𝜇 − ℎ𝜇𝜇𝜇𝜇)(𝜂𝜂𝜈𝜈𝜈𝜈 + ℎ𝜈𝜈𝜈𝜈) = 𝛿𝛿𝜌𝜌
𝜇𝜇 + 𝑂𝑂(|ℎ𝜇𝜇𝜇𝜇|2) , 

which implies 

𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 − ℎ𝜇𝜇𝜇𝜇 + 𝑂𝑂(|ℎ𝜇𝜇𝜇𝜇|2) . (9) 

Then (1) becomes, neglecting terms of 𝑂𝑂(|ℎ𝜇𝜇𝜇𝜇||ℎ𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌|):4 

𝜂𝜂𝜇𝜇𝜇𝜇(ℎ𝜌𝜌𝜌𝜌,𝜇𝜇𝜇𝜇 + ℎ𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌 − ℎ𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈 − ℎ𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈) = 0 (10) 

and (8) becomes 

𝜂𝜂𝜇𝜇𝜇𝜇ℎ𝜌𝜌𝜌𝜌,𝜇𝜇𝜇𝜇 = 0 . (11) 

The weak field approximation is referred to as linearized gravity, since (10) and (11) are systems 
of linear differential equations for ℎ𝜇𝜇𝜇𝜇 or 𝑔𝑔𝜇𝜇𝜇𝜇 . 

§3. Harmonic coordinates in a weak field 

We can write the harmonic coordinates condition (5), keeping terms up to order |ℎ𝜇𝜇𝜇𝜇|: 

ℎ𝜌𝜌,𝜈𝜈
𝜈𝜈 − 1

2
ℎ,𝜌𝜌 = 0 (12) 

where 

ℎ ≡ ℎ𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇ℎ𝜇𝜇𝜇𝜇 

is the trace of ℎ𝜇𝜇𝜇𝜇 . Writing ℎ,𝜌𝜌 = 𝜂𝜂𝜌𝜌𝜈𝜈ℎ,𝜈𝜈 and raising the index 𝜌𝜌, (12) becomes 

ℎ𝜈𝜈𝜈𝜈 ,𝜈𝜈 −
1
2
𝜂𝜂𝜈𝜈𝜈𝜈ℎ,𝜈𝜈 = 0 . (13) 

Define 

𝜓𝜓𝜇𝜇𝜇𝜇 ≡ ℎ𝜇𝜇𝜇𝜇 −
1
2
𝜂𝜂𝜇𝜇𝜇𝜇ℎ , (14) 

so (13) becomes 

𝜓𝜓𝜇𝜇𝜇𝜇
,𝜈𝜈 = 0 . (15) 

____________________________ 
4We can reasonably assume the second derivatives ℎ𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌 are bounded. We ignore pathological waves such as 

𝑓𝑓(𝑡𝑡, 𝑥𝑥) = 𝜖𝜖(𝑡𝑡 − 𝑥𝑥)2 exp[−(𝑡𝑡 − 𝑥𝑥)2] sin[1 (𝑡𝑡 − 𝑥𝑥)⁄ ] 

that have the property that |𝑓𝑓|, |𝑓𝑓,𝛼𝛼| = 𝑂𝑂(𝜖𝜖) but |𝑓𝑓,𝛼𝛼𝛼𝛼| is unbounded. Such waves are unphysical. 
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This is analogous to the Lorenz condition 𝐴𝐴𝜈𝜈 ,𝜈𝜈 = 0 for the electromagnetic 4-potential 𝐴𝐴𝜈𝜈 = (𝜙𝜙,𝐀𝐀), 
where 𝜙𝜙 and 𝐀𝐀 are the electric and magnetic vector potentials. 

The trace of 𝜓𝜓𝜇𝜇𝜇𝜇 has the property that 

𝜓𝜓 ≡ 𝜓𝜓𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇𝜓𝜓𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 �ℎ𝜇𝜇𝜇𝜇 −
1
2
𝜂𝜂𝜇𝜇𝜇𝜇ℎ� = ℎ − 2ℎ = −ℎ (16) 

so we can easily recover ℎ𝜇𝜇𝜇𝜇 from 𝜓𝜓𝜇𝜇𝜇𝜇 via 

ℎ𝜇𝜇𝜇𝜇 = 𝜓𝜓𝜇𝜇𝜇𝜇 + 1
2
𝜂𝜂𝜇𝜇𝜇𝜇ℎ = 𝜓𝜓𝜇𝜇𝜇𝜇 −

1
2
𝜂𝜂𝜇𝜇𝜇𝜇𝜓𝜓 . (17) 

Because of (16), 𝜓𝜓𝜇𝜇𝜇𝜇 is called the trace-reversed metric perturbation. 

§4. The field equations in linearized gravity 

Putting 𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 − ℎ𝜇𝜇𝜇𝜇 into (4) and keeping terms up to first order in |ℎ𝜇𝜇𝜇𝜇| and |ℎ𝜇𝜇𝜇𝜇,𝜆𝜆|, 
we have: 

Γ 𝜇𝜇𝜇𝜇
𝛼𝛼 = 1

2
𝜂𝜂𝛼𝛼𝛼𝛼(ℎ𝜆𝜆𝜆𝜆,𝜈𝜈 + ℎ𝜆𝜆𝜆𝜆,𝜇𝜇 − ℎ𝜇𝜇𝜇𝜇,𝜆𝜆) . (18) 

Inserting this into the expression for the Ricci tensor5 𝑅𝑅𝜇𝜇𝜇𝜇 and dropping the ΓΓ terms, we obtain: 

𝑅𝑅𝜇𝜇𝜇𝜇 = 1
2�ℎ𝜇𝜇𝜇𝜇 + ℎ,𝜇𝜇𝜇𝜇 − ℎ𝜇𝜇,𝛼𝛼𝛼𝛼

𝛼𝛼 − ℎ𝜈𝜈,𝛼𝛼𝛼𝛼
𝛼𝛼 � , 

𝑅𝑅 = 𝜂𝜂𝜇𝜇𝜇𝜇𝑅𝑅𝜇𝜇𝜇𝜇 = ℎ − ℎ𝛼𝛼𝛼𝛼 ,𝛼𝛼𝛼𝛼 . 

Therefore, the Einstein tensor takes the rather complicated-looking form: 

𝐺𝐺𝜇𝜇𝜇𝜇 = 𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅 = 1

2�ℎ𝜇𝜇𝜇𝜇 + ℎ,𝜇𝜇𝜇𝜇 − ℎ𝜇𝜇,𝛼𝛼𝛼𝛼
𝛼𝛼 − ℎ𝜈𝜈,𝛼𝛼𝛼𝛼

𝛼𝛼 − 𝜂𝜂𝜇𝜇𝜇𝜇ℎ + 𝜂𝜂𝜇𝜇𝜇𝜇ℎ𝛼𝛼𝛼𝛼 ,𝛼𝛼𝛼𝛼� . (19) 

Using the harmonic coordinates condition (12) this simplifies to 

2𝐺𝐺𝜇𝜇𝜇𝜇 = ℎ𝜇𝜇𝜇𝜇 −
1
2
𝜂𝜂𝜇𝜇𝜇𝜇ℎ = 𝜓𝜓𝜇𝜇𝜇𝜇  . 

Therefore, the Einstein field equation 𝐺𝐺𝜇𝜇𝜇𝜇 = −8𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇 in linearized gravity takes the form 

𝜓𝜓𝜇𝜇𝜇𝜇 = −16𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇  . (20) 

Note that the vacuum equations (8) and (11) can easily be recovered from (20): 

0 = 𝜓𝜓𝜇𝜇𝜇𝜇 = ℎ𝜇𝜇𝜇𝜇 −
1
2
𝜂𝜂𝜇𝜇𝜇𝜇ℎ = ℎ𝜇𝜇𝜇𝜇 + 1

2
𝜂𝜂𝜇𝜇𝜇𝜇𝜂𝜂𝛼𝛼𝛼𝛼𝜓𝜓𝛼𝛼𝛼𝛼 = ℎ𝜇𝜇𝜇𝜇 

§5. The wave equation and wave vector 

By (11), 𝑔𝑔𝜌𝜌𝜌𝜌 satisfies a wave equation with velocity 𝑣𝑣 = 1: 

𝜂𝜂𝜇𝜇𝜇𝜇𝑔𝑔𝜌𝜌𝜌𝜌,𝜇𝜇𝜇𝜇 = 𝑔𝑔𝜌𝜌𝜌𝜌,00 − 𝛁𝛁2𝑔𝑔𝜌𝜌𝜌𝜌 = 0 . (21) 

____________________________ 
5Dirac (1975), Eq. (14.4). 
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The wave equation 

1
𝑣𝑣2

𝜕𝜕2𝑓𝑓
𝜕𝜕(𝑥𝑥0)2 − 𝛁𝛁2𝑓𝑓 = 0 (22) 

has a plane wave solution 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎) = 𝑓𝑓(𝑘𝑘0𝑥𝑥0 − 𝐤𝐤 • 𝐱𝐱) . 

Note that we use 𝜂𝜂𝜇𝜇𝜇𝜇 to raise and lower indices, so 𝑘𝑘0 = 𝑘𝑘0 and 𝑘𝑘𝑚𝑚 = −𝑘𝑘𝑚𝑚. By convention 
we assume 𝑘𝑘0 > 0. This is a wave traveling in the 𝐤𝐤 = (𝑘𝑘1,𝑘𝑘2,𝑘𝑘3) direction. Inserting this solution 
into (22), we obtain the relation 

𝑘𝑘02 − 𝑣𝑣2(𝑘𝑘12 + 𝑘𝑘22 + 𝑘𝑘32) = 0 , (23) 

or 𝑣𝑣 = 𝑘𝑘0 𝑘𝑘⁄ , where 𝑘𝑘 = |𝐤𝐤|. 

A monochromatic plane wave is a solution of the form 

𝑓𝑓(𝑥𝑥) = 𝐴𝐴 sin(𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎) + 𝐵𝐵 cos(𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎) . (24) 

𝑘𝑘0 is the angular frequency, usually designated 𝜔𝜔. 

We call 𝐤𝐤 and 𝑘𝑘𝜇𝜇 = (𝑘𝑘0,𝐤𝐤) the wave vector and wave 4-vector respectively. The quantity 

𝜉𝜉 = 𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎 = 𝑘𝑘0𝑥𝑥0 − 𝐤𝐤 • 𝐱𝐱 

is the phase, which marks where exp(𝑖𝑖𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎) falls on the unit circle. This is plainly coordinate 
invariant, hence a scalar. Since 𝑘𝑘𝜇𝜇 = 𝜉𝜉,𝜇𝜇 , plainly 𝑘𝑘𝜎𝜎 is a vector. 

In the case of waves traveling with speed 𝑣𝑣 = 1, (23) gives 

𝑘𝑘02 − (𝑘𝑘12 + 𝑘𝑘22 + 𝑘𝑘32) = 𝜂𝜂𝜌𝜌𝜌𝜌𝑘𝑘𝜌𝜌𝑘𝑘𝜎𝜎 = 𝑘𝑘𝜎𝜎𝑘𝑘𝜎𝜎 = 0 (25) 

so 𝑘𝑘𝜎𝜎 is a null vector. 

§6. The metric derivative 𝒖𝒖𝝁𝝁𝝁𝝁 

Consider a plane wave solution 𝑔𝑔𝜇𝜇𝜇𝜇 to (21) with wave 4-vector 𝑘𝑘𝜎𝜎 . Then 𝑔𝑔𝜇𝜇𝜇𝜇 is a function 
of the variable 𝜉𝜉 = 𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎. We define 𝑢𝑢𝜇𝜇𝜇𝜇 = 𝑑𝑑𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑𝑑𝑑⁄ , so that 

𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌 =
𝑑𝑑𝑔𝑔𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝜌𝜌

= 𝑢𝑢𝜇𝜇𝜇𝜇𝑘𝑘𝜌𝜌 . 

In general, 𝑢𝑢𝜇𝜇𝜇𝜇 is not a tensor. If it were, then 𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌 would be a tensor by the quotient theorem 
(since 𝑘𝑘𝜌𝜌 is a vector), which it is not.6 Indeed, 𝑔𝑔𝜇𝜇𝜇𝜇′  will not be a function of the variable 𝜉𝜉′ = 𝜉𝜉 
under an arbitrary coordinate transformation; hence, 𝑢𝑢𝜇𝜇𝜇𝜇′  is not even defined. 

 

____________________________ 

6A partial derivative of the metric transforms: 

𝑔𝑔𝜇𝜇𝜇𝜇,𝜎𝜎
′ =

𝜕𝜕𝑥𝑥𝜆𝜆

𝜕𝜕𝑥𝑥′𝜎𝜎
𝜕𝜕
𝜕𝜕𝑥𝑥𝜆𝜆

�
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
𝑔𝑔𝛼𝛼𝛼𝛼� =

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
𝜕𝜕𝑥𝑥𝜆𝜆

𝜕𝜕𝑥𝑥′𝜎𝜎
𝑔𝑔𝛼𝛼𝛼𝛼,𝜆𝜆 + 𝑔𝑔𝛼𝛼𝛼𝛼

𝜕𝜕
𝜕𝜕𝑥𝑥′𝜎𝜎

�
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
� . 

Thus, 𝑔𝑔𝜇𝜇𝜇𝜇,𝜎𝜎 cannot transform as a tensor for arbitrary coordinate transformations. 
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Note that we can always recover 𝑔𝑔𝜇𝜇𝜇𝜇 from 𝑢𝑢𝜇𝜇𝜇𝜇 via 

𝑔𝑔𝜇𝜇𝜇𝜇 = �𝑢𝑢𝜇𝜇𝜇𝜇(𝜉𝜉)𝑑𝑑𝑑𝑑 (26) 

where the constant of integration can be determined by the value of 𝑔𝑔𝜇𝜇𝜇𝜇(𝑥𝑥) at any 𝑥𝑥; for example, 
𝑔𝑔𝜇𝜇𝜇𝜇 → 𝜂𝜂𝜇𝜇𝜇𝜇 at infinity. 

§7. An important coordinate transformation 

Consider the coordinate transformation 

𝑥𝑥′𝜇𝜇 = 𝑥𝑥𝜇𝜇 + 𝑏𝑏𝜇𝜇(𝑥𝑥) , |𝑏𝑏𝜇𝜇,𝜌𝜌|, |𝑏𝑏𝜇𝜇,𝜌𝜌𝜌𝜌| ≪ 1 (27) 

The product 

�𝛿𝛿𝜇𝜇𝛼𝛼 − 𝑏𝑏𝛼𝛼 ,𝜇𝜇�
𝜕𝜕𝑥𝑥′𝜇𝜇

𝜕𝜕𝑥𝑥𝜆𝜆
= �𝛿𝛿𝜇𝜇𝛼𝛼 − 𝑏𝑏𝛼𝛼 ,𝜇𝜇��𝛿𝛿𝜆𝜆

𝜇𝜇 + 𝑏𝑏𝜇𝜇 ,𝜆𝜆� = 𝛿𝛿𝜆𝜆
𝛼𝛼 + 𝑂𝑂(|𝑏𝑏𝛼𝛼,𝜇𝜇|2) 

shows that 

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
= 𝛿𝛿𝜇𝜇𝛼𝛼 − 𝑏𝑏𝛼𝛼 ,𝜇𝜇 + 𝑂𝑂(|𝑏𝑏𝛼𝛼,𝜇𝜇|2) 

The reason for assuming |𝑏𝑏𝜇𝜇,𝜌𝜌𝜌𝜌| ≪ 1 will appear shortly. Keeping terms up to order |𝑏𝑏𝛼𝛼,𝜇𝜇|: 

𝑔𝑔𝜇𝜇𝜇𝜇′ = 𝑔𝑔𝛼𝛼𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
= 𝑔𝑔𝛼𝛼𝛼𝛼�𝛿𝛿𝜇𝜇𝛼𝛼 − 𝑏𝑏𝛼𝛼 ,𝜇𝜇� �𝛿𝛿𝜈𝜈

𝛽𝛽 − 𝑏𝑏𝛽𝛽 ,𝜈𝜈� = 𝑔𝑔𝜇𝜇𝜇𝜇 − 𝑔𝑔𝜇𝜇𝜇𝜇𝑏𝑏𝛽𝛽 ,𝜈𝜈 − 𝑔𝑔𝛼𝛼𝛼𝛼𝑏𝑏𝛼𝛼 ,𝜇𝜇 . 

In the weak field approximation, the metric commutes with partial derivatives. More precisely, if 
𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 + ℎ𝜇𝜇𝜇𝜇 with |ℎ𝜇𝜇𝜇𝜇| ≪ 1, then 𝑔𝑔𝜇𝜇𝜇𝜇𝑏𝑏𝛽𝛽 ,𝜈𝜈 = 𝑏𝑏𝜇𝜇,𝜈𝜈 + 𝑂𝑂(|ℎ𝜇𝜇𝜇𝜇||𝑏𝑏𝛽𝛽,𝜈𝜈|). Thus, to first order in the 
small quantities |ℎ𝜇𝜇𝜇𝜇| and |𝑏𝑏𝛽𝛽,𝜈𝜈|, we have 

𝑔𝑔𝜇𝜇𝜇𝜇′ = 𝑔𝑔𝜇𝜇𝜇𝜇 − 𝑏𝑏𝜇𝜇,𝜈𝜈 − 𝑏𝑏𝜈𝜈,𝜇𝜇 . (28) 

This gives the transformation of the metric under the coordinate transformation (27). 

Note that if 𝑏𝑏𝜇𝜇 = 𝑏𝑏𝜇𝜇(𝜉𝜉), then 

𝑏𝑏𝜇𝜇,𝜈𝜈 =
𝑑𝑑𝑏𝑏𝜇𝜇
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝜈𝜈

= 𝑏̇𝑏𝜇𝜇(𝜉𝜉)𝑘𝑘𝜈𝜈 

where a dot ⬚̇ denotes differentiation with respect to 𝜉𝜉. Hence, 𝑔𝑔𝜇𝜇𝜇𝜇′  is also a function of 𝜉𝜉. 
Moreover: 

         
𝑑𝑑𝑔𝑔𝜇𝜇𝜇𝜇′

𝑑𝑑𝑑𝑑
=

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑔𝑔𝛼𝛼𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
� =

𝑑𝑑𝑔𝑔𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
+ 2𝑔𝑔𝛼𝛼𝛼𝛼

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
�
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
 

=
𝑑𝑑𝑔𝑔𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
+ 2𝑔𝑔𝛼𝛼𝛼𝛼

𝑑𝑑�𝛿𝛿𝜇𝜇𝛼𝛼 − 𝑏̇𝑏𝛼𝛼𝑘𝑘𝜇𝜇�
𝑑𝑑𝑑𝑑

�𝛿𝛿𝜈𝜈
𝛽𝛽 − 𝑏̇𝑏𝛽𝛽𝑘𝑘𝜈𝜈� 

=
𝑑𝑑𝑔𝑔𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
− 2𝑏̈𝑏𝛽𝛽𝑘𝑘𝜇𝜇 �𝛿𝛿𝜈𝜈

𝛽𝛽 − 𝑏̇𝑏𝛽𝛽𝑘𝑘𝜈𝜈� . 
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Hence, 

𝑢𝑢𝜇𝜇𝜇𝜇′ = 𝑢𝑢𝛼𝛼𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
+ 𝑂𝑂�𝑏̈𝑏𝜇𝜇� . 

Note that 𝑏𝑏𝜇𝜇,𝜌𝜌 = 𝑏̇𝑏𝜇𝜇𝑘𝑘𝜌𝜌 and 𝑏𝑏𝜇𝜇,𝜌𝜌𝜌𝜌 = 𝑏̈𝑏𝜇𝜇𝑘𝑘𝜌𝜌𝑘𝑘𝜎𝜎. Therefore, the conditions |𝑏𝑏𝜇𝜇,𝜌𝜌| ≪ 1, |𝑏𝑏𝜇𝜇,𝜌𝜌𝜌𝜌| ≪ 1 
are equivalent to |𝑏̇𝑏𝜇𝜇| ≪ 1, |𝑏̈𝑏𝜇𝜇| ≪ 1. We also have |𝑢𝑢𝜇𝜇𝜇𝜇| ≪ 1, since 𝑔𝑔𝜇𝜇𝜇𝜇,𝜎𝜎 = 𝑢𝑢𝜇𝜇𝜇𝜇𝑘𝑘𝜎𝜎 and |𝑔𝑔𝜇𝜇𝜇𝜇,𝜎𝜎| ≪
1. Therefore, for 𝑢𝑢𝜇𝜇𝜇𝜇 to transform as a tensor with respect to the coordinate change (27), we 
require 𝑏̈𝑏𝜇𝜇 = 𝑏𝑏𝜇𝜇,𝜌𝜌𝜌𝜌 = 0. In other words, we must have 𝑏𝑏𝜇𝜇(𝜉𝜉) = 𝐴𝐴𝜇𝜇𝜉𝜉 + 𝐵𝐵𝜇𝜇 , where 𝐴𝐴𝜇𝜇 and 𝐵𝐵𝜇𝜇 are 
constant vectors; that is, 𝑏𝑏𝜇𝜇 must be linear in 𝜉𝜉. 

Note that (27) and (28) leave 𝑅𝑅𝜇𝜇𝜇𝜇 unchanged. To see this, we have from (1) and (28): 

𝑅𝑅𝜌𝜌𝜌𝜌′ = 𝑔𝑔′𝜇𝜇𝜇𝜇�𝑔𝑔𝜌𝜌𝜌𝜌,𝜇𝜇𝜇𝜇 + 𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌𝜌𝜌 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈 − 𝑔𝑔𝜇𝜇𝜇𝜇,𝜈𝜈𝜈𝜈� . (29) 

To find an expression for 𝑔𝑔′𝜇𝜇𝜇𝜇, consider the product 

�𝑔𝑔𝜇𝜇𝜇𝜇 − 𝑏𝑏𝜇𝜇,𝜆𝜆 − 𝑏𝑏𝜆𝜆,𝜇𝜇��𝑔𝑔𝜆𝜆𝜆𝜆 + 𝑔𝑔𝜈𝜈𝜈𝜈𝑏𝑏𝜆𝜆,𝜎𝜎 + 𝑔𝑔𝜆𝜆𝜆𝜆𝑏𝑏𝜈𝜈 ,𝜎𝜎� = 𝛿𝛿𝜇𝜇𝜈𝜈 + 𝑂𝑂(|𝑏𝑏𝜈𝜈,𝜎𝜎|2) . 

This shows that the inverse of 𝑔𝑔𝜇𝜇𝜇𝜇′ = 𝑔𝑔𝜇𝜇𝜇𝜇 − 𝑏𝑏𝜇𝜇,𝜈𝜈 − 𝑏𝑏𝜈𝜈,𝜇𝜇 is, to first order in |𝑏𝑏𝜈𝜈,𝜎𝜎|: 

𝑔𝑔′𝜇𝜇𝜇𝜇 = 𝑔𝑔𝜇𝜇𝜇𝜇 + 𝑔𝑔𝜈𝜈𝜈𝜈𝑏𝑏𝜇𝜇 ,𝜎𝜎 + 𝑔𝑔𝜇𝜇𝜇𝜇𝑏𝑏𝜈𝜈 ,𝜎𝜎 . 

This can be written more neatly as 

𝑔𝑔′𝜇𝜇𝜇𝜇 = 𝑔𝑔𝜇𝜇𝜇𝜇 + 𝑏𝑏𝜇𝜇,𝜈𝜈 + 𝑏𝑏𝜈𝜈,𝜇𝜇 (30) 

where 

𝑏𝑏𝜇𝜇,𝜈𝜈 ≡
𝜕𝜕𝑏𝑏𝜇𝜇

𝜕𝜕𝑥𝑥𝜈𝜈
=
𝜕𝜕𝑏𝑏𝜇𝜇

𝜕𝜕𝑥𝑥𝜎𝜎
𝜕𝜕𝑥𝑥𝜎𝜎 

𝜕𝜕𝑥𝑥𝜈𝜈
= 𝑔𝑔𝜎𝜎𝜎𝜎𝑏𝑏𝜇𝜇 ,𝜎𝜎  . 

The last equality follows by comparing the two expressions 

𝑑𝑑𝑥𝑥𝜎𝜎 =
𝜕𝜕𝑥𝑥𝜎𝜎 

𝜕𝜕𝑥𝑥𝜈𝜈
𝑑𝑑𝑥𝑥𝜈𝜈  , 𝑑𝑑𝑥𝑥𝜎𝜎 = 𝑔𝑔𝜎𝜎𝜎𝜎𝑑𝑑𝑥𝑥𝜈𝜈 . 

Thus, from (29), we find that 𝑅𝑅𝜌𝜌𝜌𝜌′ = 𝑅𝑅𝜌𝜌𝜌𝜌 to first order in |𝑏𝑏𝜇𝜇,𝜈𝜈| and |𝑔𝑔𝜌𝜌𝜌𝜌,𝜇𝜇𝜇𝜇|. 

§8. Harmonic coordinates by a coordinate change 𝒙𝒙′𝝁𝝁 = 𝒙𝒙𝝁𝝁 + 𝒃𝒃𝝁𝝁(𝒙𝒙) 

It is always possible to find coordinates in which (3) holds locally.7 In the weak field case, 
we can also find harmonic coordinates using the transformation (27) with an appropriate choice 
of 𝑏𝑏𝜇𝜇. We calculate: 

____________________________ 
7Weinberg (1972), §7.4. 
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𝑔𝑔′𝜇𝜇𝜇𝜇 �𝑔𝑔𝜌𝜌𝜌𝜌,𝜈𝜈
′ − 1

2
𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌
′ � = 𝑔𝑔′𝜇𝜇𝜇𝜇 �𝑔𝑔𝜌𝜌𝜌𝜌,𝜈𝜈 − 𝑏𝑏𝜌𝜌,𝜇𝜇𝜇𝜇 − 𝑏𝑏𝜇𝜇,𝜌𝜌𝜌𝜌 −

1
2�𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌 − 𝑏𝑏𝜇𝜇,𝜈𝜈𝜈𝜈 − 𝑏𝑏𝜈𝜈,𝜇𝜇𝜇𝜇��    

= (𝑔𝑔𝜇𝜇𝜇𝜇 + 𝑏𝑏𝜇𝜇,𝜈𝜈 + 𝑏𝑏𝜈𝜈,𝜇𝜇) �𝑔𝑔𝜌𝜌𝜌𝜌,𝜈𝜈 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌 − 𝑏𝑏𝜌𝜌,𝜇𝜇𝜇𝜇�

= 𝑔𝑔𝜇𝜇𝜇𝜇 �𝑔𝑔𝜌𝜌𝜌𝜌,𝜈𝜈 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌� −𝑏𝑏𝜌𝜌 + 𝑂𝑂(|𝑏𝑏𝜇𝜇,𝜈𝜈||𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌|) + 𝑂𝑂(|𝑏𝑏𝜇𝜇,𝜈𝜈||𝑏𝑏𝜌𝜌,𝜇𝜇𝜇𝜇|) . 

If we choose 𝑏𝑏𝜌𝜌 such that 

𝑏𝑏𝜌𝜌 = 𝑔𝑔𝜇𝜇𝜇𝜇 �𝑔𝑔𝜌𝜌𝜌𝜌,𝜈𝜈 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌�  , (31) 

then 

𝑔𝑔′𝜇𝜇𝜇𝜇 �𝑔𝑔𝜌𝜌𝜌𝜌,𝜈𝜈
′ − 1

2
𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌
′ � = 0 

to first order in |𝑏𝑏𝜇𝜇,𝜈𝜈|, |𝑏𝑏𝜌𝜌,𝜇𝜇𝜇𝜇| and |𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌|. The coordinates 𝑥𝑥′𝜇𝜇 = 𝑥𝑥𝜇𝜇 + 𝑏𝑏𝜇𝜇(𝑥𝑥) are harmonic since 
they satisfy (5). 

Note that if 𝑥𝑥𝜇𝜇 are harmonic coordinates, then 𝑥𝑥′𝜇𝜇 = 𝑥𝑥𝜇𝜇 + 𝑏𝑏𝜇𝜇(𝑥𝑥) are also harmonic 
providing that 𝑏𝑏𝜌𝜌 = 0. 

B. Polarization of gravitational waves 

We analyze the polarization of gravitational plane waves and deduce that the metric 𝑔𝑔𝜇𝜇𝜇𝜇 
(or metric derivative 𝑢𝑢𝜇𝜇𝜇𝜇) has only two independent components. 

§1. Components of 𝒖𝒖𝝁𝝁𝝁𝝁 

Putting 𝑔𝑔𝜇𝜇𝜇𝜇 = 𝑔𝑔𝜇𝜇𝜇𝜇(𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎) into the harmonic coordinates condition (5), we obtain 

𝑢𝑢𝜈𝜈𝜈𝜈𝑘𝑘𝜈𝜈 −
1
2
𝑢𝑢𝑘𝑘𝜌𝜌 = 0 (32) 

where 𝑢𝑢 ≡ 𝑔𝑔𝜇𝜇𝜇𝜇𝑢𝑢𝜇𝜇𝜇𝜇 = 𝑢𝑢𝜇𝜇𝜇𝜇. The equation 𝑔𝑔𝜇𝜇𝜇𝜇 = 𝑢𝑢𝜇𝜇𝜇𝜇 = 0 consists of 10 equations in 10 independent 
components 𝑢𝑢𝜇𝜇𝜇𝜇 . The 4 equations (32) for 0 ≤ 𝜌𝜌 ≤ 3 reduce this number to 6. But it turns out 
that there are only two distinct degrees of freedom that represent the propagation of physical 
waves, as opposed to coordinate waves. 

§2. Coordinate waves 

Wave-like behavior of 𝑔𝑔𝜇𝜇𝜇𝜇 may arise from the propagation of a physical disturbance in the 
spacetime geometry or from a choice of coordinates, or both. Consider flat spacetime with cartesian 
coordinates 𝑥𝑥′𝜇𝜇 = (𝑡𝑡′, 𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′).8 Let 𝑥𝑥𝜇𝜇 be another coordinate system defined by 𝑡𝑡 = 𝑡𝑡′, 𝑥𝑥 = 𝑥𝑥′, 
𝑦𝑦 = 𝑦𝑦′, and 𝑧𝑧 = 𝑧𝑧′ + (𝜀𝜀 𝜔𝜔⁄ ) cos 𝜉𝜉, where 𝜉𝜉 = 𝜔𝜔(𝑡𝑡 − 𝑧𝑧) and |𝜀𝜀| ≪ 1. Then: 

 

____________________________ 
8We will occasionally write 𝑥𝑥𝜇𝜇 = (𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑧𝑧), but the time coordinate is always measured in units of distance. 



 Thai Journal of Physics                       Vol. 42 No. 1 (2025) 1-47                                                                                       
 

 
 
 

10 

𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑥𝑥2 − 𝑑𝑑𝑦𝑦2 − [𝑑𝑑𝑑𝑑 − 𝜀𝜀 sin 𝜉𝜉 (𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑)]2 

= 𝜂𝜂𝜇𝜇𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜈𝜈 − 2𝜀𝜀 sin 𝜉𝜉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝜀𝜀 sin 𝜉𝜉 𝑑𝑑𝑧𝑧2 + 𝑂𝑂(𝜀𝜀2) 

= �𝜂𝜂𝜇𝜇𝜇𝜇 + ℎ𝜇𝜇𝜇𝜇�𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜈𝜈 + 𝑂𝑂(𝜀𝜀2) , 

where 

ℎ𝜇𝜇𝜇𝜇 = 𝜀𝜀 sin 𝜉𝜉 �

0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 2

� . 

The oscillatory behavior of the metric could be mistaken for a wave propagating in the 𝒛𝒛� direction, 
but this is a flat spacetime metric. This coordinate wave is a manifestation of the coordinate 
system. 

§3. Polarization of 𝒈𝒈𝝁𝝁𝝁𝝁 waves 

Let 𝑥𝑥𝜇𝜇 be harmonic coordinates. Consider the coordinate change (27) with 𝑏𝑏𝜇𝜇 = 𝑏𝑏𝜇𝜇(𝜉𝜉). 
From (28) we have: 

𝑔𝑔𝜇𝜇𝜇𝜇′ = 𝑔𝑔𝜇𝜇𝜇𝜇 − 𝑏̇𝑏𝜇𝜇𝑘𝑘𝜈𝜈 − 𝑏̇𝑏𝜈𝜈𝑘𝑘𝜇𝜇 , 

therefore, 

𝑢𝑢𝜇𝜇𝜇𝜇′ = 𝑢𝑢𝜇𝜇𝜇𝜇 − 𝑏̈𝑏𝜇𝜇𝑘𝑘𝜈𝜈 − 𝑏̈𝑏𝜈𝜈𝑘𝑘𝜇𝜇 . (34) 

The coordinates 𝑥𝑥′𝜇𝜇 are harmonic, from the remark at the end of section A §8 and the fact that 

𝑏𝑏𝜌𝜌 = 𝜂𝜂𝜇𝜇𝜇𝜇𝑏𝑏𝜌𝜌,𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇𝑏̈𝑏𝜌𝜌𝑘𝑘𝜇𝜇𝑘𝑘𝜈𝜈 = 𝑏̈𝑏𝜌𝜌𝑘𝑘𝜇𝜇𝑘𝑘𝜇𝜇 = 0 . 

Consider a monochromatic plane wave traveling in the 𝒛𝒛� direction with 𝑘𝑘𝜎𝜎 = 𝜔𝜔(1, 0, 0,−1). 
The harmonic coordinates condition (32) gives the following relations: 

𝑢𝑢00 + 𝑢𝑢03 = 1
2
𝑢𝑢 , 𝑢𝑢02 + 𝑢𝑢23 = 0 ,

𝑢𝑢01 + 𝑢𝑢13 = 0 , 𝑢𝑢03 + 𝑢𝑢33 = −1
2
𝑢𝑢 .

(35) 

Since 𝑢𝑢𝜇𝜇𝜇𝜇 = 𝑢𝑢𝜈𝜈𝜈𝜈, we focus on the components with 𝜇𝜇 ≤ 𝜈𝜈 (the upper triangle). Subtracting the last 
equation in (35) from the first gives 𝑢𝑢00 − 𝑢𝑢33 = 𝑢𝑢 = 𝑢𝑢00 − 𝑢𝑢11 − 𝑢𝑢22 − 𝑢𝑢33. Hence, 

𝑢𝑢11 + 𝑢𝑢22 = 0 . (36) 

Adding the first and last equations in (35) gives 

2𝑢𝑢03 = −(𝑢𝑢00 + 𝑢𝑢33) . (37) 

Eqs. (36)-(37) allow us to express 𝑢𝑢13, 𝑢𝑢23, 𝑢𝑢03 and 𝑢𝑢22 in terms of the other components: 

𝑢𝑢13 = −𝑢𝑢01 ,  𝑢𝑢23 = −𝑢𝑢02 ,

𝑢𝑢22 = −𝑢𝑢11 ,  𝑢𝑢03 = −1
2
(𝑢𝑢00 + 𝑢𝑢33) . (38) 
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Thus, only six components of 𝑢𝑢𝜇𝜇𝜇𝜇 are independent: 𝑢𝑢11, 𝑢𝑢12, 𝑢𝑢01, 𝑢𝑢02, 𝑢𝑢00 and 𝑢𝑢33. If we make 
the change of coordinates (27), we can calculate 𝑢𝑢𝜇𝜇𝜇𝜇′  for these six components using (34): 

𝑢𝑢11′ = 𝑢𝑢11 , 𝑢𝑢02′ = 𝑢𝑢02 − 𝑏̈𝑏2𝜔𝜔 ,

𝑢𝑢12′ = 𝑢𝑢12 , 𝑢𝑢33′ = 𝑢𝑢33 + 2𝑏̈𝑏3𝜔𝜔 ,

𝑢𝑢01′ = 𝑢𝑢01 − 𝑏̈𝑏1𝜔𝜔 , 𝑢𝑢00′ = 𝑢𝑢00 − 2𝑏̈𝑏0𝜔𝜔 .

 

Notice that only 𝑢𝑢11 and 𝑢𝑢12 are unaltered by the coordinate change. By a suitable choice of 𝑏𝑏𝜇𝜇 
we can make the other four components vanish. Choose 𝑏𝑏𝜇𝜇 such that 

𝑏̈𝑏1 =
𝑢𝑢01
𝜔𝜔

 , 𝑏̈𝑏2 =
𝑢𝑢02
𝜔𝜔

 , 𝑏̈𝑏3 = −
𝑢𝑢33
2𝜔𝜔

 , 𝑏̈𝑏0 =
𝑢𝑢00
2𝜔𝜔

 . (39) 

Then in the 𝑥𝑥′ coordinate system: 

𝑢𝑢11′ = −𝑢𝑢22′ = 𝑢𝑢11 , 𝑢𝑢12′ = 𝑢𝑢21′ = 𝑢𝑢12 , all other  𝑢𝑢𝜇𝜇𝜇𝜇′ = 0 . 

Thus, all 𝑢𝑢𝜇𝜇𝜇𝜇′  vanish except 𝑢𝑢11′ = −𝑢𝑢22′  and 𝑢𝑢12′ = 𝑢𝑢21′ . Hence, in the 𝑥𝑥′ coordinate system, 𝑢𝑢𝜇𝜇𝜇𝜇′  
has only two independent components.9 

In the 𝑥𝑥′ coordinate system (henceforth dropping the primes), 𝑢𝑢𝜇𝜇𝜇𝜇 is a linear combination 

𝑢𝑢𝜇𝜇𝜇𝜇(𝑥𝑥) = 𝑢𝑢11(𝜉𝜉)Ω𝜇𝜇𝜇𝜇+ + 𝑢𝑢12(𝜉𝜉)Ω𝜇𝜇𝜇𝜇×  , (40) 

where 𝜉𝜉 = 𝑥𝑥0 − 𝑥𝑥3, and 

Ω𝜇𝜇𝜇𝜇+ = �

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

�  , Ω𝜇𝜇𝜇𝜇× = �

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

� . (41) 

Equivalently, recovering ℎ𝜇𝜇𝜇𝜇 from 𝑢𝑢𝜇𝜇𝜇𝜇 using (26), we have 

ℎ𝜇𝜇𝜇𝜇(𝜉𝜉) = ℎ11(𝜉𝜉)Ω𝜇𝜇𝜇𝜇+ + ℎ12(𝜉𝜉)Ω𝜇𝜇𝜇𝜇×  . (42) 

Ω𝜇𝜇𝜇𝜇+  and Ω𝜇𝜇𝜇𝜇×  are the two independent polarization states of 𝑢𝑢𝜇𝜇𝜇𝜇 or ℎ𝜇𝜇𝜇𝜇 . 

The 𝑥𝑥′ coordinate system is called the transverse traceless (TT) gauge, since in these 
coordinates the perturbation ℎ𝜇𝜇𝜇𝜇 is traceless and perpendicular to the direction of propagation of 
the wave (the fourth row and column are zeros). Note that ℎ𝜇𝜇𝜇𝜇 remains transverse and traceless 
regardless of the direction of the wave vector 𝐤𝐤. (A rotation of the axes is just a change of 
basis, under which the trace of a matrix is invariant.) 

____________________________ 
9Note that the requirements |𝑏𝑏𝜇𝜇|, |𝑏𝑏𝜇𝜇,𝛼𝛼| ≪ 1 of (27) are satisfied. Using 𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌 = 𝑢𝑢𝜇𝜇𝜇𝜇𝑘𝑘𝜌𝜌 and the assumption |𝑔𝑔𝜇𝜇𝜇𝜇,𝜌𝜌| ≪ 1, we 
have |𝑢𝑢𝜇𝜇𝜇𝜇| ≪ 1; therefore |𝑏̈𝑏𝜇𝜇| ≪ 1 by (39). Thus: 

𝑏̇𝑏𝜇𝜇 = � 𝑏̈𝑏𝜇𝜇(𝜆𝜆)𝑑𝑑𝑑𝑑 ≪ 1 , 𝑏𝑏𝜇𝜇 = � 𝑏̇𝑏𝜇𝜇(𝜆𝜆)𝑑𝑑𝑑𝑑 ≪ 1 , 𝑏𝑏𝜇𝜇,𝛼𝛼 = 𝑏̇𝑏𝜇𝜇𝑘𝑘𝛼𝛼 ≪ 1 . 
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Note also that ℎ𝜇𝜇𝜇𝜇 satisfies ℎ0𝜈𝜈 = ℎ𝜇𝜇0 = 0 in the TT gauge, which remains true for any 𝐤𝐤, 
since matrix multiplication by a spatial rotation does not affect the first row or column. 

C. Infinitesimal rotations and spin-2 fields 

We introduce Dirac’s infinitesimal rotation operator and obtain a relation between its 
eigenvalues on specific vector subspaces and the helicity of elements of the subspace. In particular, 
we look at gravitational plane waves (with spacetime metric 𝑔𝑔𝜇𝜇𝜇𝜇) and electromagnetic plane waves 
(with electromagnetic 4-potential 𝐴𝐴𝜈𝜈). 

§1. Finite rotations 

Consider a change of coordinates 𝑥𝑥𝜇𝜇 → 𝑥𝑥′𝜇𝜇 resulting from a rotation of the 𝑥𝑥𝜇𝜇 axes by 
an angle 𝜃𝜃  around the 𝑥𝑥3  axis. The change of coordinates 𝑥𝑥′𝜇𝜇 = 𝑅𝑅𝜇𝜇𝜈𝜈(𝜃𝜃)𝑥𝑥𝜈𝜈  is a linear 
transformation: 

𝑅𝑅𝜇𝜇𝜈𝜈(𝜃𝜃) =
𝜕𝜕𝑥𝑥′𝜇𝜇

𝜕𝜕𝑥𝑥𝜈𝜈
= �

 1 0 0 0 
 0 cos𝜃𝜃 − sin𝜃𝜃 0 
 0 sin𝜃𝜃 cos𝜃𝜃 0 
 0 0 0 1 

� . 

Its inverse is obtained by replacing 𝜃𝜃 by −𝜃𝜃: 

𝑅𝑅𝜈𝜈𝜇𝜇(𝜃𝜃) =
𝜕𝜕𝑥𝑥𝜇𝜇

𝜕𝜕𝑥𝑥′𝜈𝜈
= �

 1 0 0 0 
 0 cos𝜃𝜃 sin𝜃𝜃 0 
 0 − sin𝜃𝜃 cos𝜃𝜃 0 
 0 0 0 1 

� . 

𝑅𝑅𝜇𝜇𝜈𝜈(𝜃𝜃) and 𝑅𝑅𝜈𝜈𝜇𝜇(𝜃𝜃) are Lorentz transformations, also denoted by Λ𝜇𝜇𝜈𝜈 and Λ𝜈𝜈𝜇𝜇. This notation is 
consistent with the rules for raising and lowering indices, since 

Λ𝜇𝜇𝜌𝜌Λ𝜈𝜈𝜌𝜌 = Λ𝜇𝜇𝜌𝜌�𝜂𝜂𝛼𝛼𝛼𝛼𝜂𝜂𝛽𝛽𝛽𝛽Λ𝛼𝛼𝛽𝛽� = 𝜂𝜂𝛼𝛼𝛼𝛼�𝜂𝜂𝛽𝛽𝛽𝛽Λ𝛼𝛼𝛽𝛽Λ𝜇𝜇𝜌𝜌� = 𝜂𝜂𝛼𝛼𝛼𝛼𝜂𝜂𝛼𝛼𝛼𝛼 = 𝛿𝛿𝜇𝜇𝜈𝜈 . 

(The third equality is the defining property of a Lorentz transformation.) Thus, Λ𝜎𝜎𝜌𝜌 and Λ𝜇𝜇𝜈𝜈 (or 
𝑅𝑅𝜎𝜎𝜌𝜌 and 𝑅𝑅𝜇𝜇𝜈𝜈) are inverses. 

To check how 𝑢𝑢𝜇𝜇𝜇𝜇 transforms under this rotation, note that (see footnote 6): 

𝑔𝑔𝜇𝜇𝜇𝜇,𝜎𝜎
′ =

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
𝜕𝜕𝑥𝑥𝜆𝜆

𝜕𝜕𝑥𝑥′𝜎𝜎
𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜆𝜆 + 𝑔𝑔𝛼𝛼𝛼𝛼

𝜕𝜕
𝜕𝜕𝑥𝑥′𝜎𝜎

�𝑅𝑅𝜇𝜇𝛼𝛼(𝜃𝜃)𝑅𝑅𝜈𝜈𝛽𝛽(𝜃𝜃)� 

or 

𝑔𝑔𝜇𝜇𝜇𝜇,𝜎𝜎
′ =

𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜎𝜎′  . 

Comparing this with 𝑔𝑔𝜇𝜇𝜇𝜇,𝜎𝜎
′ = 𝑢𝑢𝜇𝜇𝜇𝜇′ 𝑘𝑘𝜎𝜎′ , we deduce that 

𝑢𝑢𝜇𝜇𝜇𝜇′ =
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
𝑢𝑢𝛼𝛼𝛼𝛼 = 𝑅𝑅𝜇𝜇𝛼𝛼𝑅𝑅𝜈𝜈𝛽𝛽𝑢𝑢𝛼𝛼𝛼𝛼 . (43) 
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Thus, 𝑢𝑢𝜇𝜇𝜇𝜇 transforms as a tensor. 

Note that the rotation 𝑅𝑅𝜇𝜇𝜈𝜈(𝜃𝜃) obviously leaves 𝑘𝑘𝜎𝜎 = 𝜔𝜔(1, 0, 0,−1) unchanged: 

𝑘𝑘𝜎𝜎′ = 𝑅𝑅𝜎𝜎𝜆𝜆𝑘𝑘𝜆𝜆 = 𝑘𝑘𝜎𝜎 

Therefore, a rotation does not alter the harmonic coordinates condition (32), since 

𝑢𝑢𝜈𝜈𝜈𝜈′ 𝑘𝑘′𝜈𝜈 = 𝑅𝑅𝜈𝜈𝛼𝛼𝑅𝑅𝜌𝜌𝛽𝛽𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜈𝜈 = 𝑅𝑅𝜌𝜌𝛽𝛽𝑢𝑢𝛼𝛼𝛽𝛽𝑘𝑘𝛼𝛼 = 𝑅𝑅𝜌𝜌𝛽𝛽 �
1
2
𝑢𝑢𝑘𝑘𝛽𝛽� = 1

2
𝑢𝑢𝑘𝑘𝜌𝜌 = 1

2
𝑢𝑢′𝑘𝑘𝜌𝜌′  . 

Hence 𝑢𝑢𝜈𝜈𝜈𝜈′  satisfies (32). 

A rotation of coordinates can be viewed as an operator 𝑹𝑹(𝜃𝜃) on scalars, vectors and 
tensors, with one rotation 𝑅𝑅𝜇𝜇𝛼𝛼 for each rank. From the transformation rule for a covariant tensor 
𝑇𝑇𝜇𝜇𝜇𝜇𝜇𝜇⋯, we have 

𝑹𝑹(𝜃𝜃)(𝑇𝑇𝜇𝜇𝜇𝜇𝜇𝜇⋯) ≡ 𝑇𝑇𝜇𝜇𝜇𝜇𝜇𝜇⋯′ = 𝑇𝑇𝛼𝛼𝛼𝛼𝛼𝛼⋯
𝜕𝜕𝑥𝑥𝛼𝛼

𝜕𝜕𝑥𝑥′𝜇𝜇
𝜕𝜕𝑥𝑥𝛽𝛽

𝜕𝜕𝑥𝑥′𝜈𝜈
𝜕𝜕𝑥𝑥𝛾𝛾

𝜕𝜕𝑥𝑥′𝜆𝜆
⋯ = 𝑇𝑇𝛼𝛼𝛼𝛼𝛼𝛼⋯𝑅𝑅𝜇𝜇𝛼𝛼(𝜃𝜃)𝑅𝑅𝜈𝜈𝛽𝛽(𝜃𝜃)𝑅𝑅𝜆𝜆𝛾𝛾(𝜃𝜃)⋯ (44) 

Scalars, vectors and rank-2 tensors transform under 𝑹𝑹(𝜃𝜃) as follows (in operator and component 
notation): 

𝑆𝑆′ = 𝑹𝑹(𝜃𝜃)(𝑆𝑆) 𝑆𝑆′ = 𝑆𝑆

𝑉𝑉′ = 𝑹𝑹(𝜃𝜃)(𝑉𝑉) 𝑉𝑉𝜇𝜇′ = 𝑅𝑅𝜇𝜇𝛼𝛼𝑉𝑉𝛼𝛼
𝑈𝑈′ = 𝑹𝑹(𝜃𝜃)(𝑈𝑈) 𝑈𝑈𝜇𝜇𝜇𝜇′ = 𝑅𝑅𝜇𝜇𝛼𝛼𝑅𝑅𝜈𝜈𝛽𝛽𝑈𝑈𝛼𝛼𝛼𝛼

 

§2. Dirac’s infinitesimal rotation operator 

In his treatise on quantum mechanics,10 Dirac defined the infinitesimal rotation operator 𝑹𝑹� : 

𝑹𝑹� = lim
𝜃𝜃→0

𝑹𝑹(𝜃𝜃)− 𝑰𝑰
𝜃𝜃

 . (45) 

This can also be expressed 

𝑹𝑹�𝛿𝛿𝛿𝛿 = 𝑹𝑹(𝛿𝛿𝛿𝛿) − 𝑰𝑰 . (46) 

We write 𝑹𝑹� to avoid confusion with the finite rotation operator 𝑹𝑹(𝜃𝜃). Boldface symbols 
distinguish operators from matrices. The form which 𝑹𝑹(𝜃𝜃) takes varies according to whether it 
operates on a vector 𝑉𝑉𝜇𝜇 or a tensor 𝑈𝑈𝜇𝜇𝜇𝜇 , as shown in (44). In particular, the operator 𝑹𝑹(𝜃𝜃) on 
a rank-2 tensor cannot be represented by a matrix; it is an object with four indices. 

For a vector 𝑉𝑉 = 𝑉𝑉𝜇𝜇 , (46) gives 

____________________________ 
10Dirac (1958), §25. [5] 
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𝑹𝑹�(𝑉𝑉)𝜇𝜇 = lim
𝜃𝜃→0

𝑅𝑅𝜇𝜇𝛼𝛼(𝜃𝜃) − 𝛿𝛿𝜇𝜇𝛼𝛼

𝜃𝜃
𝑉𝑉𝛼𝛼 = lim

𝜃𝜃→0
 
1
𝜃𝜃 �

 0 0 0 0 
 0 cos𝜃𝜃 − 1 sin𝜃𝜃 0 
 0 − sin𝜃𝜃 cos𝜃𝜃 − 1 0 
 0 0 0 0 

�𝑉𝑉 

= �

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

�𝑉𝑉 = (𝑅𝑅�𝑉𝑉)𝜇𝜇 , 

where 𝑅𝑅� is the matrix 

𝑅𝑅� = �

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

�  . (47) 

Thus, for a vector 𝑉𝑉, we have 𝑹𝑹�(𝑉𝑉) = 𝑅𝑅�𝑉𝑉. We write 𝑹𝑹� for the operator (45) and 𝑅𝑅� for the matrix 
(47) to avoid potential confusion, which will become evident in a moment. 

For a tensor 𝑈𝑈 = 𝑈𝑈𝜇𝜇𝜇𝜇 , (45) gives 

𝑹𝑹�(𝑈𝑈)𝜇𝜇𝜇𝜇 = lim
𝜃𝜃→0

𝑅𝑅𝜇𝜇𝛼𝛼(𝜃𝜃)𝑅𝑅𝜈𝜈𝛽𝛽(𝜃𝜃) − 𝛿𝛿𝜇𝜇𝛼𝛼𝛿𝛿𝜈𝜈
𝛽𝛽

𝜃𝜃
𝑈𝑈𝛼𝛼𝛼𝛼  . (48) 

We are careful not to interpret 𝑹𝑹�(𝑈𝑈) as the matrix product 𝑅𝑅�𝑈𝑈. The matrix product 𝑅𝑅�𝑈𝑈 has entries 
(𝑅𝑅�𝑈𝑈)𝜇𝜇𝜇𝜇 = ∑ 𝑅𝑅�𝜇𝜇𝜇𝜇𝑈𝑈𝜆𝜆𝜆𝜆𝜆𝜆 , whereas 𝑹𝑹�(𝑈𝑈)𝜇𝜇𝜇𝜇 is given by (48) and requires two applications of the rotation 
matrix 𝑅𝑅𝜇𝜇𝛼𝛼(𝜃𝜃). 

We can find a formula for 𝑹𝑹�(𝑈𝑈)𝜇𝜇𝜈𝜈 as follows. For a finite rotation, (44) gives 

𝑈𝑈𝜇𝜇𝜇𝜇′ = 𝑅𝑅𝜇𝜇𝛼𝛼(𝜃𝜃)𝑅𝑅𝜈𝜈𝛽𝛽(𝜃𝜃)𝑈𝑈𝛼𝛼𝛼𝛼 , (49) 

which we can write as a matrix equation: 

𝑈𝑈′ = 𝑅𝑅(𝜃𝜃)𝑈𝑈𝑅𝑅(𝜃𝜃)𝑇𝑇 . (50) 

Applying (50) and (46) with an infinitesimal rotation 𝛿𝛿𝛿𝛿, we have the matrix equation: 

𝑈𝑈′ − 𝑈𝑈 = �𝑅𝑅�𝛿𝛿𝛿𝛿 + 𝐼𝐼�𝑈𝑈�𝑅𝑅�𝑇𝑇𝛿𝛿𝛿𝛿 + 𝐼𝐼� − 𝑈𝑈 . 

So, to first order in 𝛿𝛿𝛿𝛿: 

𝑈𝑈′ − 𝑈𝑈 = �𝑅𝑅�𝑈𝑈 + 𝑈𝑈𝑅𝑅�𝑇𝑇�𝛿𝛿𝛿𝛿 . (51) 

Using (47), we calculate: 

𝑅𝑅�𝑈𝑈 + 𝑈𝑈𝑅𝑅�𝑇𝑇 = �

0 𝑈𝑈02 −𝑈𝑈01 0
𝑈𝑈20 𝑈𝑈12 + 𝑈𝑈21 𝑈𝑈22 − 𝑈𝑈11 𝑈𝑈23
−𝑈𝑈10 𝑈𝑈22 − 𝑈𝑈11 −𝑈𝑈12 − 𝑈𝑈21 −𝑈𝑈13

0 𝑈𝑈32 −𝑈𝑈31 0

�  . (52) 
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From (45), we have 

𝑹𝑹(𝛿𝛿𝛿𝛿)(𝑈𝑈𝜇𝜇𝜇𝜇) = 𝑅𝑅𝜇𝜇𝛼𝛼(𝛿𝛿𝛿𝛿)𝑅𝑅𝜈𝜈𝛽𝛽(𝛿𝛿𝛿𝛿)𝑈𝑈𝛼𝛼𝛼𝛼 , 

so with (49) and (46), we also have the operator equation: 

𝑈𝑈′ − 𝑈𝑈 = 𝑹𝑹(𝛿𝛿𝛿𝛿)(𝑈𝑈) − 𝑰𝑰(𝑈𝑈) = 𝑹𝑹�(𝑈𝑈)𝛿𝛿𝛿𝛿 . (53) 

Comparing (51) and (53) we see that 

𝑹𝑹�(𝑈𝑈)𝜇𝜇𝜇𝜇 = �𝑅𝑅�𝑈𝑈 + 𝑈𝑈𝑅𝑅�𝑇𝑇�𝜇𝜇𝜇𝜇 . (54) 

Now it is clear why we are careful to distinguish between the operator 𝑹𝑹� and the matrix 
𝑅𝑅� . The 𝑹𝑹� appearing on the left-hand side of (54) is the operator of (48), not the matrix (47). 
Otherwise, (54) would read (𝑅𝑅�𝑈𝑈)𝜇𝜇𝜇𝜇 = (𝑅𝑅�𝑈𝑈 + 𝑈𝑈𝑅𝑅�𝑇𝑇)𝜇𝜇𝜇𝜇 — a nonsensical result.11  

§3. Eigenvalues of 𝑹𝑹� 

If 𝑉𝑉 = 𝑉𝑉𝜇𝜇 is a vector, then 

𝑹𝑹�(𝑉𝑉) = 𝑅𝑅�𝑉𝑉 = �

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

��

𝑉𝑉0
𝑉𝑉1
𝑉𝑉2
𝑉𝑉3

� = �

0
 𝑉𝑉2
−𝑉𝑉1

0

� . 

Therefore, the operator 𝑹𝑹�2 (and the matrix 𝑅𝑅�2) has eigenvalues -1 and 0, with corresponding 
eigenvectors (0,𝑉𝑉1,𝑉𝑉2, 0) and (𝑉𝑉0, 0, 0,𝑉𝑉3), each spanning a 2-dimensional subspace. Hence, (𝑖𝑖𝑹𝑹�)2 =
−𝑹𝑹�2 has eigenvalues 1 and 0, so that 𝑖𝑖𝑹𝑹� has eigenvalues ±1 and 0. 

Now consider 𝑹𝑹� operating on 𝑢𝑢𝜇𝜇𝜇𝜇 . With 𝑹𝑹� as the map given by (54) and (52), −𝑹𝑹�2 acts 
as follows: 

�

𝑢𝑢00 𝑢𝑢01 𝑢𝑢02 𝑢𝑢03
𝑢𝑢10 𝑢𝑢11 𝑢𝑢12 𝑢𝑢13
𝑢𝑢20 𝑢𝑢21 𝑢𝑢22 𝑢𝑢23
𝑢𝑢30 𝑢𝑢31 𝑢𝑢32 𝑢𝑢33

�
     −𝑹𝑹�2      
�⎯⎯⎯⎯⎯� �

0 𝑢𝑢01 𝑢𝑢02 0
𝑢𝑢10 2(𝑢𝑢11 − 𝑢𝑢22) 2(𝑢𝑢12 + 𝑢𝑢21) 𝑢𝑢13
𝑢𝑢20 2(𝑢𝑢12 + 𝑢𝑢21) −2(𝑢𝑢11 − 𝑢𝑢22) 𝑢𝑢23

0 𝑢𝑢31 𝑢𝑢32 0

� . (55) 

Since 𝑢𝑢22 = −𝑢𝑢11 and 𝑢𝑢21 = 𝑢𝑢12, we see that −𝑹𝑹�2 has the following effect on various blocks of 
𝑢𝑢𝜇𝜇𝜇𝜇 : 

⎝

⎜
⎜
⎜
⎛

C 
|

 B  C  
|

 
1
B
1

 1  
 A  
 1  

1
B
1 

 

C|
 

 B  C |
 
⎠

⎟
⎟
⎟
⎞ Block A:  𝑢𝑢𝜇𝜇𝜇𝜇

     −𝑹𝑹�2      
�⎯⎯⎯⎯⎯� 4𝑢𝑢𝜇𝜇𝜇𝜇

Block B:  𝑢𝑢𝜇𝜇𝜇𝜇
     −𝑹𝑹�2      
�⎯⎯⎯⎯⎯� 𝑢𝑢𝜇𝜇𝜇𝜇

Block C:  𝑢𝑢𝜇𝜇𝜇𝜇
     −𝑹𝑹�2      
�⎯⎯⎯⎯⎯� 0

(56) 

____________________________ 
11Notice that 𝑹𝑹�(𝑈𝑈) = 𝑅𝑅�𝑈𝑈 − 𝑈𝑈𝑅𝑅� , the commutator of the matrices 𝑅𝑅� and 𝑈𝑈. 
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Therefore, 𝑖𝑖𝑹𝑹� has eigenvalues ±2, ±1 and 0 when applied to Blocks A, B and C, respectively. 
Dirac observed that “the components of 𝑢𝑢𝛼𝛼𝛼𝛼 that contribute to the energy [Block A] thus correspond 
to spin 2.”12 The remainder of this section is devoted to clarifying and understanding this comment. 

 

§4. Wave helicity13 

The components of 𝑢𝑢𝜇𝜇𝜇𝜇 transform under a finite rotation 𝑹𝑹(𝜃𝜃) according to (44): 

𝑢𝑢11′ = cos 2𝜃𝜃 𝑢𝑢11 + sin 2𝜃𝜃 𝑢𝑢12 , 𝑢𝑢01′ = cos𝜃𝜃 𝑢𝑢01 + sin𝜃𝜃 𝑢𝑢02 , 𝑢𝑢00′ = 𝑢𝑢00 ,

𝑢𝑢12′ = − sin 2𝜃𝜃 𝑢𝑢11 + cos 2𝜃𝜃 𝑢𝑢12 , 𝑢𝑢02′ = − sin𝜃𝜃 𝑢𝑢01 + cos𝜃𝜃 𝑢𝑢02 , 𝑢𝑢33′ = 𝑢𝑢33 .
 

The other components 𝑢𝑢13′ , 𝑢𝑢23′ , 𝑢𝑢03′  and 𝑢𝑢22′  can be found using (38). Notice that 

𝑢𝑢11′ ∓ 𝑖𝑖𝑢𝑢12′ = 𝑒𝑒±2𝑖𝑖𝑖𝑖(𝑢𝑢11 ∓ 𝑖𝑖𝑢𝑢12)

𝑢𝑢01′ ∓ 𝑖𝑖𝑢𝑢02′ = 𝑒𝑒±𝑖𝑖𝑖𝑖(𝑢𝑢01 ∓ 𝑖𝑖𝑢𝑢02) .
 

If we define 

𝐹𝐹± ≡ 𝑢𝑢11 ∓ 𝑖𝑖𝑢𝑢12
𝐺𝐺± ≡ 𝑢𝑢01 ∓ 𝑖𝑖𝑢𝑢02

(57) 

then under the action of 𝑹𝑹(𝜃𝜃): 

𝐹𝐹±
′ = 𝑒𝑒±2𝑖𝑖𝑖𝑖𝐹𝐹±

𝐺𝐺±
′ = 𝑒𝑒±𝑖𝑖𝑖𝑖𝐺𝐺± .

(58) 

A wave function 𝜙𝜙 that transforms under a rotation 𝑹𝑹(𝜃𝜃) about the direction of wave propagation 
according to 𝜙𝜙′ = 𝑒𝑒𝑖𝑖ℎ𝜃𝜃𝜙𝜙 is said to have helicity ℎ. 

Each component of 𝑢𝑢𝜇𝜇𝜇𝜇 can be written in terms of 𝑢𝑢11, 𝑢𝑢12, 𝑢𝑢01, 𝑢𝑢02, 𝑢𝑢00 and 𝑢𝑢33 using 
(38). These in turn can be written in terms of 𝐹𝐹±, 𝐺𝐺±, 𝑢𝑢00 and 𝑢𝑢33 by (57). It follows that any 
𝑢𝑢𝜇𝜇𝜇𝜇 can be decomposed into a sum of waves with helicities ±2, ±1 and 0. 

We saw earlier that by making a coordinate change 𝑥𝑥′𝜇𝜇 = 𝑥𝑥𝜇𝜇 + 𝑏𝑏𝜇𝜇(𝜉𝜉) we can arrange for 
all 𝑢𝑢𝜇𝜇𝜇𝜇 to vanish except 𝑢𝑢11 and 𝑢𝑢12. The waves of helicity ±1 and 0 are therefore coordinate 
waves; they are not physical. Only the waves of helicity ±2 are actual disturbances of the 
spacetime geometry. 

Using (57)-(58), the components of a wave 

𝑢𝑢𝜇𝜇𝜇𝜇(𝑥𝑥) = 𝑢𝑢11(𝜉𝜉)Ω𝜇𝜇𝜇𝜇+ + 𝑢𝑢12(𝜉𝜉)Ω𝜇𝜇𝜇𝜇× : 

____________________________ 
12Dirac (1975), Chap. 34. 
13Adapted from Weinberg (1972), §10.2. 
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transform under 𝑹𝑹(𝜃𝜃) as follows 

𝑢𝑢𝜇𝜇𝜇𝜇′ = 1
2�(𝐹𝐹+

′ + 𝐹𝐹−′)Ω𝜇𝜇𝜇𝜇+ + 𝚤𝚤̇(𝐹𝐹+′ − 𝐹𝐹−′)Ω𝜇𝜇𝜇𝜇× � 

= 1
2�(𝑢𝑢11 − 𝑖𝑖𝑢𝑢12)(Ω𝜇𝜇𝜇𝜇+ + 𝑖𝑖Ω𝜇𝜇𝜇𝜇× )𝑒𝑒2𝑖𝑖𝑖𝑖 + (𝑢𝑢11 + 𝑖𝑖𝑢𝑢12)(Ω𝜇𝜇𝜇𝜇+ − 𝑖𝑖Ω𝜇𝜇𝜇𝜇× )𝑒𝑒−2𝑖𝑖𝑖𝑖� 

= � cos 2𝜃𝜃 sin 2𝜃𝜃
− sin 2𝜃𝜃 cos 2𝜃𝜃� �

𝑢𝑢11 𝑢𝑢12
𝑢𝑢12 −𝑢𝑢11� = 𝑅𝑅𝜇𝜇𝜆𝜆(2𝜃𝜃)𝑢𝑢𝜆𝜆𝜆𝜆 . 

Thus, 𝑹𝑹(𝜃𝜃) acting on 𝑢𝑢𝜇𝜇𝜇𝜇 causes Block A of 𝑢𝑢𝜇𝜇𝜇𝜇 , (1 ≤ 𝜇𝜇, 𝜈𝜈 ≤ 2) to undergo a rotation by 2𝜃𝜃.14 
This reflects the spin-2 character of the gravitational field, which is physically determined only by 
the Block A components of 𝑢𝑢𝜇𝜇𝜇𝜇 . 

§5. Polarization of electromagnetic waves 

We pause to highlight the analogy with EM waves. Let 𝐴𝐴𝜈𝜈 = 𝐴𝐴𝜈𝜈(𝜉𝜉) be a plane wave 
solution for the potential, with 𝜉𝜉 = 𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎. Inserting this into the wave equation 𝐴𝐴𝜇𝜇 = 0 and the 
Lorenz condition 𝐴𝐴𝜈𝜈 ,𝜈𝜈 = 0, we obtain the relations 

𝑘𝑘𝜎𝜎𝑘𝑘𝜎𝜎 = 0 , 𝑢𝑢𝜈𝜈𝑘𝑘𝜈𝜈 = 0 (59) 

where 𝑢𝑢𝜈𝜈 ≡ 𝑑𝑑𝐴𝐴𝜈𝜈 𝑑𝑑𝑑𝑑⁄ . The relation 𝑢𝑢𝜈𝜈𝑘𝑘𝜈𝜈 = 0 reduces the number of independent components of 𝑢𝑢𝜈𝜈 
and 𝐴𝐴𝜈𝜈 from 4 to 3. 

The Lorenz condition is satisfied by taking any solution 𝐴̅𝐴𝜈𝜈 and setting 𝐴𝐴𝜈𝜈 = 𝐴̅𝐴𝜈𝜈 − 𝜙𝜙,𝜈𝜈 where 
𝜙𝜙 = 𝐴̅𝐴𝜇𝜇 ,𝜇𝜇 . This leaves 𝐹𝐹𝜇𝜇𝜇𝜇 = 𝐴̅𝐴𝜇𝜇,𝜈𝜈 − 𝐴̅𝐴𝜈𝜈,𝜇𝜇 unchanged, with 𝐴𝐴𝜈𝜈 ,𝜈𝜈 = 0 . We can make a further 
alteration of the potential: 

𝐴𝐴𝜈𝜈′ (𝜉𝜉) = 𝐴𝐴𝜈𝜈(𝜉𝜉) + 𝑏𝑏,𝜈𝜈(𝜉𝜉) 

for some 𝑏𝑏(𝜉𝜉). Since 𝑏𝑏 is a function of 𝜉𝜉 = 𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎, we have 𝑏𝑏 = 0. This leaves 𝐹𝐹𝜇𝜇𝜇𝜇 unchanged 
and also preserves the Lorenz condition: 

𝐴𝐴′𝜈𝜈 ,𝜈𝜈 =  (𝐴𝐴𝜈𝜈 + 𝜂𝜂𝜇𝜇𝜇𝜇𝑏𝑏,𝜇𝜇),𝜈𝜈 = 𝐴𝐴𝜈𝜈 ,𝜈𝜈 + 𝜂𝜂𝜇𝜇𝜇𝜇𝑏𝑏,𝜇𝜇𝜈𝜈 = 0 . 

Then 

𝑢𝑢𝜈𝜈′ = 𝑢𝑢𝜈𝜈 +
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝜈𝜈

� = 𝑢𝑢𝜈𝜈 + 𝑏̈𝑏𝑘𝑘𝜈𝜈  . 

The equation 

𝑢𝑢𝜈𝜈′ = 𝑢𝑢𝜈𝜈 + 𝑏̈𝑏𝑘𝑘𝜈𝜈 (60) 

reduces the number of independent components of 𝑢𝑢𝜈𝜈 (and 𝐴𝐴𝜈𝜈) from 3 to 2. 

____________________________ 
14Blocks B and C of 𝑢𝑢𝜇𝜇𝜇𝜇 would similarly undergo rotations by 𝜃𝜃 and 0, respectively. These are of less interest since 
only Block A represents a physical wave. 
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To illustrate this, consider a monochromatic plane wave traveling in the 𝒛𝒛� direction with 
𝑘𝑘𝜎𝜎 = 𝜔𝜔(1, 0, 0,−1). The condition 𝑢𝑢𝜈𝜈𝑘𝑘𝜈𝜈 = 0 means that 𝑢𝑢0  = −𝑢𝑢3. This is analogous to what we 
did in (38) to express 𝑢𝑢13, 𝑢𝑢23, 𝑢𝑢03 and 𝑢𝑢22 in terms of the other six components. Hence, 

𝑢𝑢𝜈𝜈 = 𝑢𝑢1(0, 1, 0, 0) + 𝑢𝑢2(0, 0, 1, 0) + 𝑢𝑢3(−1, 0, 0, 1) . (61) 

The vectors 

Ω𝜈𝜈
(1) = (0, 1, 0, 0) Ω𝜈𝜈

(2) = (0, 0, 1, 0) Ω𝜈𝜈
(3) = (−1, 0, 0, 1) (62) 

are the independent polarization vectors. From (60) we have: 

𝑢𝑢1′ = 𝑢𝑢1 , 𝑢𝑢2′ = 𝑢𝑢2 , 𝑢𝑢3′ = 𝑢𝑢3 − 𝑏̈𝑏𝜔𝜔 . 

By choosing 𝑏̈𝑏 = 𝑢𝑢3 𝜔𝜔⁄  we can make 𝑢𝑢3′ = 0. Thus, only 𝑢𝑢1 and 𝑢𝑢2 have physical significance; 
𝑢𝑢3(𝜉𝜉)Ω𝜈𝜈

(3) is a coordinate wave, since it can be eliminated by a change of coordinates. Therefore, 
only Ω𝜈𝜈

(1) and Ω𝜈𝜈
(2) appear in the physical fields. 

The components of 𝑢𝑢𝜈𝜈 transform under a rotation 𝑹𝑹(𝜃𝜃) according to 𝑢𝑢𝜇𝜇′ = [𝑹𝑹(𝜃𝜃)(𝑢𝑢)]𝜇𝜇 =
𝑅𝑅𝜇𝜇𝜈𝜈(𝜃𝜃)𝑢𝑢𝜈𝜈. Therefore: 

𝑢𝑢1′ = 𝑢𝑢1 cos𝜃𝜃 + 𝑢𝑢2 sin𝜃𝜃  , 

𝑢𝑢2′ = −𝑢𝑢1 sin𝜃𝜃 + 𝑢𝑢2 cos𝜃𝜃  , 

𝑢𝑢0′ = 𝑢𝑢0 , 𝑢𝑢3′ = 𝑢𝑢3 . 

If we define 𝐺𝐺± = 𝑢𝑢1 ∓ 𝑖𝑖𝑢𝑢2, then 𝐺𝐺±
′ = 𝑒𝑒±𝑖𝑖𝑖𝑖𝐺𝐺±. Thus, 𝐺𝐺± has helicity ±1, analogous to the 𝐺𝐺± in 

(57). We can solve for 𝑢𝑢1 and 𝑢𝑢2 in terms of 𝐺𝐺± and express 𝑢𝑢𝜈𝜈 as a sum of waves with 
helicities ±1 and 0. Then only the components of 𝑢𝑢𝜈𝜈 with helicity ±1 are present in the physical 
wave, just as in the case of gravitational waves only the components with helicity ±2 have physical 
significance. 

The components of the wave 

𝑢𝑢𝜈𝜈(𝑥𝑥) = 𝑢𝑢1(𝜉𝜉)Ω𝜈𝜈
(1) + 𝑢𝑢2(𝜉𝜉)Ω𝜈𝜈

(2) 

transform under 𝑹𝑹(𝜃𝜃) as follows: 

𝑢𝑢𝜈𝜈′ = � cos𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos𝜃𝜃��

𝑢𝑢1
𝑢𝑢2� = 𝑅𝑅𝜈𝜈𝜆𝜆(𝜃𝜃)𝑢𝑢𝜆𝜆 . 

This reflects the spin-1 (vector) character of the electromagnetic field. 

§6. Helicity from the infinitesimal rotation operator 

Using (52), (53) and (54), if 𝑢𝑢𝜇𝜇𝜇𝜇′  is the result of an infinitesimal rotation 𝑹𝑹(𝛿𝛿𝛿𝛿) operating 
on 𝑢𝑢𝜇𝜇𝜇𝜇 : 
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𝛿𝛿𝑢𝑢𝜇𝜇𝜇𝜇 = 𝑢𝑢𝜇𝜇𝜇𝜇′ − 𝑢𝑢𝜇𝜇𝜇𝜇 = �

0 𝑢𝑢02 −𝑢𝑢01 0
𝑢𝑢02 2𝑢𝑢12 −2𝑢𝑢11 𝑢𝑢23
−𝑢𝑢01 −2𝑢𝑢11 −2𝑢𝑢12 −𝑢𝑢13

0 𝑢𝑢23 −𝑢𝑢13 0

�𝛿𝛿𝛿𝛿 . 

where we have used the symmetry of 𝑢𝑢𝜇𝜇𝜇𝜇 and the relation 𝑢𝑢22 = −𝑢𝑢11. Using the functions 𝐹𝐹± 
and 𝐺𝐺± defined in (57), we have: 

𝛿𝛿𝐹𝐹± = 𝐹𝐹±
′ − 𝐹𝐹± = 𝛿𝛿𝑢𝑢11 ∓ 𝑖𝑖𝑖𝑖𝑢𝑢12 = 2(𝑢𝑢12 ± 𝑖𝑖𝑢𝑢11)𝛿𝛿𝛿𝛿 = ±2𝑖𝑖𝐹𝐹±𝛿𝛿𝛿𝛿 

𝛿𝛿𝐺𝐺± = 𝐺𝐺±
′ − 𝐺𝐺± = 𝛿𝛿𝑢𝑢01 ∓ 𝑖𝑖𝑖𝑖𝑢𝑢02 = (𝑢𝑢02 ± 𝑖𝑖𝑢𝑢01)𝛿𝛿𝛿𝛿 = ±𝑖𝑖𝐺𝐺±𝛿𝛿𝛿𝛿 . 

This implies, to first order in 𝛿𝛿𝛿𝛿: 

𝐹𝐹±
′ = (1 ± 2𝑖𝑖𝛿𝛿𝛿𝛿)𝐹𝐹± = 𝑒𝑒±2𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹± 

𝐺𝐺±
′ = (1 ± 𝑖𝑖𝛿𝛿𝛿𝛿)𝐺𝐺± = 𝑒𝑒±𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺± 

which is the infinitesimal version of (58). Thus, 𝐹𝐹± and 𝐺𝐺± have helicity ±2 and ±1 under 
infinitesimal rotations. We can recover (58) from these relations, since for a finite rotation 𝜃𝜃, we 
have (writing 𝛿𝛿𝛿𝛿 = ±𝜃𝜃 𝑛𝑛⁄ ): 

𝐹𝐹±
′ = lim

𝑛𝑛→∞
𝑹𝑹�𝑛𝑛 𝐹𝐹± = lim

𝑛𝑛→∞
(1 ± 2𝑖𝑖𝜃𝜃 𝑛𝑛⁄ )𝑛𝑛 𝐹𝐹± = 𝑒𝑒±2𝑖𝑖𝑖𝑖𝐹𝐹± . 

§7. Eigenvalues of 𝒊𝒊𝑹𝑹� and helicity 

Consider 𝑹𝑹� acting on a rank-2 tensor. If 𝑍𝑍 is an eigentensor of 𝑖𝑖𝑹𝑹� with eigenvalue 𝜆𝜆, then 

𝑖𝑖𝑹𝑹�(𝑍𝑍) = 𝑖𝑖�𝑅𝑅�𝑍𝑍 + 𝑍𝑍𝑅𝑅�𝑇𝑇� = 𝜆𝜆𝜆𝜆 . 

From (52) we have a system of 16 equations: 

𝑖𝑖𝑹𝑹�(𝑍𝑍) = 𝑖𝑖 �

0 𝑍𝑍02 −𝑍𝑍01 0
𝑍𝑍20 𝑍𝑍12 + 𝑍𝑍21 𝑍𝑍22 − 𝑍𝑍11 𝑍𝑍23
−𝑍𝑍10 𝑍𝑍22 − 𝑍𝑍11 −𝑍𝑍12 − 𝑍𝑍21 −𝑍𝑍13

0 𝑍𝑍32 −𝑍𝑍31 0

� = 𝜆𝜆�

𝑍𝑍00 𝑍𝑍01 𝑍𝑍02 𝑍𝑍03
𝑍𝑍10 𝑍𝑍11 𝑍𝑍12 𝑍𝑍13
𝑍𝑍20 𝑍𝑍21 𝑍𝑍22 𝑍𝑍23
𝑍𝑍30 𝑍𝑍31 𝑍𝑍32 𝑍𝑍33

�  . (63) 

The 16-dimensional vector space of real 4×4 matrices 𝑈𝑈𝜇𝜇𝜇𝜇 is a direct sum of the subspaces 
𝒮𝒮𝐴𝐴 ⊕ 𝒮𝒮𝐵𝐵 ⊕ 𝒮𝒮𝐶𝐶 of matrices with entries in Blocks A, B and C; see (56). Solving (63) yields a basis 
of eigenmatrices 𝑍𝑍1,⋯ ,𝑍𝑍16 that spans these subspaces. The eigenmatrices 𝑍𝑍𝑖𝑖 have complex entries, 
so for real 𝑈𝑈𝜇𝜇𝜇𝜇 the coefficients 𝜁𝜁𝑖𝑖 in the expansion 𝑈𝑈 = 𝜁𝜁1𝑍𝑍1 +⋯+ 𝜁𝜁16𝑍𝑍16 will be complex valued. 
We solve for the 𝑍𝑍𝑖𝑖 in Blocks A, B and C separately. 

Block A: We have 

𝑍𝑍12 + 𝑍𝑍21 = −𝑖𝑖𝑖𝑖𝑍𝑍11 = 𝑖𝑖𝑖𝑖𝑍𝑍22 

𝑍𝑍22 − 𝑍𝑍11 = −𝑖𝑖𝑖𝑖𝑍𝑍12 = −𝑖𝑖𝑖𝑖𝑍𝑍21 . 

If 𝜆𝜆 ≠ 0, then 𝑍𝑍11 = −𝑍𝑍22 and 𝑍𝑍12 = 𝑍𝑍21. Therefore, the central 2×2 submatrix of 𝑍𝑍𝜇𝜇𝜇𝜇 must have 
the form 
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 �𝑍𝑍11 𝑍𝑍12
𝑍𝑍21 𝑍𝑍22

� = �𝛼𝛼  𝛽𝛽
𝛽𝛽 −𝛼𝛼� . 

Hence, 2𝛽𝛽 = −𝑖𝑖𝑖𝑖𝑖𝑖 and 2𝛼𝛼 = 𝑖𝑖𝑖𝑖𝑖𝑖. This implies 𝜆𝜆2 = 4, or 𝜆𝜆 = ±2. Hence, 𝛽𝛽 = 𝑖𝑖𝑖𝑖, so we have the 
two independent solutions 

𝑍𝑍+ = � 1 −𝑖𝑖
−𝑖𝑖 −1� 𝑍𝑍− = �1  𝑖𝑖

𝑖𝑖 −1� 

with eigenvalues 𝜆𝜆± = ±2 respectively. 

If 𝜆𝜆 = 0, then 𝑍𝑍11 = 𝑍𝑍22 and 𝑍𝑍12 = −𝑍𝑍21. Then we have the independent solutions 

𝑍𝑍𝐼𝐼 = �1 0
0 1� 𝑍𝑍𝐼𝐼𝐼𝐼 = �0 −1

1  0 �  . 

The four matrices 𝑍𝑍+, 𝑍𝑍−, 𝑍𝑍𝐼𝐼 , 𝑍𝑍𝐼𝐼𝐼𝐼 form a basis that spans 𝒮𝒮𝐴𝐴. A real 2×2 matrix 𝑈𝑈 can be written 
as a linear combination: 

�𝑈𝑈11 𝑈𝑈12
𝑈𝑈21 𝑈𝑈22

� = 𝜁𝜁+𝑍𝑍+ + 𝜁𝜁−𝑍𝑍− + 𝜁𝜁𝐼𝐼𝑍𝑍𝐼𝐼 + 𝜁𝜁𝐼𝐼𝐼𝐼𝑍𝑍𝐼𝐼𝐼𝐼 = � 𝜁𝜁+ + 𝜁𝜁− + 𝜁𝜁𝐼𝐼| 𝑖𝑖(𝜁𝜁− − 𝜁𝜁+)− 𝜁𝜁𝐼𝐼𝐼𝐼

𝑖𝑖(𝜁𝜁− − 𝜁𝜁+) + 𝜁𝜁𝐼𝐼𝐼𝐼| −𝜁𝜁+ − 𝜁𝜁− + 𝜁𝜁𝐼𝐼
�  . (64) 

Solving for the coefficients in terms of the 𝑈𝑈𝜇𝜇𝜇𝜇 : 

𝜁𝜁+ = 1
4
[𝑈𝑈11 − 𝑈𝑈22 + 𝑖𝑖(𝑈𝑈12 + 𝑈𝑈21)] , 𝜁𝜁𝐼𝐼 = 1

2
(𝑈𝑈11 + 𝑈𝑈22) ,

𝜁𝜁− = 1
4
[𝑈𝑈11 − 𝑈𝑈22 − 𝑖𝑖(𝑈𝑈12 + 𝑈𝑈21)] , 𝜁𝜁𝐼𝐼𝐼𝐼 = 1

2
(𝑈𝑈21 − 𝑈𝑈12) .

 

In the case of gravitational waves, 𝑈𝑈𝜇𝜇𝜇𝜇 = 𝑢𝑢𝜇𝜇𝜇𝜇 and this simplifies to 

𝜁𝜁+ = 1
2
(𝑢𝑢11 + 𝑖𝑖𝑢𝑢12) = 1

2
𝐹𝐹− , 𝜁𝜁𝐼𝐼 = 0 ,

𝜁𝜁− = 1
2
(𝑢𝑢11 − 𝑖𝑖𝑢𝑢12) = 1

2
𝐹𝐹+ , 𝜁𝜁𝐼𝐼𝐼𝐼 = 0 .

 

Thus, the decomposition (64) reduces to 

�
𝑢𝑢11 𝑢𝑢12
𝑢𝑢21 𝑢𝑢22� = 1

2
(𝐹𝐹−𝑍𝑍+ + 𝐹𝐹+𝑍𝑍−) . 

We see that the 𝒮𝒮𝐴𝐴 basis matrices with eigenvalue ±2 have coefficients (which are functions of 
the 𝑢𝑢𝜇𝜇𝜇𝜇) with helicity ∓2. 

Block B: We have 

𝑍𝑍02 = −𝑖𝑖𝑖𝑖𝑍𝑍01 , 𝑍𝑍01 = 𝑖𝑖𝑖𝑖𝑍𝑍02 ,

𝑍𝑍23 = −𝑖𝑖𝑖𝑖𝑍𝑍13 , 𝑍𝑍13 = 𝑖𝑖𝑖𝑖𝑍𝑍23 .
 

Thus 𝑍𝑍𝜇𝜇𝜇𝜇(𝜆𝜆2 − 1) = 0 for every (𝜇𝜇, 𝜈𝜈) in Block B. Hence, either all 𝑍𝑍𝜇𝜇𝜇𝜇 = 0 (not interesting) or 
𝜆𝜆 = ±1. Therefore, we have the relations: 

𝜆𝜆 = +1: 𝑍𝑍02 = −𝑖𝑖𝑍𝑍01 𝑍𝑍20 = −𝑖𝑖𝑍𝑍10 𝑍𝑍23 = −𝑖𝑖𝑍𝑍13 𝑍𝑍32 = −𝑖𝑖𝑍𝑍31
𝜆𝜆 = −1: 𝑍𝑍02 = 𝑖𝑖𝑍𝑍01 𝑍𝑍20 = 𝑖𝑖𝑍𝑍10 𝑍𝑍23 = 𝑖𝑖𝑍𝑍13 𝑍𝑍32 = 𝑖𝑖𝑍𝑍31 .

 



 Thai Journal of Physics                       Vol. 42 No. 1 (2025) 1-47                                                                                       
 

 
 
 

21 

There are 8 matrices forming a basis of 𝒮𝒮𝐵𝐵, each one with a (1, ±𝑖𝑖) in one of the four regions 
of Block B and zeros elsewhere: 

[𝑍𝑍𝑎𝑎+]𝑖𝑖𝑖𝑖 = 𝛿𝛿0𝑖𝑖𝛿𝛿1𝑗𝑗 − 𝑖𝑖𝛿𝛿0𝑖𝑖𝛿𝛿2𝑗𝑗 [𝑍𝑍𝑎𝑎−]𝑖𝑖𝑖𝑖 = 𝛿𝛿0𝑖𝑖𝛿𝛿1𝑗𝑗 + 𝑖𝑖𝛿𝛿0𝑖𝑖𝛿𝛿2𝑗𝑗
[𝑍𝑍𝑏𝑏+]𝑖𝑖𝑖𝑖 = 𝛿𝛿1𝑖𝑖𝛿𝛿0𝑗𝑗 − 𝑖𝑖𝛿𝛿2𝑖𝑖𝛿𝛿0𝑗𝑗 [𝑍𝑍𝑏𝑏−]𝑖𝑖𝑖𝑖 = 𝛿𝛿1𝑖𝑖𝛿𝛿0𝑗𝑗 + 𝑖𝑖𝛿𝛿2𝑖𝑖𝛿𝛿0𝑗𝑗
[𝑍𝑍𝑐𝑐+]𝑖𝑖𝑖𝑖 = 𝛿𝛿1𝑖𝑖𝛿𝛿3𝑗𝑗 − 𝑖𝑖𝛿𝛿2𝑖𝑖𝛿𝛿3𝑗𝑗 [𝑍𝑍𝑐𝑐−]𝑖𝑖𝑗𝑗 = 𝛿𝛿1𝑖𝑖𝛿𝛿3𝑗𝑗 + 𝑖𝑖𝛿𝛿2𝑖𝑖𝛿𝛿3𝑗𝑗
[𝑍𝑍𝑑𝑑+]𝑖𝑖𝑖𝑖 = 𝛿𝛿3𝑖𝑖𝛿𝛿1𝑗𝑗 − 𝑖𝑖𝛿𝛿3𝑖𝑖𝛿𝛿2𝑗𝑗 [𝑍𝑍𝑑𝑑−]𝑖𝑖𝑖𝑖 = 𝛿𝛿3𝑖𝑖𝛿𝛿1𝑗𝑗 + 𝑖𝑖𝛿𝛿3𝑖𝑖𝛿𝛿2𝑗𝑗

 

where ± in the subscript denotes the eigenvalue 𝜆𝜆 = ±1. Any 𝑈𝑈 ∈ 𝒮𝒮𝐵𝐵 is a linear combination: 

𝑈𝑈𝜇𝜇𝜇𝜇 = �𝜁𝜁𝑎𝑎±𝑍𝑍𝑎𝑎± + 𝜁𝜁𝑏𝑏±𝑍𝑍𝑏𝑏± + 𝜁𝜁𝑐𝑐±𝑍𝑍𝑐𝑐± + 𝜁𝜁𝑑𝑑±𝑍𝑍𝑑𝑑±
+,−

                                            (65) 

=

⎝

⎜
⎛

0 𝜁𝜁𝑎𝑎+ + 𝜁𝜁𝑎𝑎− −𝑖𝑖𝜁𝜁𝑎𝑎+ + 𝑖𝑖𝜁𝜁𝑎𝑎− 0
𝜁𝜁𝑏𝑏+ + 𝜁𝜁𝑏𝑏− 0 0 𝜁𝜁𝑐𝑐+ + 𝜁𝜁𝑐𝑐−

−𝑖𝑖𝜁𝜁𝑏𝑏+ + 𝑖𝑖𝜁𝜁𝑏𝑏− 0 0 −𝑖𝑖𝜁𝜁𝑐𝑐+ + 𝑖𝑖𝜁𝜁𝑐𝑐−

0 𝜁𝜁𝑑𝑑+ + 𝜁𝜁𝑑𝑑− −𝑖𝑖𝜁𝜁𝑑𝑑+ + 𝑖𝑖𝜁𝜁𝑑𝑑− 0 ⎠

⎟
⎞

 . 

Solving for the coefficients in terms of the 𝑈𝑈𝜇𝜇𝜇𝜇 , we find: 

𝜁𝜁𝑎𝑎± = 1
2
(𝑈𝑈01 ± 𝑖𝑖𝑈𝑈02) , 𝜁𝜁𝑐𝑐± = 1

2
(𝑈𝑈13 ± 𝑖𝑖𝑈𝑈23) ,

𝜁𝜁𝑏𝑏± = 1
2
(𝑈𝑈10 ± 𝑖𝑖𝑈𝑈20) , 𝜁𝜁𝑑𝑑± = 1

2
(𝑈𝑈31 ± 𝑖𝑖𝑈𝑈32) .

 

For 𝑈𝑈𝜇𝜇𝜇𝜇 = 𝑢𝑢𝜇𝜇𝜇𝜇 , this simplifies to: 

𝜁𝜁𝑎𝑎± = 𝜁𝜁𝑏𝑏± = −𝜁𝜁𝑐𝑐± = −𝜁𝜁𝑑𝑑± = 1
2
(𝑢𝑢01 ± 𝑖𝑖𝑢𝑢02) = 1

2
𝐺𝐺∓ 

and the decomposition (65) reduces to: 

𝑢𝑢𝜇𝜇𝜇𝜇 =
1
2
�𝐺𝐺∓(𝑍𝑍𝑎𝑎± + 𝑍𝑍𝑏𝑏± − 𝑍𝑍𝑐𝑐± − 𝑍𝑍𝑑𝑑±)
+,−

 . 

We see that the 𝒮𝒮𝐵𝐵 basis matrices with eigenvalue ±1 have coefficients with helicity 1. 

Block C: We have 

0 = 𝜆𝜆𝑍𝑍00 = 𝜆𝜆𝑍𝑍03 = 𝜆𝜆𝑍𝑍30 = 𝜆𝜆𝑍𝑍33 

Hence, either all 𝑍𝑍𝜇𝜇𝜇𝜇 = 0 or 𝜆𝜆 = 0. This yields the trivial basis 

[𝑍𝑍𝛼𝛼]𝑖𝑖𝑖𝑖 = 𝛿𝛿0𝑖𝑖𝛿𝛿0𝑗𝑗 [𝑍𝑍𝛽𝛽]𝑖𝑖𝑖𝑖 = 𝛿𝛿0𝑖𝑖𝛿𝛿3𝑗𝑗 [𝑍𝑍𝛾𝛾]𝑖𝑖𝑖𝑖 = 𝛿𝛿3𝑖𝑖𝛿𝛿0𝑗𝑗 [𝑍𝑍𝛿𝛿]𝑖𝑖𝑖𝑖 = 𝛿𝛿3𝑖𝑖𝛿𝛿3𝑗𝑗 

and the trivial decomposition: 

𝑈𝑈𝜇𝜇𝜇𝜇 = 𝑈𝑈00𝑍𝑍𝛼𝛼 + 𝑈𝑈03𝑍𝑍𝛽𝛽 + 𝑈𝑈30𝑍𝑍𝛾𝛾 + 𝑈𝑈33𝑍𝑍𝛿𝛿  . 

These results are summarized in Table 1 (omitting 𝑍𝑍𝐼𝐼 and 𝑍𝑍𝐼𝐼𝐼𝐼 whose coefficients are zero). 
Since only 𝑢𝑢11 and 𝑢𝑢12 (the Block A components of 𝑢𝑢𝜇𝜇𝜇𝜇) are physically significant, any plane 
wave 𝑢𝑢𝜇𝜇𝜇𝜇 can be decomposed 
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𝑢𝑢𝜇𝜇𝜇𝜇 = 𝜁𝜁+(𝑍𝑍+)𝜇𝜇𝜇𝜇 + 𝜁𝜁−(𝑍𝑍−)𝜇𝜇𝜇𝜇 

where 𝑍𝑍± are eigenmatrices of 𝑖𝑖𝑹𝑹� with eigenvalues 𝜆𝜆 = ±2, and the coefficients 𝜁𝜁± have helicity 
ℎ = −𝜆𝜆.15 

Table 1 Relationship among eigenmatrices and eigenvalues of 𝑖𝑖𝑹𝑹� and coefficients in the eigenbasis 
expansion of 𝑢𝑢𝜇𝜇𝜇𝜇 for Blocks A, B, C 

Block Eigenmatrices of 𝑖𝑖𝑹𝑹� Eigenvalue Coefficients 𝜁𝜁𝛼𝛼 in the expansion 
𝑢𝑢𝜇𝜇𝜇𝜇 = 𝜁𝜁𝛼𝛼𝑍𝑍𝛼𝛼 

Coefficient 𝜁𝜁𝛼𝛼 
helicity 

A 𝑍𝑍± ±2 𝜁𝜁± = 1
2
𝐹𝐹∓ 2 

B 
𝑍𝑍𝑎𝑎±, 𝑍𝑍𝑏𝑏± 

𝑍𝑍𝑐𝑐±, 𝑍𝑍𝑑𝑑± 
±1 

𝜁𝜁𝑎𝑎± = 𝜁𝜁𝑏𝑏± = 1
2
𝐺𝐺∓ 

𝜁𝜁𝑐𝑐± = 𝜁𝜁𝑑𝑑± = −1
2
𝐺𝐺∓ 

1 

C 𝑍𝑍𝛼𝛼 , 𝑍𝑍𝛽𝛽 , 𝑍𝑍𝛾𝛾 , 𝑍𝑍𝛿𝛿 0 
𝜁𝜁𝛼𝛼 = 𝑢𝑢00 , 𝜁𝜁𝛽𝛽 = 𝑢𝑢03 

𝜁𝜁𝛾𝛾 = 𝑢𝑢30 , 𝜁𝜁𝛿𝛿 = 𝑢𝑢33 
0 

D. Angular momentum in electromagnetic plane waves 

We show that a circularly polarized wave packet with frequency 𝜔𝜔 has spin equal to ±1 𝜔𝜔⁄  
and ±2 𝜔𝜔⁄  times its energy for an electromagnetic wave and a gravitational wave. 

§1. Polarization of electromagnetic waves (continued) 

For an EM plane wave traveling in the 𝒛𝒛� direction, we found in section C §5 that 

𝑢𝑢𝜈𝜈(𝜉𝜉) ≡
𝑑𝑑𝐴𝐴𝜈𝜈
𝑑𝑑𝑑𝑑

= 𝑢𝑢1(𝜉𝜉)Ω𝜈𝜈
(1) + 𝑢𝑢2(𝜉𝜉)Ω𝜈𝜈

(2) , 

where Ω𝜈𝜈
(1) and Ω𝜈𝜈

(2) are the two independent polarization vectors. We re-examine this case, 
focusing on the fields 𝐄𝐄 = −𝛁𝛁𝐴𝐴0 − 𝜕𝜕𝐀𝐀 𝜕𝜕𝜕𝜕⁄  and 𝐁𝐁 = curl𝐀𝐀 as a prelude to calculating the energy 
and angular momentum densities of a wave packet for electromagnetic and gravitational waves. 

Consider the monochromatic plane wave 

𝐴𝐴𝜈𝜈 = 𝐴𝐴Ω𝜈𝜈 sin[𝜔𝜔(𝑡𝑡 − 𝑧𝑧)] (66) 

with real amplitude A and polarization vector Ω𝜈𝜈 . We saw in section C §5 that Ω𝜈𝜈 is not arbitrary, 
since putting (66) into the Lorenz condition 𝐴𝐴𝜈𝜈 ,𝜈𝜈 = 0 gives Ω0 = −Ω3. Therefore, Ω𝜈𝜈 is a linear 
combination of the polarization vectors 

____________________________ 
15This differs from the linear combination 𝑢𝑢𝜇𝜇𝜇𝜇 = 𝑢𝑢11(𝜉𝜉)Ω𝜇𝜇𝜇𝜇+ + 𝑢𝑢12(𝜉𝜉)Ω𝜇𝜇𝜇𝜇×  of the two independent polarization states, which 
reveals information about the wave’s effect on the spacetime geometry but not its behavior under a rotation of coordinates. 
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Ω𝜈𝜈
(1) = (0, 1, 0, 0) Ω𝜈𝜈

(2) = (0, 0, 1, 0) Ω𝜈𝜈
(3) = (−1, 0, 0, 1) . 

Let 𝜉𝜉 = 𝑘𝑘𝜎𝜎𝑥𝑥𝜎𝜎 = 𝜔𝜔(𝑡𝑡 − 𝑧𝑧). For the wave 

𝐴𝐴𝜈𝜈
(1) = 𝐴𝐴Ω𝜈𝜈

(1) sin 𝜉𝜉 = 𝐴𝐴(0, 1, 0, 0) sin 𝜉𝜉 , 

the electric and magnetic fields are: 

𝐸𝐸1 = 𝐹𝐹10 = 𝐴𝐴1,0 − 𝐴𝐴0,1 = 𝐴𝐴𝐴𝐴 cos 𝜉𝜉 𝐸𝐸2 = 𝐸𝐸3 = 0

𝐵𝐵2 = 𝐹𝐹31 = 𝐴𝐴3,1 − 𝐴𝐴1,3 = 𝐴𝐴𝐴𝐴 cos 𝜉𝜉 𝐵𝐵1 = 𝐵𝐵2 = 0
(67) 

or 

𝐄𝐄(1) = 𝐸𝐸0 cos 𝜉𝜉 𝒙𝒙� 𝐁𝐁(1) = 𝐸𝐸0 cos 𝜉𝜉 𝒚𝒚� (68) 

where 𝐸𝐸0 = 𝐴𝐴𝐴𝐴. The electric and magnetic fields have equal amplitude and phase and are 
perpendicular to 𝐤𝐤 and to each other. 

Similarly, for the wave 

𝐴𝐴𝜈𝜈
(2) = 𝐴𝐴Ω𝜈𝜈

(2) sin 𝜉𝜉 = 𝐴𝐴(0, 0, 1, 0) sin 𝜉𝜉 , 

the fields are 

𝐸𝐸2 = 𝐹𝐹20 = 𝐴𝐴2,0 − 𝐴𝐴0,2 = 𝐴𝐴𝐴𝐴 cos 𝜉𝜉 𝐸𝐸1 = 𝐸𝐸3 = 0

𝐵𝐵1 = 𝐹𝐹23 = 𝐴𝐴2,3 − 𝐴𝐴3,2 = −𝐴𝐴𝐴𝐴 cos 𝜉𝜉 𝐵𝐵2 = 𝐵𝐵3 = 0
(69) 

or 

𝐄𝐄(2) = 𝐸𝐸0 cos 𝜉𝜉 𝒚𝒚� 𝐁𝐁(2) = −𝐸𝐸0 cos 𝜉𝜉 𝒙𝒙� . (70) 

The third wave 𝐴𝐴𝜈𝜈
(3) = 𝐴𝐴Ω𝜈𝜈

(3) sin 𝜉𝜉 is not a physical wave, since 𝐹𝐹𝜇𝜇𝜇𝜇 = 0. 

We write the fields as complex functions, e.g., 𝐄𝐄(1) = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖𝒙𝒙�, where it is understood that 
we take the real part only. Now let 

𝐄𝐄(1) = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖𝒙𝒙� 

𝐄𝐄(2) = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖+𝑖𝑖𝑖𝑖 2⁄ 𝒚𝒚� = 𝑖𝑖𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖𝒚𝒚� 

so that 𝐄𝐄(2) differs in phase from 𝐄𝐄(1) by 𝜋𝜋 2⁄ . We define the circularly polarized waves 

𝐄𝐄± ≡ 𝐄𝐄(1) ± 𝐄𝐄(2) = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖(𝒙𝒙� ± 𝑖𝑖𝒚𝒚�) . (71) 

Taking real parts, we have 

𝐄𝐄± = 𝐸𝐸0(cos 𝜉𝜉 𝒙𝒙� ± sin 𝜉𝜉 𝒚𝒚�) . (72) 

𝐄𝐄± has constant magnitude 𝐸𝐸0, and at 𝑧𝑧 = 0 makes an angle with the 𝑥𝑥-axis of ±𝜔𝜔𝜔𝜔. Thus, from 
the point of view of the wave source, 𝐄𝐄+ rotates clockwise and has positive helicity (or is right-
handed) and 𝐄𝐄− rotates counterclockwise and has negative helicity (or is left-handed). We can 
easily recover 𝐄𝐄(1) and 𝐄𝐄(2) from 𝐄𝐄+ and 𝐄𝐄−. 
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§2. Momentum density in electromagnetic plane waves 

The energy-momentum tensor of the electromagnetic field is: 

𝑇𝑇𝜇𝜇𝜇𝜇 =

⎝

⎜⎜
⎛

 
1

8𝜋𝜋
(𝐸𝐸2 + 𝐵𝐵2)

1
4𝜋𝜋

𝐄𝐄 × 𝐁𝐁

1
4𝜋𝜋

𝐄𝐄 × 𝐁𝐁
0 0 0
0 𝑇𝑇𝑚𝑚𝑚𝑚 0
0 0 0

 
⎠

⎟⎟
⎞
 

where the stress tensor 

𝑇𝑇𝑚𝑚𝑚𝑚 = (4𝜋𝜋)−1 �12𝛿𝛿
𝑚𝑚𝑚𝑚(𝐸𝐸2 + 𝐵𝐵2) − 𝐸𝐸𝑚𝑚𝐸𝐸𝑛𝑛 − 𝐵𝐵𝑚𝑚𝐵𝐵𝑛𝑛� 

Therefore, the plane wave (68) has energy density ℰ and momentum density 𝐩𝐩 given by: 

ℰ = 𝑇𝑇00 =
𝐸𝐸02

4𝜋𝜋
cos2 𝜉𝜉  , 𝐩𝐩 = (𝑇𝑇01,𝑇𝑇02,𝑇𝑇03) =

𝐸𝐸02

4𝜋𝜋
cos2 𝜉𝜉 𝒛𝒛� . 

All components of 𝑇𝑇𝑚𝑚𝑚𝑚 vanish except 𝑇𝑇33 = (𝐸𝐸02 4𝜋𝜋⁄ ) cos2 𝜉𝜉. Hence, the wave has momentum flux 
in the 𝒛𝒛� direction. The energy flux 𝑇𝑇03 is equal to the momentum flux 𝑇𝑇33, which corresponds to 
the quantum mechanical view that photons have energy and momentum 𝐸𝐸 = 𝑝𝑝. 

The infinite plane wave (68) has momentum density 

𝐩𝐩 = (4𝜋𝜋)−1𝐄𝐄 × 𝐁𝐁 = (4𝜋𝜋)−1𝐸𝐸2𝒛𝒛� . 

Therefore, the angular momentum density 𝐫𝐫 × 𝐩𝐩 at a point on the 𝑧𝑧-axis is zero.16 This is so even 
for a circularly polarized wave. 

Now consider a plane wave like (68): 

𝐄𝐄 = 𝐸𝐸0(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)𝒙𝒙� 𝐁𝐁 = 𝐸𝐸0(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)𝒚𝒚� 

of finite transverse extent, in the shape of a cylinder of radius 𝑅𝑅0  around the 𝑧𝑧-axis. Suppose 
𝐸𝐸0 = 𝐸𝐸0(𝜌𝜌) is constant for 𝜌𝜌 < 𝑅𝑅0 − 𝜀𝜀, decreases in the annulus 𝑅𝑅0 − 𝜀𝜀 < 𝜌𝜌 < 𝑅𝑅0, and vanishes for 
𝜌𝜌 ≥ 𝑅𝑅0, using cylindrical coordinates with 𝜌𝜌2 = 𝑥𝑥2 + 𝑦𝑦2. 

At 𝑡𝑡 = 0, the 𝐄𝐄 and 𝐁𝐁 fields point in the 𝒙𝒙� and 𝒚𝒚� directions in the plane 𝑧𝑧 = 0, and point in the 
−𝒙𝒙�  and −𝒚𝒚� directions in the plane 𝑧𝑧 = 𝜋𝜋 𝜔𝜔⁄ . Therefore, the field lines in the planes 𝑧𝑧 = 0 and 
𝑧𝑧 = 𝜋𝜋 𝜔𝜔⁄  must connect to form closed loops. (Likewise for all pairs of planes 𝑧𝑧 = 𝑧𝑧0, 𝑧𝑧 = 𝑧𝑧0 +
𝜋𝜋 𝜔𝜔⁄ .) 

Therefore, the 𝐄𝐄 and 𝐁𝐁 fields have a 𝑧𝑧-component in the annulus 𝑅𝑅0 − 𝜀𝜀 < 𝜌𝜌 < 𝑅𝑅0. 𝐄𝐄 and 𝐁𝐁 are 
not perpendicular in this annulus; they may be nearly parallel, so that 𝐄𝐄 × 𝐁𝐁 may be small. 
Nevertheless, the momentum density (4𝜋𝜋)−1𝐄𝐄× 𝐁𝐁 in the annulus has a transverse component, so 
there is a transverse energy flux. 

____________________________ 
16Off the z-axis there will be nonzero orbital angular momentum density, but the total angular momentum within a volume 
symmetric about the z-axis is, of course, zero. 
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Now consider the circularly polarized electromagnetic wave in (71)-(72): 

𝐄𝐄± = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)(𝒙𝒙� ± 𝑖𝑖𝒚𝒚�) 𝐁𝐁± = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)(𝒚𝒚� ∓ 𝑖𝑖𝒙𝒙�) . (73) 

Note that 

𝐄𝐄± = ±𝑖𝑖𝐁𝐁± or 𝐁𝐁± = ∓𝑖𝑖𝐄𝐄± . (74) 

The fields in (73) have a vector potential 

𝐀𝐀± = −
𝑖𝑖𝐸𝐸0
𝜔𝜔
𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)(𝒙𝒙� ± 𝑖𝑖𝒚𝒚�) . (75) 

To represent a wave packet with finite transverse extent, we modify (75): 

𝐀𝐀± = −
𝑖𝑖𝐸𝐸0(𝑥𝑥,𝑦𝑦)

𝜔𝜔
𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)(𝒙𝒙� ± 𝑖𝑖𝒚𝒚�) (76) 

where 𝐸𝐸0(𝑥𝑥, 𝑦𝑦) is constant throughout the wave packet except near the boundary, where it tapers 
off to zero. Now 𝐁𝐁± picks up a 𝒛𝒛� component: 

𝐵𝐵±
3 =

𝜕𝜕𝐴𝐴±
2

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝐴𝐴±

1

𝜕𝜕𝜕𝜕
=

1
𝜔𝜔
�𝑖𝑖
𝜕𝜕𝐸𝐸0(𝑥𝑥, 𝑦𝑦)

𝜕𝜕𝜕𝜕
±
𝜕𝜕𝐸𝐸0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
� 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧) . 

By (74), 𝐄𝐄± now has a 𝒛𝒛� component: 

𝐸𝐸±
3 = ±𝑖𝑖𝐵𝐵±

3 =
𝑖𝑖
𝜔𝜔
�
𝜕𝜕𝐸𝐸0(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝜕𝜕
± 𝑖𝑖

𝜕𝜕𝐸𝐸0(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

� 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧) . (77) 

Therefore, the electric and magnetic fields are:17 

𝐄𝐄± = �𝐸𝐸0(𝒙𝒙� ± 𝑖𝑖𝒚𝒚�) +
𝑖𝑖
𝜔𝜔 �

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

± 𝑖𝑖
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕 �

𝒛𝒛�� 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)

𝐁𝐁± = ∓𝑖𝑖𝐄𝐄±

(78) 

or, taking real parts: 

𝐄𝐄± = 𝐸𝐸0 cos 𝜉𝜉 𝒙𝒙� ± 𝐸𝐸0 sin 𝜉𝜉 𝒚𝒚� +
1
𝜔𝜔 �

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

sin 𝜉𝜉 ∓
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

cos 𝜉𝜉� 𝒛𝒛�

𝐁𝐁± = ∓𝐸𝐸0 sin 𝜉𝜉 𝒙𝒙� + 𝐸𝐸0 cos 𝜉𝜉 𝒚𝒚� +
1
𝜔𝜔 �

±
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

cos 𝜉𝜉 +
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

sin 𝜉𝜉� 𝒛𝒛� .

(79) 

§3. Angular momentum of an electromagnetic wave packet 

The energy density ℰ and angular momentum density 𝐌𝐌 of a circularly polarized wave 
packet traveling in the 𝒛𝒛� direction can be calculated from the energy-momentum tensor 𝑇𝑇𝜇𝜇𝜇𝜇. Thus, 
𝑀𝑀𝑧𝑧 = 𝑥𝑥𝑝𝑝𝑦𝑦 − 𝑦𝑦𝑝𝑝𝑥𝑥 = 𝑥𝑥𝑇𝑇02 − 𝑦𝑦𝑇𝑇01. We will confirm later that 𝑀𝑀𝑥𝑥 = 𝑀𝑀𝑦𝑦 = 0. 

____________________________ 
17This is the solution to Problem 7.20 in Jackson (1975), p. 333. [6] 
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Assume that 𝐸𝐸0(𝑥𝑥,𝑦𝑦) is radially symmetric about the axis of propagation, so 𝐸𝐸0(𝑥𝑥,𝑦𝑦) =
𝐸𝐸0(𝜌𝜌) in polar coordinates, with 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙 and 𝑦𝑦 = 𝜌𝜌 sin𝜙𝜙. Then: 

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑥𝑥
𝜌𝜌
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

 

and similarly for 𝜕𝜕𝐸𝐸0 𝜕𝜕𝜕𝜕⁄ . We also assume that 𝐸𝐸0(𝜌𝜌) tapers off sufficiently gently at the boundary 
of the wave packet so that 

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

≪ 𝜔𝜔𝐸𝐸0 . (80) 

Using 𝐄𝐄+ and 𝐁𝐁+ from (79): 

8𝜋𝜋𝑇𝑇00 = 𝐸𝐸2 + 𝐵𝐵2 = 2𝐸𝐸02 +
1
𝜔𝜔2 ��

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

�
2

+ �
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

�
2

� . 

Since 

(𝜕𝜕𝐸𝐸0 𝜕𝜕𝜕𝜕⁄ )2 + (𝜕𝜕𝐸𝐸0 𝜕𝜕𝜕𝜕⁄ )2 = (𝜕𝜕𝐸𝐸0 𝜕𝜕𝜕𝜕⁄ )2 ≪ 𝜔𝜔2𝐸𝐸02 

we have 4𝜋𝜋𝑇𝑇00 ≈ 𝐸𝐸0(𝑥𝑥,𝑦𝑦)2, or 

ℰ =
1

4𝜋𝜋
𝐸𝐸0(𝑥𝑥,𝑦𝑦)2 . 

We also calculate 

4𝜋𝜋𝑇𝑇01 = 𝐸𝐸𝑦𝑦𝐵𝐵𝑧𝑧 − 𝐸𝐸𝑧𝑧𝐵𝐵𝑦𝑦 =
𝐸𝐸0
𝜔𝜔
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

 , 4𝜋𝜋𝑇𝑇02 = 𝐸𝐸𝑧𝑧𝐵𝐵𝑥𝑥 − 𝐸𝐸𝑥𝑥𝐵𝐵𝑧𝑧 = −
𝐸𝐸0
𝜔𝜔
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

 . 

Therefore, 

4𝜋𝜋𝑀𝑀𝑧𝑧 = 𝑥𝑥𝑇𝑇02 − 𝑦𝑦𝑇𝑇01 = −
𝐸𝐸0
𝜔𝜔
�𝑥𝑥
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

+ 𝑦𝑦
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

� = −
𝐸𝐸0
𝜔𝜔
𝜌𝜌
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

 . 

Integrating over the 𝑥𝑥- 𝑦𝑦 plane, 

4𝜋𝜋�𝑀𝑀𝑧𝑧 𝑑𝑑𝑑𝑑 = −
2𝜋𝜋
𝜔𝜔
�𝐸𝐸0

𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

𝜌𝜌2𝑑𝑑𝑑𝑑 = −
𝜋𝜋
𝜔𝜔
�
𝑑𝑑𝐸𝐸02

𝑑𝑑𝑑𝑑
𝜌𝜌2𝑑𝑑𝑑𝑑 =

2𝜋𝜋
𝜔𝜔
�𝐸𝐸02 𝜌𝜌𝜌𝜌𝜌𝜌 =

1
𝜔𝜔
�𝐸𝐸02 𝑑𝑑𝑑𝑑 . 

We will show below that the wave packet has no 𝑥𝑥- or 𝑦𝑦-angular momentum. Therefore, 

�𝐌𝐌𝑑𝑑𝑑𝑑 =
𝒛𝒛�

4𝜋𝜋𝜋𝜋
�𝐸𝐸02 𝑑𝑑𝑑𝑑 . (81) 

The total angular momentum in (81) is independent of the coordinate 𝐫𝐫, so we identify 𝐌𝐌 as spin 
angular momentum density, denoted by 𝐒𝐒. Hence, the ratio of 𝑧𝑧-spin angular momentum to energy 
of the wave packet is 

∫𝑆𝑆𝑧𝑧 𝑑𝑑𝑑𝑑
∫ℰ 𝑑𝑑𝑑𝑑

=
(4𝜋𝜋𝜋𝜋)−1 ∫𝐸𝐸02 𝑑𝑑𝑑𝑑
(4𝜋𝜋)−1 ∫𝐸𝐸02 𝑑𝑑𝑑𝑑

=
1
𝜔𝜔

 . (82) 
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If we had used 𝐄𝐄− instead of 𝐄𝐄+ we would have obtained −1 𝜔𝜔⁄ . Eq. (82) reflects the 
quantum mechanical view that a photon has spin ±ℏ and energy ℏ𝜔𝜔.18 

To complete the analysis, we confirm that the wave packet has no 𝑥𝑥- or 𝑦𝑦-angular 
momentum. Since 

4𝜋𝜋𝜋𝜋03 = 𝐸𝐸𝑥𝑥𝐵𝐵𝑦𝑦 − 𝐸𝐸𝑦𝑦𝐵𝐵𝑥𝑥 = 𝐸𝐸02 

we have: 

4𝜋𝜋𝑀𝑀𝑥𝑥 = 𝑦𝑦𝑇𝑇03 − 𝑧𝑧𝑇𝑇02 = 𝑦𝑦𝐸𝐸02 + 𝑧𝑧
𝐸𝐸0
𝜔𝜔
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

= 𝐸𝐸02𝜌𝜌 sin𝜙𝜙 + 𝑧𝑧
𝐸𝐸0
𝜔𝜔
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

cos𝜙𝜙 . 

Integrating over the 𝑥𝑥- 𝑦𝑦 plane, remembering that 𝐸𝐸0 = 𝐸𝐸0(𝜌𝜌): 

4𝜋𝜋�𝑀𝑀𝑥𝑥 𝑑𝑑𝑑𝑑 = ��𝐸𝐸02𝜌𝜌 sin𝜙𝜙 + 𝑧𝑧
𝐸𝐸0
𝜔𝜔
𝜕𝜕𝐸𝐸0
𝜕𝜕𝜕𝜕

cos𝜙𝜙�𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 0 . 

Similarly, 4𝜋𝜋 ∫𝑀𝑀𝑦𝑦 𝑑𝑑𝑑𝑑 = 0. Thus, the angular momentum of the wave packet has only a 𝑧𝑧-component. 

§4. Angular momentum of a gravitational wave packet 

Our goal is to derive the ratio 

∫𝑆𝑆𝑧𝑧 𝑑𝑑𝑑𝑑
∫ℰ 𝑑𝑑𝑑𝑑

= ±
2
𝜔𝜔

(83) 

for circularly polarized, gravitational plane wave packet.19 Consider a monochromatic wave packet 
𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 + ℎ𝜇𝜇𝜇𝜇 traveling in the 𝒛𝒛� direction. We work in the transverse-traceless gauge, so ℎ =
𝜓𝜓 = 0, ℎ𝜇𝜇𝜇𝜇 = 𝜓𝜓𝜇𝜇𝜇𝜇 from (17), 𝜓𝜓𝜇𝜇𝜇𝜇

,𝜈𝜈 = 0 from (15), and 𝜓𝜓𝜇𝜇0 = 𝜓𝜓0𝜈𝜈 = 0. Let the metric perturbation 
be 

𝜓𝜓𝜇𝜇𝜇𝜇 = Ω𝜇𝜇𝜇𝜇(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧) 

where we take the real part as the wave. 

For an infinite plane wave, we know from (42) that Ω𝜇𝜇𝜇𝜇(𝑥𝑥,𝑦𝑦) is a linear combination 
𝑎𝑎Ω𝜇𝜇𝜇𝜇+ + 𝑏𝑏Ω𝜇𝜇𝜇𝜇×  of the polarization tensors (41); and if 𝑎𝑎 and 𝑏𝑏 are complex numbers, then 𝜓𝜓𝜇𝜇𝜇𝜇 may 
be elliptically or circularly polarized. However, for a finite wave, Ω𝜇𝜇𝜇𝜇(𝑥𝑥,𝑦𝑦) and 𝜓𝜓𝜇𝜇𝜇𝜇 are more 
complicated. 

The harmonic coordinates condition (15) gives 

𝜓𝜓𝜇𝜇𝜇𝜇
,𝜈𝜈 = �−𝑖𝑖𝑖𝑖Ω𝜇𝜇0 +

𝜕𝜕Ω𝜇𝜇1

𝜕𝜕𝜕𝜕
+
𝜕𝜕Ω𝜇𝜇2

𝜕𝜕𝜕𝜕
+ 𝑖𝑖𝑖𝑖Ω𝜇𝜇3� 𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧) = 0 . 

____________________________ 
18Eq. (82) can also be obtained by writing 𝐫𝐫 × 𝐩𝐩 = 𝐫𝐫 × (𝐄𝐄 × 𝐁𝐁) = 𝐫𝐫 × [𝐄𝐄 × (𝛁𝛁 × 𝐀𝐀)] and using vector analysis to isolate 
the spin angular momentum; see Ohanian (2007) §12.3 [7], Ohanian (1986) [8], and Rohrlich (2007) §4.10 [9]. This 
approach does not easily extend to the gravitational field; see Barnett (2014) [10]. 
19Adapted from Barker (2017) [11]. 
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Hence, for 𝑚𝑚 = 1, 2, 3: 

𝜕𝜕Ω𝑚𝑚1

𝜕𝜕𝜕𝜕
+
𝜕𝜕Ω𝑚𝑚2

𝜕𝜕𝜕𝜕
+ 𝑖𝑖𝑖𝑖Ω𝑚𝑚3 = 0 . (84) 

The general solution to (84) is 

Ω𝑚𝑚𝑚𝑚 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

 Ω11(𝑥𝑥,𝑦𝑦) Ω12(𝑥𝑥,𝑦𝑦)
𝑖𝑖
𝜔𝜔
�
𝜕𝜕Ω11

𝜕𝜕𝜕𝜕
+
𝜕𝜕Ω12

𝜕𝜕𝜕𝜕
�

 ⋯ Ω22(𝑥𝑥,𝑦𝑦)
𝑖𝑖
𝜔𝜔
�
𝜕𝜕Ω12

𝜕𝜕𝜕𝜕
+
𝜕𝜕Ω22

𝜕𝜕𝜕𝜕
�

 ⋯ ⋯ −
1
𝜔𝜔2 �

𝜕𝜕2Ω11

𝜕𝜕𝑥𝑥2
+ 2

𝜕𝜕2Ω12

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+
𝜕𝜕2Ω22

𝜕𝜕𝑦𝑦2
�
⎠

⎟
⎟
⎟
⎟
⎟
⎞

(85) 

where the lower triangle is completed by symmetry. We set 

Ω11(𝑥𝑥,𝑦𝑦) = −Ω22(𝑥𝑥,𝑦𝑦) = Ψ(𝑥𝑥,𝑦𝑦)

Ω12(𝑥𝑥,𝑦𝑦) = Ω21(𝑥𝑥,𝑦𝑦) = 𝑖𝑖Ψ(𝑥𝑥,𝑦𝑦)
(86) 

where Ψ(𝑥𝑥, 𝑦𝑦) is a real-valued function that is constant in some finite region of the 𝑥𝑥-𝑦𝑦 plane 
and tapers off to zero at the boundary. We choose Ψ(𝑥𝑥,𝑦𝑦) to be symmetric about the 𝑧𝑧-axis, so 
Ψ(𝑥𝑥,𝑦𝑦) = Ψ(𝜌𝜌) in polar coordinates, with 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙 and 𝑦𝑦 = 𝜌𝜌 sin𝜙𝜙. We have: 

Ψ,𝑥𝑥 =
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑥𝑥
𝜌𝜌
Ψ,𝜌𝜌 

Ψ,𝑥𝑥𝑥𝑥 =
𝑥𝑥
𝜌𝜌
𝜕𝜕Ψ,𝑥𝑥

𝜕𝜕𝜕𝜕
=
𝑥𝑥
𝜌𝜌
𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑥𝑥
𝜌𝜌
Ψ,𝜌𝜌� =

𝑥𝑥
𝜌𝜌
𝜕𝜕(cos𝜙𝜙Ψ,𝜌𝜌)

𝜕𝜕𝜕𝜕
=
𝑥𝑥2

𝜌𝜌2
Ψ,𝜌𝜌𝜌𝜌 

and similarly for Ψ,𝑦𝑦, Ψ,𝑦𝑦𝑦𝑦 and Ψ,𝑥𝑥𝑥𝑥. We also choose Ψ(𝜌𝜌) to taper off sufficiently gently at the 
boundary of the wave packet so that 

𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

≪ 𝜔𝜔Ψ ,
𝜕𝜕2Ψ
𝜕𝜕𝜌𝜌2

≪ 𝜔𝜔
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

≪ 𝜔𝜔2Ψ . (87) 

Then Ω33 is negligible compared to the other Ω𝑚𝑚𝑚𝑚, and we have 

𝜓𝜓𝑚𝑚𝑚𝑚 = 𝜓𝜓𝑚𝑚𝑚𝑚 = �
Ψ(𝑥𝑥,𝑦𝑦) 𝑖𝑖Ψ(𝑥𝑥,𝑦𝑦) 𝑖𝑖𝜔𝜔−1�Ψ,𝑥𝑥 + 𝑖𝑖Ψ,𝑦𝑦�

⋯ −Ψ(𝑥𝑥,𝑦𝑦) 𝑖𝑖𝜔𝜔−1�𝑖𝑖Ψ,𝑥𝑥 − Ψ,𝑦𝑦�

⋯ ⋯ 0 

�𝑒𝑒−𝑖𝑖𝑖𝑖 (88) 

where 𝜉𝜉 = 𝜔𝜔(𝑡𝑡 − 𝑧𝑧). Taking real parts: 

𝜓𝜓𝑚𝑚𝑚𝑚 = �
Ψ(𝑥𝑥,𝑦𝑦) cos 𝜉𝜉 Ψ(𝑥𝑥,𝑦𝑦) sin 𝜉𝜉 𝜔𝜔−1�Ψ,𝑥𝑥 sin 𝜉𝜉 − Ψ,𝑦𝑦 cos 𝜉𝜉�

⋯ −Ψ(𝑥𝑥,𝑦𝑦) cos 𝜉𝜉 −𝜔𝜔−1�Ψ,𝑥𝑥 cos 𝜉𝜉 + Ψ,𝑦𝑦 sin 𝜉𝜉�

⋯ ⋯ 0 

�  . (89) 
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Notice that, except near the boundary, we have 

𝜓𝜓𝑚𝑚𝑚𝑚 = ��
Ψ 0 0 
0 −Ψ 0 
0 0 0 

� + 𝑖𝑖 �
0 Ψ 0 
Ψ 0 0 
0 0 0 

�� 𝑒𝑒−𝑖𝑖𝑖𝑖 

or 

𝜓𝜓𝜇𝜇𝜇𝜇 = Ψ𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧)(Ω𝜇𝜇𝜇𝜇+ + 𝑖𝑖Ω𝜇𝜇𝜇𝜇× ) , 

which is a circularly polarized wave analogous to 𝐄𝐄+ in (73). 

The energy and angular momentum densities of the wave packet can be calculated from 
the components of an appropriate energy-momentum pseudotensor 𝑡𝑡𝜇𝜇𝜇𝜇 . As a first approach, we try 
the Einstein energy-momentum pseudotensor, which for a plane wave has the form:20 

32𝜋𝜋𝑡𝑡𝜇𝜇𝜇𝜇 = �𝑢𝑢𝛼𝛼𝛼𝛼𝑢𝑢𝛼𝛼𝛼𝛼 −
1
2
𝑢𝑢2� 𝑘𝑘𝜇𝜇𝑘𝑘𝜈𝜈 . (90) 

Since ℎ𝛼𝛼𝛼𝛼,𝜎𝜎 = 𝑔𝑔𝛼𝛼𝛼𝛼,𝜎𝜎 = 𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜎𝜎, we have from (16) and (17): 

−𝜓𝜓,𝜎𝜎 = ℎ,𝜎𝜎 = 𝜂𝜂𝛼𝛼𝛼𝛼ℎ𝛼𝛼𝛼𝛼,𝜎𝜎 = 𝜂𝜂𝛼𝛼𝛼𝛼𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜎𝜎 = 𝑢𝑢𝑘𝑘𝜎𝜎  , 

𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜎𝜎 = ℎ𝛼𝛼𝛼𝛼,𝜎𝜎 = 𝜓𝜓𝛼𝛼𝛼𝛼,𝜎𝜎 −
1
2
𝜂𝜂𝛼𝛼𝛼𝛼𝜓𝜓,𝜎𝜎 . 

Therefore: 

32𝜋𝜋𝑡𝑡𝜇𝜇𝜇𝜇 = 𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜇𝜇𝑢𝑢𝛼𝛼𝛼𝛼𝑘𝑘𝜈𝜈 −
1
2
𝑢𝑢𝑘𝑘𝜇𝜇𝑢𝑢𝑘𝑘𝜈𝜈 

= �𝜓𝜓𝛼𝛼𝛼𝛼,𝜇𝜇 −
1
2
𝜂𝜂𝛼𝛼𝛼𝛼𝜓𝜓,𝜇𝜇� �𝜓𝜓𝛼𝛼𝛼𝛼

,𝜈𝜈 −
1
2
𝜂𝜂𝛼𝛼𝛼𝛼𝜓𝜓,𝜈𝜈� −

1
2
(−𝜓𝜓,𝜇𝜇)(−𝜓𝜓,𝜈𝜈) 

= 𝜓𝜓𝛼𝛼𝛼𝛼,𝜇𝜇𝜓𝜓𝛼𝛼𝛼𝛼
,𝜈𝜈 −

1
2
𝜓𝜓,𝜇𝜇𝜓𝜓,𝜈𝜈 . 

In the TT gauge, this simplifies to 

32𝜋𝜋𝑡𝑡𝜇𝜇𝜇𝜇 = 𝜓𝜓𝜌𝜌𝜌𝜌,𝜇𝜇𝜓𝜓      ,𝜈𝜈
𝜌𝜌𝜌𝜌  . (91) 

Therefore, since 𝜓𝜓𝜇𝜇0 = 𝜓𝜓0𝜈𝜈 = 0: 

32𝜋𝜋𝑡𝑡00 = 𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,0 = 2𝜔𝜔2Ψ2(𝑥𝑥,𝑦𝑦) + 2Ψ,𝑥𝑥
2 + 2Ψ,𝑦𝑦

2 ≈ 2𝜔𝜔2Ψ2(𝑥𝑥,𝑦𝑦) 

on account of (87). Therefore, 

ℰ = 𝑡𝑡00 = 𝑡𝑡00 =
𝜔𝜔2

16𝜋𝜋
Ψ2(𝑥𝑥,𝑦𝑦) . (92) 

However, a problem arises when (91) is used to compute the transverse components of 
the momentum density. For 𝑡𝑡01, we obtain 

____________________________ 
20Dirac (1975), Eq. (33.9). 
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32𝜋𝜋𝑡𝑡01 = 𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,1 =
2
𝜔𝜔 �

Ψ,𝑦𝑦Ψ,𝑥𝑥𝑥𝑥 − Ψ,𝑥𝑥Ψ,𝑥𝑥𝑥𝑥� =
2
𝜔𝜔�

𝑦𝑦𝑥𝑥2 − 𝑥𝑥2𝑦𝑦
𝜌𝜌3 �Ψ,𝜌𝜌Ψ,𝜌𝜌𝜌𝜌 = 0 . 

Similarly, 𝑡𝑡02 = 0. The problem is that (90)-(91) is the energy-momentum pseudotensor for an 
infinite plane wave, in which there is no momentum component perpendicular to the direction of 
propagation. For a finite wave packet 

𝜓𝜓𝜇𝜇𝜇𝜇(𝐫𝐫) = Ω𝜇𝜇𝜇𝜇(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖𝑖𝑖(𝑡𝑡−𝑧𝑧) 

with Ω𝜇𝜇𝜇𝜇 given by (88), 𝑔𝑔𝜇𝜇𝜇𝜇(𝐫𝐫) = 𝜂𝜂𝜇𝜇𝜇𝜇 + 𝜓𝜓𝜇𝜇𝜇𝜇(𝐫𝐫) is not a function of 𝜉𝜉 = 𝜔𝜔(𝑡𝑡 − 𝑧𝑧), so (90) is not an 
appropriate starting point. 

We use the Landau-Lifshitz energy-momentum pseudotensor:21 

16𝜋𝜋𝑡𝑡𝜇𝜇𝜇𝜇 = ℎ𝜇𝜇𝜇𝜇 ,𝜌𝜌ℎ𝜌𝜌𝜌𝜌 ,𝜎𝜎 − ℎ𝜇𝜇𝜇𝜇 ,𝜌𝜌ℎ𝜈𝜈𝜈𝜈 ,𝜎𝜎 − ℎ𝜌𝜌𝜌𝜌 ,𝜇𝜇ℎ𝜈𝜈𝜈𝜈,𝜎𝜎 − ℎ𝜌𝜌𝜌𝜌 ,𝜈𝜈ℎ𝜇𝜇𝜇𝜇,𝜎𝜎 + 𝜂𝜂𝜌𝜌𝜌𝜌ℎ𝜇𝜇𝜇𝜇,𝜆𝜆ℎ𝜈𝜈𝜈𝜈,𝜆𝜆                  

                              + 𝜂𝜂𝜇𝜇𝜇𝜇 �1
2
ℎ𝜆𝜆𝜆𝜆,𝜎𝜎ℎ𝜆𝜆𝜆𝜆,𝜌𝜌 − 1

4
ℎ𝜌𝜌𝜌𝜌,𝜆𝜆ℎ𝜌𝜌𝜌𝜌,𝜆𝜆 + 1

8
ℎ𝜌𝜌,𝜆𝜆
𝜌𝜌 ℎ𝜎𝜎

𝜎𝜎,𝜆𝜆� + 1
2
ℎ𝜌𝜌𝜌𝜌,𝜇𝜇ℎ𝜌𝜌𝜌𝜌 ,𝜈𝜈 − 1

4
ℎ𝜌𝜌
𝜌𝜌,𝜇𝜇ℎ𝜎𝜎

𝜎𝜎,𝜈𝜈  .
(93) 

In the TT gauge we have ℎ𝜇𝜇𝜇𝜇 = 𝜓𝜓𝜇𝜇𝜇𝜇 , so we may replace ℎ𝜇𝜇𝜇𝜇 with 𝜓𝜓𝜇𝜇𝜇𝜇 . Since 𝜓𝜓𝜇𝜇𝜇𝜇
,𝜈𝜈 = 0 and 𝜓𝜓 =

0, the 1st, 2nd, 8th and 10th terms vanish, and we are left with: 

16𝜋𝜋𝑡𝑡𝜇𝜇𝜇𝜇 = −𝜓𝜓𝜌𝜌𝜌𝜌 ,𝜇𝜇𝜓𝜓𝜈𝜈𝜈𝜈,𝜎𝜎 − 𝜓𝜓𝜌𝜌𝜌𝜌 ,𝜈𝜈𝜓𝜓𝜇𝜇𝜇𝜇,𝜎𝜎 + 𝜂𝜂𝜌𝜌𝜌𝜌𝜓𝜓𝜇𝜇𝜇𝜇
,𝜆𝜆𝜓𝜓𝜈𝜈𝜈𝜈,𝜆𝜆                              

                             + 𝜂𝜂𝜇𝜇𝜇𝜇 �1
2
𝜓𝜓𝜆𝜆𝜆𝜆,𝜎𝜎𝜓𝜓𝜆𝜆𝜆𝜆,𝜌𝜌 − 1

4
𝜓𝜓𝜌𝜌𝜌𝜌,𝜆𝜆𝜓𝜓𝜌𝜌𝜌𝜌,𝜆𝜆� + 1

2
𝜓𝜓𝜌𝜌𝜌𝜌,𝜇𝜇𝜓𝜓𝜌𝜌𝜌𝜌 ,𝜈𝜈 .

(94) 

To see how (94) generalizes (91), note that for an infinite plane wave in the 𝒛𝒛� direction, 𝜓𝜓𝜌𝜌𝜌𝜌,𝜆𝜆 
vanishes unless 𝜆𝜆 = 0 or 3, while 𝜓𝜓𝜌𝜌𝜌𝜌 vanishes unless 𝜌𝜌,𝜎𝜎 = 1 or 2. Hence, in this case the 
1st, 2nd and 4th terms of (94) vanish. Additionally, the 3rd term contains the factor 

𝜓𝜓𝜇𝜇𝜇𝜇
,𝜆𝜆𝜓𝜓𝜈𝜈𝜈𝜈,𝜆𝜆 = 𝑢𝑢𝜇𝜇𝜇𝜇𝑘𝑘𝜆𝜆𝑢𝑢𝜈𝜈𝜈𝜈𝑘𝑘𝜆𝜆 

which vanishes, since 𝑘𝑘𝜆𝜆𝑘𝑘𝜆𝜆 = 0. Likewise, the 5th term vanishes. Thus, for an infinite plane wave, 
(94) reduces to (91). 

Using (94), we recalculate 𝑡𝑡00 to confirm that the previous expression (92) for ℰ remains 
correct. Since 𝜓𝜓0𝜈𝜈 = 0, the first three terms vanish, and we are left with 

16𝜋𝜋𝑡𝑡00 = 1
2
𝜓𝜓𝑙𝑙𝑙𝑙,𝑠𝑠𝜓𝜓𝑙𝑙𝑙𝑙,𝑟𝑟 − 1

4
𝜓𝜓𝑟𝑟𝑟𝑟,𝜆𝜆𝜓𝜓𝑟𝑟𝑟𝑟,𝜆𝜆 + 1

2
𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,0 . (95) 

We examine the terms in reverse order. In the calculation leading up to (92) we found that 
𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,0 ≈ 2𝜔𝜔2Ψ2. Hence, the third term = 𝜔𝜔2Ψ2. 

The second term is proportional to 𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,0 − 𝜓𝜓𝑟𝑟𝑟𝑟,𝑙𝑙𝜓𝜓𝑟𝑟𝑟𝑟,𝑙𝑙. Note that 𝜓𝜓𝑟𝑟𝑟𝑟,0
2 − 𝜓𝜓𝑟𝑟𝑟𝑟,3

2 = 0, since 
𝑥𝑥0 and 𝑥𝑥3 appear only in the combination 𝜔𝜔(𝑡𝑡 − 𝑧𝑧). Thus 

𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,0 − 𝜓𝜓𝑟𝑟𝑟𝑟,𝑙𝑙𝜓𝜓𝑟𝑟𝑟𝑟,𝑙𝑙 = −𝜓𝜓𝑟𝑟𝑟𝑟,𝑚𝑚𝜓𝜓𝑟𝑟𝑟𝑟,𝑚𝑚  (sum on 𝑚𝑚 = 1, 2) . 

____________________________ 

21Landau and Lifshitz (1975), §96 [12].  



 Thai Journal of Physics                       Vol. 42 No. 1 (2025) 1-47                                                                                       
 

 
 
 

31 

Note that 

𝜓𝜓11,1 = Ψ,𝑥𝑥 cos 𝜉𝜉 ≪ 𝜔𝜔Ψ 

𝜓𝜓12,1 = Ψ,𝑥𝑥 sin 𝜉𝜉 ≪ 𝜔𝜔Ψ 

𝜓𝜓13,1 = 𝜔𝜔−1�Ψ,𝑥𝑥𝑥𝑥 sin 𝜉𝜉 − Ψ,𝑦𝑦𝑦𝑦 cos 𝜉𝜉� ≪ 𝜔𝜔Ψ 

and so on. In general, 𝜓𝜓𝑟𝑟𝑟𝑟,𝑚𝑚 ≪ 𝜔𝜔Ψ for 𝑚𝑚 = 1, 2. Hence, the second term in (95) is negligible 
compared to the third term. 

The first term is proportional to 𝜓𝜓𝑙𝑙𝑙𝑙,𝑠𝑠𝜓𝜓𝑙𝑙𝑙𝑙,𝑟𝑟 . Considering all combinations of 1 ≤ 𝑙𝑙, 𝑟𝑟, 𝑠𝑠 ≤ 3, 
we find that 𝜓𝜓𝑙𝑙𝑙𝑙,𝑠𝑠𝜓𝜓𝑙𝑙𝑙𝑙,𝑟𝑟 ≪ 𝜔𝜔2Ψ2. Hence, this term is also negligible compared to the third term. 
Thus, we have confirmed that (92) is correct. 

Using (94), we now calculate 𝑡𝑡01. We have: 

16𝜋𝜋𝑡𝑡01 = 𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓1𝑟𝑟,𝑠𝑠 −
1
2
𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,1 . (96) 

Now we see precisely why (91) fails to detect the transverse components of angular momentum. 
Eq. (91) gives 32𝜋𝜋𝑡𝑡01 = −𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,1, which corresponds to the second term in (96) and vanishes; 
see the calculation following (92). It is the first term that matters, as we now see. 

Since 𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,1 = 0, we have 

16𝜋𝜋𝑡𝑡01 = 𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓1𝑟𝑟,𝑠𝑠 . (97) 

We calculate: 

𝜓𝜓𝑟𝑟𝑟𝑟,0
 𝜓𝜓1𝑟𝑟,𝑠𝑠

 = 2𝜔𝜔ΨΨ,𝑦𝑦 +
1
𝜔𝜔
Ψ,𝑦𝑦�Ψ,𝑥𝑥𝑥𝑥 sin2 𝜉𝜉 + Ψ,𝑦𝑦𝑦𝑦 cos2 𝜉𝜉� −

1
𝜔𝜔
Ψ,𝑥𝑥Ψ,𝑥𝑥𝑥𝑥 cos 2𝜉𝜉

+
1

2𝜔𝜔 �
Ψ,𝑥𝑥Ψ,𝑥𝑥𝑥𝑥 − 2Ψ,𝑦𝑦Ψ,𝑥𝑥𝑥𝑥 − Ψ,𝑥𝑥Ψ,𝑦𝑦𝑦𝑦� sin 2𝜉𝜉 . 

Time-averaging over multiple cycles, we have 

𝜓𝜓𝑟𝑟𝑟𝑟,0
 𝜓𝜓1𝑟𝑟,𝑠𝑠

 = 2𝜔𝜔ΨΨ,𝑦𝑦 +
1

2𝜔𝜔
Ψ,𝑦𝑦�Ψ,𝑥𝑥𝑥𝑥 + Ψ,𝑦𝑦𝑦𝑦� = Ψ,𝑦𝑦 �2𝜔𝜔Ψ+

1
2𝜔𝜔 �

Ψ,𝑥𝑥𝑥𝑥 + Ψ,𝑦𝑦𝑦𝑦�� 

= Ψ,𝑦𝑦 �2𝜔𝜔Ψ+
1

2𝜔𝜔
Ψ,𝜌𝜌𝜌𝜌� . 

Since Ψ,𝜌𝜌𝜌𝜌 ≪ 𝜔𝜔2Ψ, we ignore the second term. Therefore, 𝜓𝜓𝑟𝑟𝑟𝑟,0
 𝜓𝜓1𝑟𝑟,𝑠𝑠

 = 2𝜔𝜔ΨΨ,𝑦𝑦, so 

𝑡𝑡01 =
𝜔𝜔
8𝜋𝜋

ΨΨ,𝑦𝑦 . (98) 

A similar calculation shows that 

𝜓𝜓𝑟𝑟𝑟𝑟,0
 𝜓𝜓2𝑟𝑟,𝑠𝑠

 = −2𝜔𝜔ΨΨ,𝑥𝑥 −
1

2𝜔𝜔
Ψ,𝑥𝑥(Ψ,𝑥𝑥𝑥𝑥 + Ψ,𝑦𝑦𝑦𝑦) 
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so 

𝑡𝑡02 = −
𝜔𝜔
8𝜋𝜋

ΨΨ,𝑥𝑥 . (99) 

Therefore, 

𝑀𝑀𝑧𝑧(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑡𝑡02 − 𝑦𝑦𝑡𝑡01 = −
𝜔𝜔
8𝜋𝜋 �

𝑥𝑥ΨΨ,𝑥𝑥 + 𝑦𝑦ΨΨ,𝑦𝑦� = −
𝜔𝜔
8𝜋𝜋

𝜌𝜌ΨΨ,𝜌𝜌 . 

Integrating over the 𝑥𝑥-𝑦𝑦 plane: 

�𝑀𝑀𝑧𝑧 𝑑𝑑𝑑𝑑 = −
𝜔𝜔
4
�ΨΨ,𝜌𝜌 𝜌𝜌2𝑑𝑑𝑑𝑑 = −

𝜔𝜔
8
�
𝑑𝑑Ψ2

𝑑𝑑𝑑𝑑
𝜌𝜌2𝑑𝑑𝑑𝑑 =

𝜔𝜔
4
�Ψ2 𝜌𝜌𝜌𝜌𝜌𝜌 =

𝜔𝜔
8𝜋𝜋

�Ψ2 𝑑𝑑𝑑𝑑 . 

We will see below that the wave packet has no 𝑥𝑥- or 𝑦𝑦-angular momentum. Therefore, 

�𝐌𝐌𝑑𝑑𝑑𝑑 =
𝜔𝜔𝒛𝒛�
8𝜋𝜋

�Ψ2 𝑑𝑑𝑑𝑑 . (100) 

The total angular momentum in (100) is independent of the coordinate 𝐫𝐫, so we identify this as 
spin angular momentum, denoted by 𝐒𝐒. 

Using (92), the ratio of 𝑧𝑧-spin angular momentum to energy is 

∫𝑆𝑆𝑧𝑧 𝑑𝑑𝑑𝑑
∫ℰ 𝑑𝑑𝑑𝑑

=
(8𝜋𝜋)−1𝜔𝜔∫𝐸𝐸02 𝑑𝑑𝑑𝑑

(16𝜋𝜋)−1𝜔𝜔2 ∫𝐸𝐸02 𝑑𝑑𝑑𝑑
=

2
𝜔𝜔

 . (101) 

If we had chosen Ω12(𝑥𝑥,𝑦𝑦) = −𝑖𝑖Ψ(𝑥𝑥,𝑦𝑦) in (86), then 𝜓𝜓𝜇𝜇𝜇𝜇 would be circularly polarized 
like 𝐄𝐄− in (72) and we would obtain a minus sign in (101). This establishes (83), which reflects 
the quantum mechanical view that a graviton has spin ±2ℏ and energy ℏ𝜔𝜔. 

To complete the analysis, we confirm that the wave packet has no 𝑥𝑥- or 𝑦𝑦-angular 
momentum. Using (94) we calculate 𝑡𝑡03: 

16𝜋𝜋𝑡𝑡03 = 𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓3𝑟𝑟,𝑠𝑠 −
1
2
𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,3 . (102) 

Straightforward calculation shows that 

𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓3𝑟𝑟,𝑠𝑠 = −ΨΨ,𝑥𝑥𝑥𝑥 − ΨΨ,𝑦𝑦𝑦𝑦 − Ψ,𝑥𝑥
2 − Ψ,𝑦𝑦

2  

−1
2
𝜓𝜓𝑟𝑟𝑟𝑟,0𝜓𝜓𝑟𝑟𝑟𝑟,3 = 𝜔𝜔2Ψ2 + Ψ,𝑥𝑥

2 + Ψ,𝑦𝑦
2  . 

Hence, 

16𝜋𝜋𝑡𝑡03 = 𝜔𝜔2Ψ2 − ΨΨ,𝑥𝑥𝑥𝑥 − ΨΨ,𝑦𝑦𝑦𝑦 

Since ΨΨ,𝑥𝑥𝑥𝑥 and ΨΨ,𝑦𝑦𝑦𝑦 are ≪ 𝜔𝜔2Ψ2, we ignore these terms. So 

𝑡𝑡03 =
𝜔𝜔2

16𝜋𝜋
Ψ2 . 

 



 Thai Journal of Physics                       Vol. 42 No. 1 (2025) 1-47                                                                                       
 

 
 
 

33 

Therefore, 

𝑀𝑀𝑥𝑥 = 𝑧𝑧𝑡𝑡02 − 𝑦𝑦𝑡𝑡03 = −
𝑧𝑧𝑧𝑧
8𝜋𝜋

ΨΨ,𝑥𝑥 −
𝑦𝑦𝜔𝜔2

16𝜋𝜋
Ψ2 = −

𝑧𝑧𝑧𝑧 cos𝜙𝜙
8𝜋𝜋

ΨΨ,𝜌𝜌 −
𝜌𝜌𝜔𝜔2 sin𝜙𝜙

16𝜋𝜋
Ψ2 . 

Integrating over the 𝑥𝑥-𝑦𝑦 plane: 

−16𝜋𝜋�𝑀𝑀𝑥𝑥 𝑑𝑑𝑑𝑑 = ��2𝑧𝑧𝑧𝑧 cos𝜙𝜙ΨΨ,𝜌𝜌 + 𝜌𝜌𝜔𝜔2 sin𝜙𝜙�𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 = 0 . 

Likewise, ∫𝑀𝑀𝑦𝑦 𝑑𝑑𝑑𝑑 = 0. 

E. Radiating systems 

An electromagnetic or gravitational plane wave packet can be imagined by considering a 
(finite) system of charges or masses in accelerated motion, radiating energy. Far from the system, 
which we take to be located near the origin of our coordinate system, waves traveling in a 
particular direction 𝐫𝐫� are plane waves, occupying a solid angle 𝛿𝛿Ω enclosing the ray pointing in 
the 𝐫𝐫� direction During a time interval Δ𝑡𝑡, a wave packet is generated traveling in the 𝐫𝐫� direction, 
enclosed within 𝛿𝛿Ω with length 𝑐𝑐Δ𝑡𝑡. If the system radiates circularly polarized waves in the 𝐫𝐫� 
direction, then the wave packet will be circularly polarized. 

The energy and angular momentum contained in the wave packet is equal to the energy 
and angular momentum lost by the system during the interval Δ𝑡𝑡. We examine whether (83) can 
be derived from an understanding of the energy and angular momentum of the system. 

§1. Electromagnetic dipole and quadrupole radiation 

We recall the formulae for EM dipole and quadrupole radiation. The general solution to 
the wave equation 

𝐴𝐴𝜇𝜇(𝑡𝑡, 𝐫𝐫) = 4𝜋𝜋𝐽𝐽𝜇𝜇(𝑡𝑡, 𝐫𝐫) 

is given by the retarded potential22 

𝐴𝐴𝜇𝜇(𝑡𝑡, 𝐫𝐫) = �
𝐽𝐽𝜇𝜇(𝑡𝑡 − |𝐫𝐫 − 𝐫𝐫′|, 𝐫𝐫′)

|𝐫𝐫 − 𝐫𝐫′|
𝑑𝑑𝑉𝑉′ . 

Suppose the origin lies near the system and 𝑟𝑟 ≡ |𝐫𝐫| is much greater than the size Σ of the system, 
so that 

|𝐫𝐫 − 𝐫𝐫′| ≈ 𝑟𝑟 − 𝐫𝐫� • 𝐫𝐫′ 

Neglecting terms of 𝑂𝑂(1 𝑟𝑟2⁄ ) and retaining only terms of 𝑂𝑂(1 𝑟𝑟⁄ ), we have 

1
|𝐫𝐫 − 𝐫𝐫′|

≈
1

𝑟𝑟 − 𝐫𝐫� • 𝐫𝐫′
=

1
𝑟𝑟

+
𝐫𝐫� • 𝐫𝐫′

𝑟𝑟2
+ ⋯ ≈

1
𝑟𝑟
 

____________________________ 
22See any standard EM reference; for example, Ohanian (2007), Chap. 13-14. 



 Thai Journal of Physics                       Vol. 42 No. 1 (2025) 1-47                                                                                       
 

 
 
 

34 

so we obtain a simplified expression: 

𝐴𝐴𝜇𝜇(𝑡𝑡, 𝐫𝐫) =
1
𝑟𝑟
� 𝐽𝐽𝜇𝜇(𝑡𝑡 − 𝑟𝑟 + 𝐫𝐫� • 𝐫𝐫′, 𝐫𝐫′)𝑑𝑑𝑉𝑉′ . (103) 

From (103), we can calculate 𝐄𝐄 = −𝛁𝛁𝐴𝐴0  − 𝜕𝜕𝐀𝐀 𝜕𝜕𝜕𝜕⁄  and 𝐁𝐁 = curl𝐀𝐀. Keeping terms up to 𝑂𝑂(1 𝑟𝑟⁄ ), 
we find:23 

𝐁𝐁 = −𝐫𝐫� ×
𝜕𝜕𝐀𝐀
𝜕𝜕𝜕𝜕

 ,   𝐄𝐄 = −𝐫𝐫� × 𝐁𝐁 . 

Note that 𝐄𝐄 and 𝐁𝐁 are perpendicular to each other and to 𝐫𝐫�. 

The 𝑂𝑂(1 𝑟𝑟2⁄ ) terms discarded are of order 𝐽𝐽𝑉𝑉′ 𝑟𝑟2⁄ , while the 𝑂𝑂(1 𝑟𝑟⁄ ) terms retained are of 
order 𝐽𝐽𝑉𝑉′ 𝑟𝑟𝑟𝑟⁄ , where 𝑇𝑇 is the “period” of the system, satisfying |𝜕𝜕𝐉𝐉 𝜕𝜕𝜕𝜕⁄ | ≈ |𝐉𝐉 𝑇𝑇⁄ |. Therefore, in 
neglecting the 𝑂𝑂(1 𝑟𝑟2⁄ ) terms, we are assuming that 𝜆𝜆 = 𝑇𝑇 ≪ 𝑟𝑟, where 𝜆𝜆 is the wavelength of the 
emitted radiation. Note 𝜆𝜆 = 𝑇𝑇 in units where 𝑐𝑐 = 1. 

We make the further assumption that Σ ≪ 𝜆𝜆, which combined with 𝜆𝜆 ≪ 𝑟𝑟, automatically gives 
us Σ ≪ 𝑟𝑟.24 This allows us to approximate 𝐉𝐉 by its Taylor expansion in the first variable: 

𝐉𝐉(𝑡𝑡 − 𝑟𝑟 + 𝐫𝐫� • 𝐫𝐫′, 𝐫𝐫′) = 𝐉𝐉(𝑡𝑡 − 𝑟𝑟, 𝐫𝐫′) + (𝐫𝐫� • 𝐫𝐫′)
𝜕𝜕𝐉𝐉(𝑡𝑡 − 𝑟𝑟, 𝐫𝐫′)

𝜕𝜕𝜕𝜕
+⋯ . 

The first and second terms in the expansion are of order |J| and Σ|J| 𝑇𝑇⁄ , respectively. If Σ ≪ 𝜆𝜆 = 𝑇𝑇, 
then the second term is small and the approximation is valid. Since Σ 𝑇𝑇⁄  approximates the average 
velocity of the particles in the system, Σ ≪ 𝜆𝜆 corresponds to 𝑣𝑣 ≪ 1. In other words, the motion 
of the system is assumed to be non-relativistic. 

Using this Taylor expansion in (103), we obtain 

𝐀𝐀(𝑡𝑡, 𝐫𝐫) =
1
𝑟𝑟
�⟦𝐉𝐉⟧ 𝑑𝑑𝑉𝑉′ +

1
𝑟𝑟
�(𝐫𝐫� • 𝐫𝐫′)⟦𝜕𝜕𝐉𝐉 𝜕𝜕𝜕𝜕⁄ ⟧ 𝑑𝑑𝑉𝑉′ + ⋯ (104) 

where ⟦⋯⟧ means the bracketed expression is evaluated at the retarded time 𝑡𝑡 − 𝑟𝑟. The first term 
in (104) corresponds to electric dipole radiation. We rewrite this term: 

𝐀𝐀dip(𝑡𝑡, 𝐫𝐫) = −
1
𝑟𝑟
�⟦𝛁𝛁′• 𝐉𝐉⟧𝐫𝐫′ 𝑑𝑑𝑉𝑉′ =

1
𝑟𝑟
�⟦𝜕𝜕𝜌𝜌 𝜕𝜕𝜕𝜕⁄ ⟧𝐫𝐫′ 𝑑𝑑𝑉𝑉′ =

1
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑
�⟦𝜌𝜌⟧𝐫𝐫′ 𝑑𝑑𝑉𝑉′ =

1
𝑟𝑟
⟦𝛍̇𝛍⟧ 

where 𝛍𝛍 = ∫𝜌𝜌𝐫𝐫′ 𝑑𝑑𝑉𝑉′ is the dipole moment of the system and a dot ⬚̇ denotes a time derivative. 
The first step follows from integration by parts. Thus, we find: 

𝐀𝐀dip(𝑡𝑡, 𝐫𝐫) =
⟦𝛍̇𝛍⟧
𝑟𝑟

 , 𝐁𝐁dip(𝑡𝑡, 𝐫𝐫) = −
𝐫𝐫�
𝑟𝑟

× ⟦𝛍̈𝛍⟧ , 𝐄𝐄dip = −𝐫𝐫� × 𝐁𝐁 . 

____________________________ 
23Ibid., §14.1. 
24The assumption Σ ≪ 𝜆𝜆 is equivalent to assuming that 𝐉𝐉 does not vary too rapidly with time. For example, suppose 
𝐉𝐉(𝑡𝑡′, 𝐫𝐫′) = 𝐽𝐽0 sin𝜔𝜔𝑡𝑡′ 𝒛𝒛� . For the Taylor approximation to be valid, we require 

|(𝐫𝐫� • 𝐫𝐫′) 𝜕𝜕𝐉𝐉(𝑡𝑡 − 𝑟𝑟, 𝐫𝐫′) 𝜕𝜕𝜕𝜕⁄ | ≪ |𝐉𝐉(𝑡𝑡 − 𝑟𝑟, 𝐫𝐫′)| 

or Σ𝜔𝜔𝐽𝐽0 ≪ 𝐽𝐽0; hence, 𝜔𝜔 ≪ Σ−1. 
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The dipole power emitted into a solid angle 𝑑𝑑Ω in the 𝐫𝐫� direction is 

𝑑𝑑𝑃𝑃dip =
1

4𝜋𝜋
(𝐄𝐄 × 𝐁𝐁) • 𝐫𝐫� 𝑟𝑟2𝑑𝑑Ω =

1
4𝜋𝜋

|𝐁𝐁|2𝑟𝑟2𝑑𝑑Ω =
1

4𝜋𝜋
|𝐫𝐫� × ⟦𝛍̈𝛍⟧|2𝑑𝑑Ω 

or 

𝑑𝑑𝑃𝑃dip
𝑑𝑑Ω

=
1

4𝜋𝜋
⟦𝛍̈𝛍⟧2 sin2 Θ (105) 

where Θ is the angle between 𝐫𝐫� and ⟦𝛍̈𝛍⟧. The total power emitted from the system is25 

𝑃𝑃dip =
2
3
⟦𝛍̈𝛍⟧2 . (106) 

The second term in (104) can be written26 

𝐫𝐫�
𝑟𝑟

×
𝑑𝑑
𝑑𝑑𝑑𝑑
�
⟦𝐉𝐉⟧
2

× 𝐫𝐫′ 𝑑𝑑𝑉𝑉′ +
1

6𝑟𝑟
𝑑𝑑2

𝑑𝑑𝑡𝑡2
�[3(𝐫𝐫� • 𝐫𝐫′)𝐫𝐫′ − 𝑟𝑟′2𝐫𝐫�]⟦𝜌𝜌⟧ 𝑑𝑑𝑉𝑉′ . 

These two terms correspond to magnetic dipole radiation and electric quadrupole radiation, 
respectively. We will not be concerned with magnetic dipole radiation. 

Define the vector 𝐪𝐪 = 𝐪𝐪(𝐫𝐫�) by 

𝐪𝐪 ≡ �[3(𝐫𝐫� • 𝐫𝐫′)𝐫𝐫′ − 𝑟𝑟′2𝐫𝐫�]𝜌𝜌𝑑𝑑𝑉𝑉′ 

and the electric quadrupole tensor 

𝑄𝑄𝑘𝑘𝑘𝑘 = �(3𝑥𝑥𝑘𝑘′ 𝑥𝑥𝑙𝑙′ − 𝛿𝛿𝑘𝑘𝑘𝑘𝑟𝑟′2)𝜌𝜌𝑑𝑑𝑉𝑉′ . 

Then 

𝐪𝐪 = Q𝐫𝐫� or 𝑞𝑞𝑘𝑘 = 𝑄𝑄𝑘𝑘𝑘𝑘𝑛𝑛𝑙𝑙 

where Q denotes the matrix 𝑄𝑄𝑘𝑘𝑘𝑘 and 𝐫𝐫� = (𝑛𝑛1,𝑛𝑛2,𝑛𝑛3). The magnetic field is then 

𝐁𝐁 = −𝐫𝐫� ×
𝜕𝜕𝐀𝐀
𝜕𝜕𝜕𝜕

= −
𝐫𝐫�

6𝑟𝑟
× ⟦𝐪⃛𝐪⟧ . 

The power emitted into a solid angle 𝑑𝑑Ω in the 𝐫𝐫� direction is: 

𝑑𝑑𝑃𝑃quad =
1

4𝜋𝜋
|(𝐄𝐄 × 𝐁𝐁) • 𝐫𝐫�|𝑟𝑟2𝑑𝑑Ω =

1
4𝜋𝜋

|𝐁𝐁|2𝑟𝑟2𝑑𝑑Ω =
1

144𝜋𝜋
|𝐫𝐫� × ⟦𝐪⃛𝐪⟧|2𝑑𝑑Ω . 

____________________________ 
25Note that 𝑃𝑃dip = (2 3𝑐𝑐3⁄ )⟦𝛍̈𝛍⟧2 in conventional units. This is easily inferred by dimensional analysis: the units of power 
are [charge] 2[distance] −1[time] −1 and the units of |𝛍̈𝛍|2 are [charge] 2[distance] 2[time] −4. Hence, ⟦𝛍̈𝛍⟧2 must be multiplied by 
𝑐𝑐−3 [distance] −3[time] 3. For a single charged particle, 𝛍̈𝛍 = 𝑞𝑞𝐫̈𝐫′ and we obtain the Larmor formula 𝑃𝑃 = 2𝑞𝑞2𝑎𝑎2 3𝑐𝑐2⁄ , where 
𝑎𝑎 = |𝐫̈𝐫|2 is the acceleration of the particle. 
26Ohanian (2007), §14.4-14.5. 
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From Lagrange’s identity |𝐚𝐚 × 𝐛𝐛|2 = |𝐚𝐚|2|𝐛𝐛|2 − (𝐚𝐚 • 𝐛𝐛)2, we have 

|𝐫𝐫� × ⟦𝐪⃛𝐪⟧|2 = 𝐪⃛𝐪2 − (𝐪⃛𝐪 • 𝐫𝐫�)2 . 

Therefore, 

𝑑𝑑𝑃𝑃quad
𝑑𝑑Ω

=
1

144𝜋𝜋 �
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 − 𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟� . (107) 

This angular distribution is rather complicated. Integrating over all space, we obtain the total power 
emitted by the system: 

𝑃𝑃quad =
1

144𝜋𝜋
��𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘��𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 𝑑𝑑Ω − �𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑚𝑚𝑚𝑚��𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟 𝑑𝑑Ω� . 

Direct computation using 𝑛𝑛𝑥𝑥 = sin𝜃𝜃 cos𝜙𝜙, 𝑛𝑛𝑦𝑦 = sin𝜃𝜃 sin𝜙𝜙, 𝑛𝑛𝑧𝑧 = cos𝜃𝜃 shows that27 

�𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙 𝑑𝑑Ω =
4𝜋𝜋
3
𝛿𝛿𝑘𝑘𝑘𝑘  , �𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟 𝑑𝑑Ω =

4𝜋𝜋
15

(𝛿𝛿𝑘𝑘𝑘𝑘𝛿𝛿𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑘𝑘𝑘𝑘𝛿𝛿𝑙𝑙𝑙𝑙 + 𝛿𝛿𝑘𝑘𝑘𝑘𝛿𝛿𝑙𝑙𝑙𝑙) . (108) 

Plugging in the values of these integrals, we find: 

𝑃𝑃quad =
1

180 �
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘� =

1
180 �

𝐐⃛𝐐𝑘𝑘 • 𝐐⃛𝐐𝑘𝑘� (109) 

where 𝐐𝐐𝑘𝑘 ≡ (𝑄𝑄𝑘𝑘𝑘𝑘,𝑄𝑄𝑘𝑘𝑘𝑘,𝑄𝑄𝑘𝑘𝑘𝑘). Note that 𝑃𝑃quad = 𝑂𝑂(1 𝑐𝑐5⁄ ), while 𝑃𝑃dip = 𝑂𝑂(1 𝑐𝑐3⁄ ); see footnotes 25 and 
33. 

§2. Example: a charge in uniform circular motion 

We examine a system that generates circularly polarized waves along the 𝑧𝑧-axis. Consider 
a charge 𝑞𝑞 in uniform circular motion in the 𝑥𝑥- 𝑦𝑦 plane with 

𝐫𝐫′ = 𝑟𝑟0 cos𝜔𝜔𝜔𝜔 𝒙𝒙� + 𝑟𝑟0 sin𝜔𝜔𝜔𝜔 𝒚𝒚� . 

We have 𝛍̈𝛍 = 𝑞𝑞𝐫̈𝐫′ = −𝑞𝑞𝜔𝜔2𝐫𝐫′. Then 

𝑑𝑑𝑃𝑃dip

𝑑𝑑Ω
=

1
4𝜋𝜋

|𝐫𝐫� × ⟦𝛍̈𝛍⟧|2 =
𝑞𝑞2𝜔𝜔4

4𝜋𝜋
|𝐫𝐫� × ⟦𝐫𝐫′⟧|2 

=
𝑞𝑞2𝜔𝜔4𝑟𝑟02

4𝜋𝜋 �𝑛𝑛32 + 𝑛𝑛12 sin2 𝜔𝜔𝜔𝜔 + 𝑛𝑛22 cos2 𝜔𝜔𝜔𝜔 − 𝑛𝑛1𝑛𝑛2 sin 2𝜔𝜔𝜔𝜔� . 

Taking the time average over many cycles: 

𝑑𝑑𝑃𝑃dip

𝑑𝑑Ω
=
𝑞𝑞2𝜔𝜔4𝑟𝑟02

4𝜋𝜋 �𝑛𝑛32 +
𝑛𝑛12 + 𝑛𝑛22

2 � . 

In spherical coordinates, we have 𝑛𝑛1 = sin𝜃𝜃 cos𝜙𝜙, 𝑛𝑛2 = sin𝜃𝜃 sin𝜙𝜙, 𝑛𝑛3 = cos𝜃𝜃, so 

____________________________ 
27These integrals also follow from symmetry arguments; see Landau and Lifshitz (1975), p. 189. 
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𝑑𝑑𝑃𝑃dip

𝑑𝑑Ω
=
𝑞𝑞2𝜔𝜔4𝑟𝑟02

4𝜋𝜋
�1 − 1

2
sin2 𝜃𝜃� . 

The angular distribution of electric dipole radiation intensity is shown in Figure 1. 

To calculate the angular distribution of quadrupole radiation, we need the quadrupole 
tensor: 

𝑄𝑄𝑘𝑘𝑘𝑘 = 𝑞𝑞𝑟𝑟02 �
3 cos2 𝜔𝜔𝜔𝜔 − 1 3 sin𝜔𝜔𝜔𝜔 cos𝜔𝜔𝜔𝜔 0

3 sin𝜔𝜔𝜔𝜔 cos𝜔𝜔𝜔𝜔 3 sin2 𝜔𝜔𝜔𝜔 − 1 0
0 0 −1

� (110) 

and its third derivatives 

𝑄𝑄𝑘𝑘𝑘𝑘 = 12𝑞𝑞𝑟𝑟02𝜔𝜔3 �
sin 2𝜔𝜔𝜔𝜔 − cos 2𝜔𝜔𝜔𝜔 0
− cos 2𝜔𝜔𝜔𝜔 − sin 2𝜔𝜔𝜔𝜔 0

0 0 0
� . 

After some algebra, and taking time averages: 

�
𝑑𝑑𝑃𝑃quad

𝑑𝑑Ω � =
1

144𝜋𝜋 �
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 − 𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟� =

𝑞𝑞2𝜔𝜔6𝑟𝑟04

𝜋𝜋
�sin2 𝜃𝜃 − 1

2
sin4 𝜃𝜃�  . (111) 

This angular distribution is shown in Figure 1. Note that the quadrupole power vanishes in the 𝒛𝒛� 
direction. 

 

Figure 1 Angular distribution of electromagnetic dipole and quadrupole radiation for a charge in 
uniform circular motion in the 𝑥𝑥-𝑦𝑦 plane 

§3. Radiation damping forces 

For each charge 𝑞𝑞 in the system, define the vector: 

𝐟𝐟𝑞𝑞 ≡
2𝑞𝑞
3
𝛍⃛𝛍𝑞𝑞 . (112) 
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Consider  𝐟𝐟𝑞𝑞 as a hypothetical force exerted on the particle q. Henceforth, we omit the subscript 
𝑞𝑞 in 𝐫𝐫𝑞𝑞′ , 𝛍𝛍𝑞𝑞 , 𝐟𝐟𝑞𝑞 , etc. The work done per unit time by this force on the system is 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝐟𝐟 •
𝑑𝑑𝐫𝐫′

𝑑𝑑𝑑𝑑
𝑞𝑞

= �𝐟𝐟 • 𝐯𝐯′
𝑞𝑞

=
2
3
�𝑞𝑞𝛍⃛𝛍 • 𝐯𝐯′
𝑞𝑞

=
2
3
�𝛍⃛𝛍 • 𝛍̇𝛍
𝑞𝑞

=
2
3
��

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝛍̇𝛍 • 𝛍̈𝛍) − |𝛍̈𝛍|2�
𝑞𝑞

 . 

The time average of (𝑑𝑑 𝑑𝑑𝑑𝑑⁄ )(𝛍̇𝛍 • 𝛍̈𝛍) is 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝛍̇𝛍 • 𝛍̈𝛍) = lim
𝑇𝑇→∞

1
𝑇𝑇
�

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝛍̇𝛍 • 𝛍̈𝛍)𝑑𝑑𝑑𝑑
𝜏𝜏+𝑇𝑇

𝜏𝜏
= lim

𝑇𝑇→∞

1
𝑇𝑇

(𝛍̇𝛍 • 𝛍̈𝛍)�
𝜏𝜏

𝜏𝜏+𝑇𝑇
= lim

𝑇𝑇→∞

1
𝑇𝑇

(𝑞𝑞𝐯𝐯 • 𝑞𝑞𝐯̇𝐯)�
𝜏𝜏

𝜏𝜏+𝑇𝑇
= 0 

providing that the particle velocities and accelerations are bounded. Therefore, 

𝑑𝑑𝑊𝑊 𝑑𝑑𝑑𝑑⁄ = −
2
3

|𝛍̈𝛍|2 . (113) 

Thus, 𝑑𝑑𝑊𝑊 𝑑𝑑𝑑𝑑⁄ < 0; from (106) we see that the time-average rate of work done by 𝐟𝐟 on the system 
is precisely −𝑃𝑃dip . Thus, each charge does work 𝐟𝐟 • 𝑑𝑑𝐫𝐫′ on the electric field and loses a 
corresponding amount of energy through dipole radiation, so −𝐟𝐟 is the dipole radiation damping 
force on 𝑞𝑞. 

§4. Angular momentum lost through dipole radiation 

We now calculate the angular momentum lost by the system through dipole radiation. For 
each charged particle in the system, we have 

𝐌̇𝐌☉ = 𝐫̇𝐫′ × 𝐩𝐩′ + 𝐫𝐫 × 𝐩̇𝐩′ = 𝐫𝐫′ × 𝐟𝐟 . 

Therefore: 

𝐌̇𝐌☉ = �𝐫𝐫′ ×
2𝑞𝑞
3
𝛍⃛𝛍

𝑞𝑞

=
2
3
�𝛍𝛍 × 𝛍⃛𝛍
𝑞𝑞

 . 

We use ℰ☉ and 𝐌𝐌☉ to denote the total energy and angular momentum of the system.28 Since 
𝛍𝛍 × 𝛍⃛𝛍 = (𝑑𝑑 𝑑𝑑𝑑𝑑⁄ )(𝛍𝛍 × 𝛍̈𝛍) − 𝛍̇𝛍 × 𝛍̈𝛍, the time-average rate of change of angular momentum of the 
system due to dipole radiation is 

𝐌̇𝐌dip
☉ = −

2
3
𝛍̇𝛍 × 𝛍̈𝛍 . 

Therefore, including (106), we have the formulae: 

ℰ̇dip☉ = −
2
3

|𝛍̈𝛍|2 𝐌̇𝐌dip
☉ = −

2
3
𝛍̇𝛍 × 𝛍̈𝛍 . (114) 

____________________________ 
28Recall that ℰ and 𝐌𝐌 were used to denote the energy and angular momentum densities of a plane wave. We will find 
that the ratios 𝐌̇𝐌☉ ℰ̇☉⁄  and 𝐌𝐌 ℰ⁄  are equal. Our notation avoids potential confusion. 
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§5. Angular momentum lost through quadrupole radiation 

We repeat the analysis for electric quadrupole radiation, using (109) instead of (106) for 
the radiated power. Then the radiation damping force 𝐟𝐟 satisfies the equation 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝐟𝐟 • 𝐯𝐯′
𝑞𝑞

= −
1

180
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 . 

Note that 

𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 =
𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑄̈𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘� − 𝑄̈𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘
(4) =

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑄̈𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘� −
𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑄̇𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘
(4)� + 𝑄̇𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘

(5) . 

Taking time averages, we have 

𝑄𝑄𝑘𝑘𝑘𝑘
[ ]𝑄𝑄𝑘𝑘𝑘𝑘

[ ] = 𝑄̇𝑄𝑘𝑘𝑘𝑘
[ ]𝑄𝑄𝑘𝑘𝑘𝑘

(5) 

so 

�𝐟𝐟 • 𝐯𝐯′
𝑞𝑞

= −
1

180
𝑄̇𝑄𝑘𝑘𝑘𝑘

[ ]𝑄𝑄𝑘𝑘𝑘𝑘
(5) . 

We can express 𝑄̇𝑄𝑘𝑘𝑘𝑘 this way: 

𝑄̇𝑄𝑘𝑘𝑘𝑘 =
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑞𝑞(3𝑥𝑥𝑘𝑘′ 𝑥𝑥𝑙𝑙′ − 𝛿𝛿𝑘𝑘𝑘𝑘𝑟𝑟′2)
𝑞𝑞

= �𝑞𝑞(3𝑥𝑥𝑘𝑘′ 𝑣𝑣𝑙𝑙′ + 3𝑣𝑣𝑘𝑘′ 𝑥𝑥𝑙𝑙′ − 2𝛿𝛿𝑘𝑘𝑘𝑘𝐫𝐫′• 𝐯𝐯′)
𝑞𝑞

 

so 

�𝐟𝐟 • 𝐯𝐯′
𝑞𝑞

= −
1

180
�𝑞𝑞(6𝑥𝑥𝑘𝑘′ 𝑣𝑣𝑙𝑙′ − 2𝛿𝛿𝑘𝑘𝑘𝑘𝐫𝐫′• 𝐯𝐯′)𝑄𝑄𝑘𝑘𝑘𝑘

(5)

𝑞𝑞

= −
1

30
�𝑞𝑞𝑥𝑥𝑙𝑙′𝑣𝑣𝑘𝑘′ 𝑄𝑄𝑘𝑘𝑘𝑘

(5)

𝑞𝑞

 . 

In the last step we used 𝛿𝛿𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘
(5) = 𝑄𝑄𝑘𝑘𝑘𝑘

(5) = 0, since 𝑄𝑄𝑘𝑘𝑘𝑘 is traceless.29 Hence, 

�𝐟𝐟 • 𝐯𝐯′
𝑞𝑞

= �𝑓𝑓𝑘𝑘𝑣𝑣𝑘𝑘′
𝑞𝑞

= −
1

30
�𝑞𝑞𝑄𝑄𝑘𝑘𝑘𝑘

(5)𝑥𝑥𝑙𝑙′𝑣𝑣𝑘𝑘′
𝑞𝑞

 . 

Thus, the radiation damping force 𝐟𝐟 on 𝑞𝑞 is: 

𝑓𝑓𝑘𝑘 = −
𝑞𝑞

30
𝑄𝑄𝑘𝑘𝑘𝑘

(5)𝑥𝑥𝑙𝑙′ . 

We can now calculate 𝐌̇𝐌☉ = ∑ 𝐫𝐫′ × 𝐟𝐟𝑞𝑞 . We have 

𝑀̇𝑀𝑖𝑖
☉ = �𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗′𝑓𝑓𝑘𝑘

𝑞𝑞

= −
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
30

�𝑞𝑞𝑥𝑥𝑗𝑗′𝑥𝑥𝑙𝑙′𝑄𝑄𝑘𝑘𝑘𝑘
(5)

𝑞𝑞

= −
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
30

�
𝑞𝑞
3 �

3𝑥𝑥𝑗𝑗′𝑥𝑥𝑙𝑙′ − 𝛿𝛿𝑗𝑗𝑗𝑗𝑟𝑟′2�𝑄𝑄𝑘𝑘𝑘𝑘
(5)

𝑞𝑞

= −
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
90

�𝑄𝑄𝑗𝑗𝑗𝑗
[ ]𝑄𝑄𝑘𝑘𝑘𝑘

(5)

𝑞𝑞

 

____________________________ 
29This is so because 

            𝑄𝑄𝑘𝑘𝑘𝑘 = �(3𝑥𝑥𝑘𝑘′ 𝑥𝑥𝑘𝑘′ − 𝛿𝛿𝑘𝑘𝑘𝑘𝑟𝑟′
2)𝜌𝜌 𝑑𝑑𝑉𝑉′ = �(3𝑥𝑥𝑘𝑘′ 𝑥𝑥𝑘𝑘′ − 3𝑟𝑟′2)𝜌𝜌 𝑑𝑑𝑉𝑉′ = 0 . 
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where in the last step we used the fact that 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗𝑄𝑄𝑘𝑘𝑘𝑘
(5) = 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑄𝑄𝑗𝑗𝑗𝑗

(5) = 0 

Observe that 

𝑄𝑄𝑗𝑗𝑗𝑗
[ ]𝑄𝑄𝑘𝑘𝑘𝑘

(5) =
𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑄𝑄𝑗𝑗𝑗𝑗
[ ]𝑄𝑄𝑘𝑘𝑘𝑘

(4) − 𝑄̇𝑄𝑗𝑗𝑗𝑗𝑄𝑄𝑘𝑘𝑘𝑘� + 𝑄̈𝑄𝑗𝑗𝑗𝑗𝑄𝑄𝑘𝑘𝑘𝑘  . 

Taking time averages: 

𝑄𝑄𝑗𝑗𝑗𝑗
[ ]𝑄𝑄𝑘𝑘𝑘𝑘

(5) = 𝑄̈𝑄𝑗𝑗𝑗𝑗
( )𝑄𝑄𝑘𝑘𝑘𝑘

( ) . 

Therefore, including (109), we have the formulae: 

ℰ̇quad☉ = −
1

180
𝑄𝑄𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖 (𝑀̇𝑀𝑖𝑖

☉)quad = −
1

90
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑄̈𝑄𝑗𝑗𝑗𝑗𝑄𝑄𝑘𝑘𝑘𝑘  , (115) 

or, using 𝐐𝐐𝑘𝑘 ≡ (𝑄𝑄𝑘𝑘𝑘𝑘 ,𝑄𝑄𝑘𝑘𝑘𝑘,𝑄𝑄𝑘𝑘𝑘𝑘): 

ℰ̇quad☉ = −
1

180
𝐐⃛𝐐𝑘𝑘• 𝐐⃛𝐐𝑘𝑘 𝐌̇𝐌quad

☉ = −
1

90
𝐐̈𝐐𝑘𝑘 × 𝐐⃛𝐐𝑘𝑘  . (116) 

§6. Gravitational waves 

We perform the same analysis for gravitational waves. Consider the radiation emitted by a 
system of particles, making the same assumption that Σ ≪ 𝜆𝜆 ≪ 𝑟𝑟, recalling that Σ ≪ 𝜆𝜆 is equivalent 
to 𝑣𝑣 ≪ 1. As in the EM case, the wave equation with source term, 

𝜓𝜓𝜇𝜇𝜇𝜇 = −16𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇 

is solved by the retarded potential 

𝜓𝜓𝜇𝜇𝜇𝜇(𝑡𝑡, 𝐫𝐫) = −4�
𝑇𝑇𝜇𝜇𝜇𝜇(𝑡𝑡 − |𝐫𝐫 − 𝐫𝐫′|, 𝐫𝐫′)

|𝐫𝐫 − 𝐫𝐫′|
𝑑𝑑𝑉𝑉′ . 

As before, we take the origin near the system and assume Σ ≪ 𝑟𝑟, so |𝐫𝐫 − 𝐫𝐫′|−1 ≈ 𝑟𝑟−1. The 
assumption Σ ≪ 𝜆𝜆 allows us to approximate 𝑇𝑇𝜇𝜇𝜇𝜇 by its Taylor expansion: 

𝑇𝑇𝜇𝜇𝜇𝜇(𝑡𝑡 − 𝑟𝑟 + 𝐫𝐫� • 𝐫𝐫′, 𝐫𝐫′) = 𝑇𝑇𝜇𝜇𝜇𝜇(𝑡𝑡 − 𝑟𝑟, 𝐫𝐫′) + (𝐫𝐫� • 𝐫𝐫′)
𝜕𝜕𝑇𝑇𝜇𝜇𝜇𝜇(𝑡𝑡 − 𝑟𝑟, 𝐫𝐫′)

𝜕𝜕𝜕𝜕
+ ⋯  . (117) 

The second term in the expansion is of order Σ𝑇𝑇𝜇𝜇𝜇𝜇 𝜆𝜆⁄ ≪ 𝑇𝑇𝜇𝜇𝜇𝜇 ; therefore, the expansion is valid. 
Then, keeping only the first term, we have 

𝜓𝜓𝜇𝜇𝜇𝜇(𝑡𝑡, 𝐫𝐫) = −
4
𝑟𝑟
�⟦𝑇𝑇𝜇𝜇𝜇𝜇⟧ 𝑑𝑑𝑉𝑉′ . (118) 

To obtain a solution to (118), we use the identity 

�𝑇𝑇𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 =
1
2
𝜕𝜕2

𝜕𝜕𝑡𝑡2
� 𝑇𝑇00𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛

system
𝑑𝑑𝑑𝑑 . (119) 
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To establish (119), we separate the time and space components of 𝜈𝜈 in the equation 𝑇𝑇𝜇𝜇𝜇𝜇 ,𝜈𝜈 = 0:30 

𝑇𝑇𝜇𝜇0,0 = −𝑇𝑇𝜇𝜇𝜇𝜇 ,𝑛𝑛 . (120) 

This yields the equations:31 

�𝑇𝑇𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 =
1
2
𝜕𝜕
𝜕𝜕𝜕𝜕
�(𝑇𝑇𝑚𝑚0𝑥𝑥𝑛𝑛 + 𝑇𝑇𝑛𝑛0𝑥𝑥𝑚𝑚)𝑑𝑑𝑑𝑑 , 

�(𝑇𝑇𝑚𝑚0𝑥𝑥𝑛𝑛 + 𝑇𝑇𝑛𝑛0𝑥𝑥𝑚𝑚)𝑑𝑑𝑑𝑑 =
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑇𝑇00𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 𝑑𝑑𝑑𝑑 . 

Combining these expressions gives (119) after lowering indices. 

In a non-relativistic system, the energy density 𝑇𝑇00 is approximately the rest mass density 
𝜌𝜌0, so (118) and (119) give 

𝜓𝜓𝑚𝑚𝑚𝑚(𝑡𝑡, 𝐫𝐫) = −
2
𝑟𝑟
𝜕𝜕2

𝜕𝜕𝑡𝑡2
�⟦𝜌𝜌0(𝐫𝐫′)⟧𝑥𝑥𝑚𝑚′ 𝑥𝑥𝑛𝑛′ 𝑑𝑑𝑉𝑉′ . 

This can be written 

𝜓𝜓𝑚𝑚𝑚𝑚(𝑡𝑡, 𝐫𝐫) = −
2

3𝑟𝑟 ��
𝑄̈𝑄𝑚𝑚𝑚𝑚�+ 𝛿𝛿𝑚𝑚𝑚𝑚

𝜕𝜕2

𝜕𝜕𝑡𝑡2
�𝑟𝑟′2⟦𝜌𝜌0(𝐫𝐫′)⟧𝑑𝑑𝑉𝑉′� 

where 𝑄𝑄𝑚𝑚𝑚𝑚 is the mass quadrupole tensor 

𝑄𝑄𝑚𝑚𝑚𝑚 = �(3𝑥𝑥𝑚𝑚′ 𝑥𝑥𝑛𝑛′ − 𝛿𝛿𝑚𝑚𝑚𝑚𝑟𝑟′2)𝜌𝜌0 𝑑𝑑𝑉𝑉′ . 

When 𝑟𝑟 is large, 𝜓𝜓𝑚𝑚𝑚𝑚 is a plane wave, whose only polarization states are Ω𝑚𝑚𝑚𝑚
+  and Ω𝑚𝑚𝑚𝑚

× , 
neither of which is proportional to 𝛿𝛿𝑚𝑚𝑚𝑚. Therefore, the second term on the right side does not 
represent a disturbance in the spacetime geometry. Omitting this term, we have32 

𝜓𝜓𝑚𝑚𝑚𝑚(𝑡𝑡, 𝐫𝐫) = −
2

3𝑟𝑟 �
𝑄̈𝑄𝑚𝑚𝑚𝑚� . (121) 

____________________________ 
30In a general curved spacetime, the conservation of matter is expressed by the vanishing of the covariant divergence 
𝑇𝑇𝜇𝜇𝜇𝜇 :𝜈𝜈 = 0. In the weak field approximation, this reduces to 𝑇𝑇𝜇𝜇𝜇𝜇 ,𝜈𝜈 = 0. 
31To obtain the first equation, use (120) and integrate by parts: 

𝜕𝜕
𝜕𝜕𝜕𝜕�

(𝑇𝑇𝑚𝑚0𝑥𝑥𝑛𝑛 + 𝑇𝑇𝑛𝑛0𝑥𝑥𝑚𝑚)𝑑𝑑𝑑𝑑 = −�(𝑇𝑇𝑚𝑚𝑚𝑚
,𝑘𝑘𝑥𝑥𝑛𝑛 + 𝑇𝑇𝑛𝑛𝑛𝑛 ,𝑘𝑘𝑥𝑥𝑚𝑚)𝑑𝑑𝑑𝑑 = �(𝑇𝑇𝑚𝑚𝑚𝑚𝛿𝛿𝑘𝑘𝑛𝑛 + 𝑇𝑇𝑛𝑛𝑛𝑛𝛿𝛿𝑘𝑘𝑚𝑚)𝑑𝑑𝑑𝑑 = �2𝑇𝑇𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 . 

To obtain the second equation, set 𝜇𝜇 = 0 in (120) and integrate by parts: 
𝜕𝜕
𝜕𝜕𝜕𝜕�𝑇𝑇00𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 𝑑𝑑𝑑𝑑 = −�𝑇𝑇0𝑘𝑘 ,𝑘𝑘𝑥𝑥𝑚𝑚𝑥𝑥𝑛𝑛 𝑑𝑑𝑑𝑑 = �𝑇𝑇0𝑘𝑘(𝑥𝑥𝑚𝑚𝛿𝛿𝑘𝑘𝑛𝑛 + 𝑥𝑥𝑛𝑛𝛿𝛿𝑘𝑘𝑚𝑚)𝑑𝑑𝑑𝑑 = �(𝑇𝑇0𝑛𝑛𝑥𝑥𝑚𝑚 + 𝑇𝑇0𝑚𝑚𝑥𝑥𝑛𝑛)𝑑𝑑𝑑𝑑 . 

32The reader may wonder why the first term in the expansion (117) gives rise to quadrupole radiation — what happened 
to the dipole term analogous to 𝑃𝑃dip = (2 3⁄ )⟦𝛍̈𝛍⟧2 in electromagnetism? For gravity, the dipole moment 𝛍̈𝛍 = ∑𝑚𝑚𝐫̈𝐫′ equals 
the net external force on the system, which vanishes for an isolated system, so there is no dipole radiation. This implies 
that an isolated system of electric charges with the same charge-to-mass ratio does not emit dipole radiation. 
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The energy flux in the 𝐫𝐫� = (𝑛𝑛1,𝑛𝑛2,𝑛𝑛3) direction can be calculated using an appropriate energy-
momentum pseudotensor 𝑡𝑡𝜇𝜇𝜇𝜇 ; then the energy flux is 

(𝑡𝑡01, 𝑡𝑡02, 𝑡𝑡03) • 𝐫𝐫� = 𝑡𝑡0𝑠𝑠𝑛𝑛𝑠𝑠 

For large 𝑟𝑟, we can use the pseudotensor (90)  for an infinite plane wave. In the derivation 
leading to (91), we found: 

32𝜋𝜋𝑡𝑡𝜇𝜇𝜇𝜇 = 𝜓𝜓𝜅𝜅𝜅𝜅,𝜇𝜇𝜓𝜓      ,𝜈𝜈
𝜅𝜅𝜅𝜅 − 1

2
𝜓𝜓,𝜇𝜇𝜓𝜓,𝜈𝜈 . (122) 

We cannot work in the TT gauge here, since we are dealing with radiation from an omnidirectional 
source, and there is no coordinate system in which 𝜓𝜓𝜇𝜇𝜇𝜇 is traceless. This is clear by contracting 
the wave equation 

𝜓𝜓 = −16𝜋𝜋𝑇𝑇𝜇𝜇𝜇𝜇 

which shows that 𝜓𝜓 ≠ 0 when there are sources. Also, 𝜓𝜓𝜇𝜇𝜇𝜇 is given by the retarded potential, 
which is not traceless. However, we continue to work in harmonic coordinates, where 𝜓𝜓     ,𝜈𝜈

𝜇𝜇𝜇𝜇 = 0. 

Therefore, we have 

64𝜋𝜋𝑡𝑡0𝑠𝑠 = −64𝜋𝜋𝑡𝑡0𝑠𝑠 = −2𝜓𝜓𝜅𝜅𝜅𝜅,0𝜓𝜓     ,𝑠𝑠
𝜅𝜅𝜅𝜅 + 𝜓𝜓,0𝜓𝜓,𝑠𝑠 . (123) 

From (121) we suspect that a useful expression may be obtained if each factor in (123) can be 
expressed in terms of 𝜓𝜓𝑘𝑘𝑘𝑘,0 ∝ 𝑄𝑄𝑘𝑘𝑘𝑘 𝑟𝑟⁄ . To this end, we separate the time and space components of 
𝜓𝜓𝜅𝜅𝜅𝜅: 

64𝜋𝜋𝜋𝜋0𝑠𝑠 = −2𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑘𝑘𝑘𝑘,𝑠𝑠 + 4𝜓𝜓𝑘𝑘0,0𝜓𝜓𝑘𝑘0,𝑠𝑠 − 2𝜓𝜓00,0𝜓𝜓00,𝑠𝑠 + 𝜓𝜓,0𝜓𝜓,𝑠𝑠 . 

Since the mass quadrupole tensor is traceless, we have 𝜓𝜓𝑘𝑘𝑘𝑘 = 0 by (121). Therefore, we have 

𝜓𝜓,𝑠𝑠 = 𝜂𝜂𝜇𝜇𝜇𝜇𝜓𝜓𝜇𝜇𝜇𝜇,𝑠𝑠 = 𝜓𝜓00,𝑠𝑠 − 𝜓𝜓𝑘𝑘𝑘𝑘,𝑠𝑠 = 𝜓𝜓00,𝑠𝑠 

so that 

64𝜋𝜋𝑡𝑡0𝑠𝑠 = −2𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑘𝑘𝑘𝑘,𝑠𝑠 + 4𝜓𝜓𝑘𝑘0,0𝜓𝜓𝑘𝑘0,𝑠𝑠 − 𝜓𝜓00,0𝜓𝜓00,𝑠𝑠 . (124) 

From (118), we have 

𝜓𝜓𝜇𝜇𝜇𝜇,𝑠𝑠(𝑡𝑡, 𝐫𝐫) =
𝑥𝑥𝑠𝑠

𝑟𝑟3
��𝑇𝑇𝜇𝜇𝜇𝜇� 𝑑𝑑𝑉𝑉′ −

4
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠

��𝑇𝑇𝜇𝜇𝜇𝜇� 𝑑𝑑𝑉𝑉′ . 

Since we assume 𝑟𝑟 is large, we can ignore the first term, which is of order 1 𝑟𝑟2⁄ . So, when 
differentiating 𝜓𝜓𝜇𝜇𝜇𝜇 , the only dependence on 𝑟𝑟, hence on 𝑥𝑥𝑠𝑠, occurs in the retarded time 𝑡𝑡 − 𝑟𝑟 
within ⟦𝑇𝑇𝜇𝜇𝜇𝜇⟧ = 𝑇𝑇𝜇𝜇𝜇𝜇(𝑡𝑡 − 𝑟𝑟, 𝐫𝐫′). Hence, we may write 

𝜓𝜓𝜇𝜇𝜇𝜇,𝑠𝑠 =
𝜕𝜕𝜓𝜓𝜇𝜇𝜇𝜇
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠

= −𝜓𝜓𝜇𝜇𝜇𝜇,0𝑛𝑛𝑠𝑠 . (125) 

We use (125) together with the harmonic gauge condition 

𝜓𝜓     ,0
𝜇𝜇0 + 𝜓𝜓     ,𝑛𝑛

𝜇𝜇𝜇𝜇 = 0 or 𝜓𝜓𝜇𝜇0,0 − 𝜓𝜓𝜇𝜇𝜇𝜇,𝑛𝑛 = 0 
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to manipulate the terms appearing in (124). Thus, we have 

𝜓𝜓𝑘𝑘𝑘𝑘,𝑠𝑠 = −𝜓𝜓𝑘𝑘𝑘𝑘,0𝑛𝑛𝑠𝑠
𝜓𝜓𝑘𝑘0,0 = 𝜓𝜓𝑘𝑘𝑘𝑘,𝑙𝑙 = −𝜓𝜓𝑘𝑘𝑘𝑘,0𝑛𝑛𝑙𝑙
𝜓𝜓𝑘𝑘0,𝑠𝑠 = −𝜓𝜓𝑘𝑘0,0𝑛𝑛𝑠𝑠 = 𝜓𝜓𝑘𝑘𝑘𝑘,0𝑛𝑛𝑙𝑙𝑛𝑛𝑠𝑠
𝜓𝜓00,0 = 𝜓𝜓0𝑘𝑘,𝑘𝑘 = 𝜓𝜓𝑘𝑘𝑘𝑘,0𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙
𝜓𝜓00,𝑠𝑠 = −𝜓𝜓00,0𝑛𝑛𝑠𝑠 = −𝜓𝜓𝑘𝑘𝑘𝑘,0𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑠𝑠 .

(126) 

Plugging (126) into (124), we obtain 

64𝜋𝜋𝑡𝑡0𝑠𝑠 = �2𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑘𝑘𝑘𝑘,0 − 4𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑘𝑘𝑘𝑘,0𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 + 𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑚𝑚𝑚𝑚,0𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟�𝑛𝑛𝑠𝑠 . (127) 

Using 𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠 = 1, we have 

64𝜋𝜋𝑡𝑡0𝑠𝑠𝑛𝑛𝑠𝑠 = 2𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑘𝑘𝑘𝑘,0 − 4𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑘𝑘𝑘𝑘,0𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 + 𝜓𝜓𝑘𝑘𝑘𝑘,0𝜓𝜓𝑚𝑚𝑚𝑚,0𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟 . 

Plugging in (121) gives 

𝑡𝑡0𝑠𝑠𝑛𝑛𝑠𝑠 =
1

144𝜋𝜋𝑟𝑟2 �
2𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 − 4𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 + 𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟� . 

So, the power per unit solid angle in the 𝐫𝐫� direction is 

𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= 𝑡𝑡0𝑠𝑠𝑛𝑛𝑠𝑠𝑟𝑟2 =
1

144𝜋𝜋 �
2𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 − 4𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 + 𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑚𝑚𝑚𝑚𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟� . (128) 

Note how this differs from the angular distribution of electric quadrupole intensity (107). 

The total radiated power is found by integrating over all Ω: 

𝑃𝑃 =
1

144𝜋𝜋 �
2𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 �𝑑𝑑Ω − 4𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘�𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚 𝑑𝑑Ω + 𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑚𝑚𝑚𝑚 �𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑛𝑛𝑟𝑟 𝑑𝑑Ω� =

1
45 �

𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘� 

using (108).33 Therefore, the rate of change of the energy of the system is 

ℰ̇☉ = −𝑃𝑃 = −
1

45
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘  . (129) 

To calculate the rate of change of angular momentum, as before, we need to determine the 
damping force 𝐟𝐟 which satisfies 

�𝐟𝐟 • 𝐯𝐯′
𝑚𝑚

= ℰ̇☉ = −
1

45
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 

and calculate 𝐌̇𝐌 = ∑𝐫𝐫′ × 𝐟𝐟. But we already solved this problem in §5  with −1 180⁄  in place of 
−1 45⁄  and 𝑞𝑞 in place of 𝑚𝑚. So we have: 

____________________________ 
33We may convert this formula to conventional units by making the changes 𝑑𝑑 𝑑𝑑𝑑𝑑⁄ → 𝑑𝑑 𝑑𝑑(𝑐𝑐𝑐𝑐)⁄  and 𝜌𝜌 → 𝜌𝜌𝜌𝜌 𝑐𝑐2⁄  to obtain 
𝑃𝑃 = (𝐺𝐺 45𝑐𝑐5⁄ )⟦𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘⟧. The right side contributes two factors of 𝐺𝐺 𝑐𝑐5⁄ , while the left side contributes one. The factor 
𝐺𝐺 𝑐𝑐5⁄ = 2.75 × 10−53 m−2s3kg−1 explains why gravitational radiation is so weak. 
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ℰ̇☉ = −
1

45
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 𝑀̇𝑀𝑖𝑖

☉ = −
2

45
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑄̈𝑄𝑗𝑗𝑗𝑗𝑄𝑄𝑘𝑘𝑘𝑘  , (130) 

or, using 𝐐𝐐𝑘𝑘 ≡ (𝑄𝑄𝑘𝑘𝑘𝑘 ,𝑄𝑄𝑘𝑘𝑘𝑘,𝑄𝑄𝑘𝑘𝑘𝑘): 

ℰ̇☉ = −
1

45
𝐐⃛𝐐𝑘𝑘• 𝐐⃛𝐐𝑘𝑘 𝐌̇𝐌☉ = −

2
45

𝐐̈𝐐𝑘𝑘 × 𝐐⃛𝐐𝑘𝑘  . 

§7. Angular momentum in circularly polarized gravitational waves 

We repeat the example of §2  for a mass m in uniform circular motion in the 𝑥𝑥-𝑦𝑦 plane 
with 

𝐫𝐫′ = 𝑟𝑟0 cos𝜔𝜔𝜔𝜔 𝒙𝒙� + 𝑟𝑟0 sin𝜔𝜔𝜔𝜔 𝒚𝒚� . 

The quadrupole tensor is the same as (110) with 𝑞𝑞 replaced by 𝑚𝑚: 

𝑄̈𝑄𝑘𝑘𝑘𝑘 = 6𝑚𝑚𝑟𝑟02𝜔𝜔2 �
− cos 2𝜔𝜔𝜔𝜔 − sin 2𝜔𝜔𝜔𝜔 0
− sin 2𝜔𝜔𝜔𝜔 cos 2𝜔𝜔𝜔𝜔 0

0 0 0
�  , 𝑄𝑄𝑘𝑘𝑘𝑘 = 12𝑚𝑚𝑟𝑟02𝜔𝜔3 �

sin 2𝜔𝜔𝜔𝜔 − cos 2𝜔𝜔𝜔𝜔 0
− cos 2𝜔𝜔𝜔𝜔 − sin 2𝜔𝜔𝜔𝜔 0

0 0 0
�  . 

Therefore: 

ℰ̇☉ = −
1

45
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 = −

1
45 �

𝑄𝑄𝑥𝑥𝑥𝑥 2 + 𝑄𝑄𝑦𝑦𝑦𝑦 2 + 2𝑄𝑄𝑥𝑥𝑥𝑥 2 � = −
32𝑚𝑚2𝑟𝑟04𝜔𝜔6

5
 . (131) 

We also have: 

𝐐̈𝐐𝑥𝑥 = −6𝑚𝑚𝑟𝑟02𝜔𝜔2𝐫𝐫�′ , 𝐐̈𝐐𝑦𝑦 = 6𝑚𝑚𝑟𝑟02𝜔𝜔2𝐯𝐯�′ , 𝐐̈𝐐𝑧𝑧 = 𝟎𝟎 ,
𝐐⃛𝐐𝑥𝑥 = −12𝑚𝑚𝑟𝑟02𝜔𝜔3𝐯𝐯�′ , 𝐐⃛𝐐𝑦𝑦 = −12𝑚𝑚𝑟𝑟02𝜔𝜔3𝐫𝐫�′ , 𝐐⃛𝐐𝑧𝑧 = 𝟎𝟎 .

 

The cross products 𝐐̈𝐐𝑘𝑘 × 𝐐⃛𝐐𝑘𝑘 are all time-independent and point in the 𝒛𝒛� direction. Therefore, 

𝐌̇𝐌☉ = −
2

45
𝐐̈𝐐𝑘𝑘 × 𝐐⃛𝐐𝑘𝑘 = −

2
45 �

𝐐̈𝐐𝑥𝑥 × 𝐐⃛𝐐𝑥𝑥 + 𝐐̈𝐐𝑦𝑦 × 𝐐⃛𝐐𝑦𝑦� = −
32𝑚𝑚2𝑟𝑟04𝜔𝜔5

5
𝒛𝒛� . (132) 

Interestingly, we find that 𝑀̇𝑀𝑧𝑧
☉ ℰ̇☉⁄ = 1 𝜔𝜔⁄ . Now, waves propagating in the 𝒛𝒛� direction are 

circularly polarized, while waves propagating in the 𝑥𝑥-𝑦𝑦 plane are linearly polarized (no angular 
momentum). Hence, for waves in the 𝒛𝒛� direction, we expect 𝑀̇𝑀𝑧𝑧 ℰ̇⁄ > 1 𝜔𝜔⁄ . We will see that (101) 
implies 𝑀̇𝑀𝑧𝑧 ℰ̇⁄ = 2 𝜔𝜔⁄  for waves in the 𝒛𝒛� direction. 

The angular distribution of power is given by (128). Repeating a similar calculation to (111), 
we find 

𝑑𝑑𝑑𝑑
𝑑𝑑Ω

=
𝑚𝑚2𝑟𝑟04𝜔𝜔6

𝜋𝜋 �4(1 − sin2 𝜃𝜃) + 1
2

sin4 𝜃𝜃�  . (133) 

This distribution is shown in Figure 2. Notice that the shape of gravitational quadrupole radiation 
does not resemble electromagnetic quadrupole radiation at all; indeed, it looks more like the 
peanut-shaped distribution of electromagnetic dipole radiation. 



 Thai Journal of Physics                       Vol. 42 No. 1 (2025) 1-47                                                                                       
 

 
 
 

45 

 

Figure 2 Angular distribution of gravitational quadrupole radiation for a mass in uniform circular 
motion in the 𝑥𝑥-𝑦𝑦 plane 

We wish to compare 𝑑𝑑𝑑𝑑 𝑑𝑑Ω⁄  in the 𝒛𝒛� direction to the average over all directions. From 
(129): 

� 
𝑑𝑑𝑑𝑑
𝑑𝑑Ω

 �
ave

=
1

4𝜋𝜋
�

1
45 �

𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘�� =
1

180𝜋𝜋 �
𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘� . 

Setting 𝐫𝐫� = 𝒛𝒛� = (0, 0, 1) in (128), we have 

�
𝑑𝑑𝑑𝑑
𝑑𝑑Ω

�
𝒛𝒛�

=
1

144𝜋𝜋 �
2𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 − 4𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘 + 𝑄𝑄𝑧𝑧𝑧𝑧𝑄𝑄𝑧𝑧𝑧𝑧� =

1
72𝜋𝜋 �

𝑄𝑄𝑘𝑘𝑘𝑘𝑄𝑄𝑘𝑘𝑘𝑘� . 

Therefore, the power radiated in the 𝒛𝒛� direction is 5/2 times the power averaged over all directions: 

�
𝑑𝑑𝑑𝑑
𝑑𝑑Ω

�
𝒛𝒛�

=
5
2
� 
𝑑𝑑𝑑𝑑
𝑑𝑑Ω

 �
ave

 . (134) 

Unfortunately, the angular momentum flow in the 𝐫𝐫� direction cannot be determined solely 
from the properties of the system, as we did for the energy flow in (128). Eq. (127) shows that 
the momentum density points in the 𝐫𝐫� = (𝑛𝑛1,𝑛𝑛2,𝑛𝑛3) direction, so the angular momentum density 
𝐌𝐌 = 𝐫𝐫 × 𝐩𝐩 vanishes. This is to be expected, since we observed in section D §3-4 that the existence 
of angular momentum in a wave packet is essentially a boundary phenomenon. 

However, for the system studied in §7  consisting of a mass in uniform circular motion in 
the 𝑥𝑥-𝑦𝑦 plane, we can ascertain the angular momentum flow in the 𝒛𝒛� direction. Let Φℰ(𝐫𝐫�) and 
Φ𝑀𝑀(𝐫𝐫�) be the energy flux and 𝑧𝑧-angular momentum flux in the 𝐫𝐫� direction. Then the energy and 
𝑧𝑧-angular momentum flowing through the solid angle 𝛿𝛿Ω at a distance 𝑟𝑟 from the origin during a 
time interval 𝛿𝛿𝛿𝛿 is Φℰ(𝐫𝐫�)𝑟𝑟2𝛿𝛿Ω𝛿𝛿𝛿𝛿 and Φ𝑀𝑀(𝐫𝐫�)𝑟𝑟2𝛿𝛿Ω𝛿𝛿𝛿𝛿. 

Within a solid angle 𝛿𝛿Ω around the 𝑧𝑧-axis, during a time interval 𝛿𝛿𝛿𝛿, the system generates a wave 
packet of length 𝑐𝑐𝑐𝑐𝑐𝑐. Close to the system the radiation pattern is complicated, but far away the 
wave packet is a circularly polarized plane wave. Within this wave packet, by (101): 
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Φ𝑀𝑀(𝒛𝒛�)
Φℰ(𝒛𝒛�) =

∫𝑀𝑀𝑑𝑑𝑑𝑑
∫ℰ 𝑑𝑑𝑑𝑑

=
2
𝜔𝜔

 . 

From (134) , the energy flow Φℰ(𝒛𝒛�) is 5 ⁄2 times the average over all directions. Hence, Φ𝑀𝑀(𝒛𝒛�) 
must be 5 times the average. More precisely: 

Φ𝑀𝑀(𝒛𝒛�) =
Φ𝑀𝑀(𝒛𝒛�)
Φℰ(𝒛𝒛�) Φℰ(𝒛𝒛�) =

2
𝜔𝜔
⋅

5
2
〈Φℰ(𝒛𝒛�)〉ave =

5
𝜔𝜔
�

1
4𝜋𝜋 �

−
32𝑚𝑚2𝑟𝑟04𝜔𝜔6

5 �� = 5〈Φ𝑀𝑀(𝒛𝒛�)〉ave 

where we used (131) and (132) in the last two steps. 

Alas, this deduction appears to be possible only for the 𝒛𝒛� direction. 

 
Conclusion 

The main results of this work are: 

1 .  For gravitational plane waves, the eigentensors 𝑍𝑍𝑖𝑖 of 𝑖𝑖𝑹𝑹� have eigenvalues ±2 (section C 
§7, Table 1).34 For a plane wave 𝑢𝑢𝜇𝜇𝜇𝜇 expressed in the eigenbasis 

�𝜁𝜁𝑖𝑖𝑍𝑍𝑖𝑖 

the coefficients 𝜁𝜁𝑖𝑖 have helicity −𝜆𝜆, where 𝜆𝜆 is the eigenvalue of 𝑍𝑍𝑖𝑖 . This establishes a connection 
between the eigenvalues of 𝑖𝑖𝑹𝑹� and helicity. 

2. The ratio of spin angular momentum to energy for a circularly polarized, gravitational wave 
packet with frequency 𝜔𝜔 is ±2 𝜔𝜔⁄ , compared with ±1 𝜔𝜔⁄  for an EM wave (sections D §3-4). 

3. Information about the energy and spin of a gravitational wave packet should be inferable 
from the distribution of energy and angular momentum in the radiation field of a system of masses. 
In the case of a system emitting circularly polarized, gravitational waves in the 𝐳𝐳� direction, we can 
determine the flow of angular momentum in the 𝐳𝐳� direction, using (83) from section D. The problem 
of determining the general distribution of angular momentum radiated by a system remains unsolved, 
whether in the case of EM or gravitational radiation. 

The method of section E, regardless of which energy-momentum tensor (or pseudotensor) is 
used, will always yield an angular momentum density of zero. Hence, it seems unlikely that a formula 
for Φ𝑀𝑀(𝐫𝐫�), analogous to (107) and (127), can be found to derive the ratios 

𝑑𝑑𝑆𝑆𝑧𝑧
𝑑𝑑ℰ

= ±
1
𝜔𝜔

 (electromagnetism)
𝑑𝑑𝑆𝑆𝑧𝑧
𝑑𝑑ℰ

= ±
2
𝜔𝜔

 (gravity) (135) 

by considering a system that radiates circularly polarized waves. Again, this is due to the angular 
momentum in a wave packet being a boundary phenomenon. 

____________________________ 
34There are eigentensors with eigenvalues ±1 and 0, but these are unphysical, coordinate waves. 
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Nevertheless, it is not inconceivable that (135) can be derived from the radiation properties 
of a system of charges or masses. Compare the formulae for electric dipole radiation (114) and 
gravitational quadrupole radiation (130). Notice that the formula for 𝐌̇𝐌☉ picks up an extra factor of 
2 in the gravitational case. It is true that the same factor of 2 appears for electric quadrupole 
radiation (115), which suggests that this factor of 2 may simply reflect the nature of quadrupole vs. 
dipole radiation, rather than gravitational vs. EM radiation. On the other hand, notice that: 

1. The leading term in EM radiation is dipole; in gravitational radiation it is quadrupole. 

2. The gravitational quadrupole field shown in Figure 2 closely resembles the electric dipole 
field — not the quadrupole field in Figure 1! 

3 . In the case of a particle in circular motion in the 𝑥𝑥-𝑦𝑦 plane, EM quadrupole radiation 
vanishes in the 𝒛𝒛� direction, where EM dipole and gravitational quadrupole radiation attain their 
maximum intensity. This clue suggests that the factor of 2 in (130) vs. (114) reflects something more 
than just quadrupole vs. dipole radiation. 

This remains an open question for further study. 
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