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บทคัดย่อ  
 ปัญหาค่าคงที่จักรวาลเป็นปัญหาหนึ่งในจักรวาลวิทยาที่ยังไม่สามารถแก้ไขได้ เพื่ออธิบายปัญหานี้ 
ได้มีการตั้งสมมติฐานว่า ค่าคงที่จักรวาลสามารถเปลี่ยนแปลงตามเวลาได้ ในบทความวิจัยนี้ เราน าเสนอ
แบบจ าลองที่ค่าคงที่จักรวาลเป็นฟังก์ชันกฎก าลังของตัวประกอบมาตราส่วน Λ =  𝛼 𝑎𝑚⁄  เราพบว่า 
เงื่อนไขที่จักรวาลขยายตัวด้วยความเร่งคือ 𝑚 < 2/3 เราพิจารณา 𝑚 = 0.1, 0.2 และ 0.3 
ผลการวิจัยพบว่า แบบจ าลองสามารถให้จักรวาลที่ขยายตัวด้วยความเร่งได้ โดยการเปลี่ยนผ่านจากการ
ขยายตัวด้วยความหน่วงมาเป็นการขยายตัวด้วยความเร่งเกิดขึ้นที่ 𝑎 = 0.64, 0.70 และ 0.77 ส าหรับ 
𝑚 = 0.1, 0.2 และ 0.3 ตามล าดับ นอกจากนี้ ส าหรับ 𝑚 = 0.1, 0.2 และ 0.3 ค่าคงที่จักรวาลใน
ปัจจุบันจะมีค่าน้อยกว่าค่าคงที่จักรวาลในอดีต 103.1, 106.2 และ 109.3 เท่า ตามล าดับ ซึ่งช่วยบรรเทา
ปัญหาค่าคงที่จักรวาลลงได้เล็กน้อย ซึ่งดีกว่า 𝑚 = 0 ที่ไม่ได้ช่วยบรรเทาปัญหาค่าคงที่จักรวาล  

ค าส าคัญ: ปัญหาคา่คงที่จกัรวาล, จักรวาลวิทยา, ฟังก์ชันกฎก าลงั, ตัวประกอบมาตราสว่น, การขยายตัวของ
จักรวาล  
  

Abstract  
The cosmological constant problem is one of the unsolved problems in cosmology. 

To explain this problem, the assumption that the cosmological constant can vary with time 
has been made. In this paper, we present the model in which the cosmological constant is 
the power-law function of a scale factor Λ =  𝛼 𝑎𝑚⁄ . We found that the condition for which 
the universe has the accelerated expansion is 𝑚 < 2/3. We consider 𝑚 = 0.1, 0.2 and 
0.3. The results show that the model can give the accelerated expansion of the universe. 
The transition from the decelerated expansion to the accelerated one occurs at 𝑎 = 0.64, 
0.70 and 0.77 for 𝑚 = 0.1, 0.2 and 0.3, respectively. Moreover, the cosmological constant 
nowadays is 103.1, 106.2, and 109.3 times less in the value than one in the past for 𝑚 = 
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0.1, 0.2, and 0.3, respectively. Therefore, this model can slightly relieve the cosmological 
constant problem, compared to 𝑚 = 0 which does not alleviate that problem. 

Keywords:  Cosmological constant problem, Cosmology, Power-law function, Scale factor, 
Universe expansion 

 

บทน า 

ในจักรวาลวิทยา หนึ่งในปัญหาที่ยังไม่สามารถแก้ได้คือ ปัญหาค่าคงที่จักรวาล ซึ่งเป็นความแตกต่าง
ระหว่างค่าที่ได้มาจากการท านายของทฤษฎีและค่าที่ได้มาจากการสังเกตการณ์ ความแตกต่างดังกล่าวมี
ค่าประมาณ 10120 เท่า [1] นักฟิสิกส์ได้มีการน าเสนอแบบจ าลองต่าง ๆ เพื่อแก้ปัญหาค่าคงที่จักรวาล เช่น 
ความโน้มถ่วงที่ถูกดัดแปลง [2] ความโน้มถ่วงแบบยูนิโมดูลาร์ [3,4] สนามควอนตัมที่กระเพื่อม [5] การหักล้าง
ค่าคงที่จักรวาลโดยการท าลายสมมาตร [6] ความสัมพันธ์ระหว่างพลังงานต่ าสุดและพลังงานสูงสุดในทฤษฎีสนาม
ยังผล [7] 

แบบจ าลองค่าคงที่จักรวาลที่ขึ้นกับเวลาเป็นอีกแบบจ าลองหนึ่งที่ถูกน าเสนอ [8] ค าถามที่ส าคัญของ  
ไวน์เบิร์กคือ “ท าไมค่าคงที่จักรวาลจึงมีค่าน้อยมากในปัจจุบันนี้” ไม่ใช่ค าถามที่ว่า “ท าไมค่าคงที่จักรวาลมีค่าน้อย
เสมอ” [9] ค าถามนี้น ามาสู่สมมติฐานว่า ค่าคงที่จักรวาลสามารถเปลี่ยนแปลงตามเวลาได้ ออซทัส ดิล และ 
สมิธ [10] ได้น าเสนอแบบจ าลองของค่าคงที่จักรวาลที่เปลี่ยนแปลงตามเวลาสามแบบ ได้แก่ ค่าคงที่จักรวาลที่
แปรผันตรงกับค่าคงที่ฮับเบิลยกก าลังสอง ค่าคงที่จักรวาลที่แปรผันตรงกับความหนาแน่นของสสาร และค่าคงที่
จักรวาลที่แปรผกผันกับปริมาตร พวกเขาได้หาความสัมพันธ์ระหว่างพารามิเตอร์ความหนาแน่นของสสารและรังสี
กับตัวประกอบมาตราส่วนในแบบจ าลองทั้งสามแบบ 

ในงานวิจัยนี้ เราศึกษาแบบจ าลองของค่าคงที่จักรวาลที่แปรผกผันกับการยกก าลังของตัวประกอบมาตรา
ส่วน ในแบบจ าลองนี้ เราหาความสัมพันธ์ของความหนาแน่นกับตัวประกอบมาตราส่วน วิเคราะห์ความเร่งของ
การขยายตัวของจักรวาล และหาความสัมพันธ์ของตัวประกอบมาตราส่วนกับเวลา    

 
สมการฟรีดมันน์และสมการความเร่งที่ถูกดัดแปลง 

ในทฤษฎีสัมพัทธภาพทั่วไป สมการที่อธิบายการขยายตัวของจักรวาลที่เป็นไปตามหลักการทางจักรวาล
วิทยาคือสมการฟรีดมันน์และสมการความเร่ง 
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โดยที่ 𝑎 คือตัวประกอบมาตราส่วน เครื่องหมายดอทบนตัวแปรคืออนุพันธ์ของตัวแปรตัวนั้นเทียบกับ

เวลา 𝐺 คือค่าคงที่ความโน้มถ่วงของนิวตัน 𝜌 คือความหนาแน่นของสสารหรืออนุภาคในจักรวาล 𝑝 คือความดัน
ของสสารหรืออนุภาคในจักรวาล 𝑘 คือค่าคงที่ความโค้ง 𝑐 คืออัตราเร็วแสงในสุญญากาศ และ Λ คือค่าคงที่
จักรวาล 

ในงานวิจัยนี้ เรามีสมมติฐานว่าค่าคงที่จักรวาลไม่ใช่ค่าคงที่ แต่สามารถเปลี่ยนแปลงตามเวลาได้ ดังนั้น 
สมการฟรีดมันน์และสมการความเร่งจะเปลี่ยนไปดังนี้ [10] 
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นอกจากนี้ เราสนใจค่าคงที่จักรวาลที่แปรผกผันกับการยกก าลังของตัวประกอบมาตราส่วน 

 

  = 

ma

           (5) 

 
โดยที่ 𝛼 คือค่าคงที่ และ 𝑚 คือจ านวนจริงบวกหรือศูนย์ ถ้า 𝑚 = 0 เราจะได้แบบจ าลองดั้งเดิมที่ค่าคงที่
จักรวาลเป็นค่าคงที่ อนุพันธ์ของ Λ มีดังนี้ 
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ดังนั้น สมการ (3) และ (4) จะกลายเป็น 
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สมการสถานะซึ่งเป็นสมการที่แสดงความสัมพันธ์ระหว่างความดันและความหนาแน่นมีรูปแบบดังนี้ 
 

      p =  2c           (10) 
 
โดยที่ 𝜔 เป็นค่าคงที่ เมื่อแทนค่า Λ สมการ (8) และ (9) กลายเป็น 
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การเปลี่ยนแปลงของความหนาแน่นกับตัวประกอบมาตราส่วน 

ในหัวข้อนี้ เราจะหาสมการอนุรักษ์พลังงานและแก้สมการดังกล่าว เพื่อหาความหนาแน่นที่เป็นฟังก์ชัน
ของตัวประกอบมาตราส่วน เราเริ่มต้นโดยคูณสมการ (11) ด้วย 𝑎2 และหาอนุพันธ์เทียบกับเวลา 
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แทนค่า 𝑎̈ 𝑎⁄  จากสมการ (12) ลงในสมการ (13) เราจะได้สมการอนุรักษ์พลังงาน 
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ค าตอบทั่วไปของสมการ (14) ในกรณีที่ 𝑚 ≠ 3(1 + 𝜔) คือ 
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เมื่อ 𝑐1 คือค่าคงที่ของการอินทิเกรต ส าหรับกรณีที่ 𝑚 = 3(1 + 𝜔) ค าตอบทั่วไปของสมการ (14) จะเป็น 
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เมื่อ 𝑐2 คือค่าคงที่ของการอินทิเกรต โดยใช้เงื่อนไขเริ่มต้น 𝑎(𝑡0) = 1 และ 𝜌(𝑡

0
) = 𝜌0 เมื่อ 𝑡0 คือเวลา

ปัจจุบัน และ 𝜌0 คือความหนาแน่นของสสารหรือรังสีในปัจจุบัน เราสามารถหา 𝑐1 และ 𝑐2 ได้ดังนี้  
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ในกรณีที่ 𝑚 ≠ 3(1 + 𝜔) เมื่อแทน 𝑐1 ลงในสมการ (15) เราจะได้ 
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ในกรณีที่ 𝑚 = 3(1 + 𝜔) เมื่อแทน 𝑐2 ลงในสมการ (16) เราจะได้ 
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ส าหรับยุครังสี (𝜔 = 1/3) เราจะได้ความสัมพันธ์ระหว่างความหนาแน่นของรังสี 𝜌𝑅 และตัวประกอบมาตรา
ส่วน ส าหรับ 𝑚 ≠ 4 ดังนี้  
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โดยที่ 𝜌𝑅0 คือความหนาแน่นของรังสีในยุคปัจจุบัน เราสามารถเขียนกราฟส าหรับ 𝑚 = 0, 0.1, 0.2 และ 
0.3 ได้ดังรูปที่ 1 

 

 
 

รูปที่ 1 กราฟแสดงความสัมพันธ์ระหว่างความหนาแน่นของรังสีกับตัวประกอบมาตราส่วน ส าหรับ 𝑚 = 0, 0.1, 0.2 
และ 0.3 เมื่อ 𝜌𝑅0 = 4.64  10-31 kg/m3 และ 𝛼 = 1.1  10-52 m-2 

 

ส าหรับยุคสสาร (𝜔 = 0) เราจะได้ความสัมพันธ์ระหว่างความหนาแน่นของสสาร 𝜌𝑀 และตัวประกอบมาตรา
ส่วน ส าหรับ 𝑚 ≠ 3 ดังนี้ 
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โดยที่ 𝜌𝑀0 คือความหนาแน่นของสสารในยุคปัจจุบัน ส าหรับ 𝑚 = 3 เราจะได้ 
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กราฟความสัมพันธ์ระหว่างความหนาแน่นของสสารและตัวประกอบมาตราส่วนส าหรับ 𝑚 = 0, 0.1, 0.2 และ 
0.3 แสดงได้ดังรูปท่ี 2 
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รูปที่ 2 กราฟแสดงความสัมพันธ์ระหว่างความหนาแน่นของสสารกับตัวประกอบมาตราส่วน ส าหรับ 𝑚 = 0, 0.1, 0.2 
และ 0.3 เมื่อ 𝜌𝑀0 = 2.52  10-27 kg/m3 และ 𝛼 = 1.1  10-52 m-2 

 
สังเกตว่า 𝜌𝑀 ในสมการ (21) ติดลบได้ เมื่อ 𝑎 มีค่าเพิ่มขึ้นถึงค่าหนึ่ง เราจะเรียกค่า 𝑎 ที่ท าให้   

𝜌𝑀 = 0 ว่า 𝑎𝑐 ซึ่งหาได้ดังนี้ 
 

        3 -  - 1
3 - 

m
c

m
a

m
 = 

 


0

2
4 MG

c
          (23) 

 
แบบจ าลองจะใช้งานได้ ก็ต่อเมื่อ 𝜌𝑀 ไม่ติดลบ ซึ่งสอดคล้องกับ 𝑎 ≤  𝑎𝑐  
 
เมื่อ 𝑚 = 0.1 จะได้   𝑎𝑐 = 1.97           (24) 
 
เมื่อ 𝑚 = 0.2 จะได้   𝑎𝑐 = 1.64           (25) 
 
เมื่อ 𝑚 = 0.3 จะได้   𝑎𝑐 = 1.49           (26)  
 

ความเร่งของการขยายตัวของจักรวาล 

ในหัวข้อนี้ เราจะพิจารณาว่า ค่าคงที่จักรวาลที่มีรูปแบบตามสมการ (5) จะท าให้จักรวาลขยายตัวด้วย
ความเร่งได้หรือไม่ เมื่อ 𝑚 มีค่าต่าง ๆ ส าหรับยุคสสาร (𝜔 = 0) สมการความเร่งจะกลายเป็น 

 

       
a
a

 = 



4

-
3 M
G

 + 
 

 
 

22 1
 - 

3 2 m
c

m
a

             (27) 

 
เราเห็นว่า เงื่อนไขที่ท าให้จักรวาลขยายตัวด้วยความเร่งคือ 𝑚 < 2/3 เมื่อแทนค่า 𝜌𝑀 จากสมการ (21) เมื่อ 
𝑚 ≠ 3 เราจะได้ 
 

        
a
a

 = 
 0

3
4

-
3

MG
a

 + 


  

2
3 - 

3
1

3(1 - )(2 - )  - 2
3 - 6

m c
m m a m

m a
      (28) 
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 เราเริ่มต้นที่ 𝑚 = 0 ซึ่งเป็นการทบทวนแบบจ าลองดั้งเดิมที่ค่าคงที่จักรวาลเป็นค่าคงที่ สมการความเร่ง
จะกลายเป็น 
 

       
a
a

 = 
 0

3
4

-
3

MG
a

 + 
 2

3
c

          (29) 

 
จักรวาลขยายตัวด้วยความเร่ง 𝑎̈ > 0 ก็ต่อเมื่อ 
 

      a3 > 
 


0

2
4 MG

c
           (30) 

 
เมื่อแทนค่าคงที่ต่าง ๆ เราจะได้ 
 

𝑎 > 0.60           (31) 
 

จากการสังเกตการณ์ จักรวาลเริ่มขยายตัวด้วยความเร่งที่ 𝑎 ≈ 0.7 [11] 
 
 ส าหรับ 𝑚 = 0.1 สมการความเร่งส าหรับยุคสสารคือ 
 

       
a
a

 = 
 0

3
4

-
3

MG
a

 - 
 2

3
1
87

c
a

 + 
 2

0.1
171
580

c
a

         (32) 

 
จักรวาลขยายตัวด้วยความเร่ง 𝑎̈ > 0 ก็ต่อเมื่อ 
 

𝑎 > 0.64           (33) 
 

จากสมการ (24) แบบจ าลองที่ให้จักรวาลที่ขยายตัวด้วยความเร่งจะใช้งานได้ ก็ต่อเมื่อ 
 

0.64 < 𝑎 < 1.97                  (34) 
 

 ส าหรับ 𝑚 = 0.2 สมการความเร่งส าหรับยุคสสารคือ 
 

        
a
a

 = 
 0

3
4

-
3

MG
a

 - 
 2

3
1
42

c
a

 + 
 2

0.2
9
35

c
a

           (35) 

 
จักรวาลขยายตัวด้วยความเร่ง 𝑎̈ > 0 ก็ต่อเมื่อ 
 

𝑎 > 0.70             (36) 
 

จากสมการ (25) แบบจ าลองที่ให้จักรวาลที่ขยายตัวด้วยความเร่งจะใช้งานได้ ก็ต่อเมื่อ 
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0.70 < 𝑎 < 1.64                (37) 
 
 ส าหรับ 𝑚 = 0.3 สมการความเร่งส าหรับยุคสสารคือ 
 

       
a
a

 = 
 0

3
4

-
3

MG
a

 - 
 2

3
1
27

c
a

 + 
 2

0.3
119
540

c
a

            (38) 

 
จักรวาลขยายตัวด้วยความเร่ง 𝑎̈ > 0 ก็ต่อเมื่อ 
 

𝑎 > 0.77             (39) 
 

จากสมการ (26) แบบจ าลองที่ให้จักรวาลที่ขยายตัวด้วยความเร่งจะใช้งานได้ ก็ต่อเมื่อ 
 

0.77 < 𝑎 < 1.49             (40) 
 

การเปลี่ยนแปลงของตัวประกอบมาตราส่วนกับเวลา 

ในหัวข้อนี้ ในจักรวาลแบนราบ เราจะพิจารณาว่า ตัวประกอบมาตราส่วนเปลี่ยนแปลงกับเวลาอย่างไร 
เมื่อแทนค่าความหนาแน่นในยุคสสารจากสมการ (21) ลงในสมการฟรีดมันน์ (11) เมื่อ 𝑘 = 0 เราจะได้ 

 

        aa
2

 = 
 0

3
8

3
MG
a

 +  2
3

2 1
3 3 - 

m
c

m a
 +  21 - 1

3 - m
m

c
m a

   โดยที ่𝑚 ≠ 3      (41) 

 
น า 𝑎2 คูณทั้งสองข้างของสมการ (41) 
 

2a  = 
 08

3
MG
a

 +  22 1
3 3 - 

m
c

m a
 +  2 2  - 1 - 

3 - 
mm

c a
m

         (42) 

 
ส าหรับ 𝑚 = 0 เราจะได้แบบจ าลองดั้งเดิมที่ค่าคงที่จักรวาลเป็นค่าคงที่ 
 

       2a  = 
 08

3
MG
a

 + 
 2

2

3
c
a             (43) 

 
เมื่อ α𝑐2 > 0 เราจะได้สมการเชิงอนุพันธ์ 
 

       
da
dt

 = 
  2

208
 + 

3 3
MG c

a
a

             (44) 

 
เมื่อใช้เงื่อนไขเริ่มต้น 𝑎(𝑡0) = 1 ค าตอบของสมการข้างต้นคือ [12] 
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    a = 
  


 

   
   

      

2
203 02

0

4
cosh 3 (  - ) + 2 arcsinh  - 1

8
M

M

G c
c t t

Gc
       (45) 

 
ส าหรับ 𝑚 = 0.1 สมการ (42) กลายเป็น 
 

      2a  = 
 08

3
MG
a

 +  22 1
87

c
a

 +  2 1.99
29

c a           (46) 

 
จะเห็นได้ว่า 𝑎̇2 > 0 เสมอ ดังนั้นแบบจ าลองนี้ เมื่อ 𝑚 = 0.1 ใช้งานได้ทุก 𝑎  
 
 ส าหรับ 𝑚 = 0.2 สมการ (42) กลายเป็น 
 

       2a  = 
 08

3
MG
a

 +  21 1
21

c
a

 +  2 1.82
7

c a          (47) 

 
จะเห็นได้ว่า 𝑎̇2 > 0 เสมอ ดังนั้นแบบจ าลองนี้ เมื่อ 𝑚 = 0.2 ใช้งานได้ทุก 𝑎  
 
 ส าหรับ 𝑚 = 0.3 สมการ (42) กลายเป็น 
 

       2a  = 
 08

3
MG
a

 +  21 1
27

c
a

 +  2 1.77
27

c a             (48) 

 
จะเห็นได้ว่า 𝑎̇2 > 0 เสมอ ดังนั้น แบบจ าลองนี้ เมื่อ 𝑚 = 0.3 ใช้งานได้ทุก 𝑎  
 

กราฟความสัมพันธ์ระหว่างตัวประกอบมาตราส่วนและเวลา เมื่อ 𝑚 = 0, 0.1, 0.2 และ 0.3 แสดงใน
รูปท่ี 3 
 

 
 

รูปที่ 3 กราฟแสดงความสัมพันธ์ระหว่างตัวประกอบมาตราส่วนกับเวลา ส าหรับ 𝑚 = 0, 0.1, 0.2 และ 0.3 เมื่อ   
𝜌𝑀0 = 2.52  10-27 kg/m3 และ 𝛼 = 1.1  10-52 m-2 
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พารามิเตอร์ความหนาแน่น 

เราสามารถเขียนสมการฟรีดมันน์ (11) ในรูปของพารามิเตอร์ความหนาแน่น เราเริ่มต้นจากการนิยาม
ความหนาแน่นวิกฤต 𝜌𝑐 ซึ่งเป็นค่าความหนาแน่นของสสารหรือรังสีในจักรวาลที่แบนราบและไม่มีค่าคงที่จักรวาล 
เมื่อให้ 𝑘 = 0 และ Λ = 0 และคิดค่าเวลาปัจจุบัน (𝑡0) ความหนาแน่นในสมการ (8) จะกลายเป็นความ
หนาแน่นวิกฤต 
 

c  = 


2
03

8
H
G
                (49) 

 
โดยที่ 𝐻 =  𝑎̇/𝑎 คือพารามิเตอร์ฮับเบิล และ 𝐻0 = 𝐻(𝑡0) พารามิเตอร์ฮับเบิล ณ เวลาปัจจุบัน ซึ่งมีค่า 
ประมาณ 2.38  10-18 s-1 [13] จากนั้น น า 𝐻0

2  หารสมการ (11) เราจะได้ 
 

        
2

2
0

H
H

 =   +             (50) 

 
โดยที่ Ω คือพารามิเตอร์ความหนาแน่นของสสารหรือรังสี และ ΩΛ คือพารามิเตอร์ความหนาแน่นของค่าคงที่
จักรวาล ซึ่งมีค่าดังนี้ 
 

  = 


c
 = 2

0

8
3
G

H


  และ   = 
2

2
03
c
H


 = 
2

2
0

1
3 m
c
H a


             (51) 

 
การเปลี่ยนแปลงของพารามิเตอร์ความหนาแน่นของรังสีหาได้จากการน าความหนาแน่นวิกฤต 𝜌𝑐 ไปหารสมการ
ของความหนาแน่น (20) ส าหรับ 𝑚 ≠ 4 เราจะได้ 
 

       R  = 
 0

4
R

a
 + 

   
 

0 4
2 1 1

 - 
4  - m
m
m a a

          (52) 

 
โดยที่ Ω𝑅0 คือ พารามิเตอร์ความหนาแน่นของรังสี ณ เวลาปัจจุบัน ซึ่งมีค่าประมาณ 10 -5 และ ΩΛ0 คือ
พารามิเตอร์ความหนาแน่นของค่าคงที่จักรวาล ณ เวลาปัจจุบัน ซึ่งมีค่าประมาณ 0.72 จากสมการ (51) เรา
สามารถเขียน ΩΛ0 ได้เป็น 
 

         0  = 
 2

2
03
c
H

 = 0.72                  (53) 

 
พารามิเตอร์ความหนาแน่นของค่าคงที่จักรวาล ΩΛ ในสมการ (51) จะกลายเป็น 
 

          =  0
ma

               (54) 
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ในท านองเดียวกัน เราสามารถหาการเปลี่ยนแปลงของพารามิเตอร์ความหนาแน่นของสสารได้จากการน าความ
หนาแน่นวิกฤต 𝜌𝑐 ไปหารสมการของความหนาแน่น (21) และ (22) ส าหรับ 𝑚 ≠ 3 เราจะได้ 
 

       M  = 
 0

3
M

a
 + 

   
 

0 3
2 1 1

 - 
3 - m
m
m a a

          (55) 

 
โดยที่ Ω𝑀0 คือ พารามิเตอร์ความหนาแน่นของสสาร ณ เวลาปัจจุบัน ซึ่งมีค่าประมาณ 0.28 
 

จากสมการ (52), (54) และ (55) กราฟความสัมพันธ์ระหว่างพารามิเตอร์ความหนาแน่นของรังสี สสาร 
และค่าคงที่จักรวาลที่เป็นฟังก์ชันของตัวประกอบมาตราส่วน เมื่อ 𝑚 = 0, 0.1, 0.2 และ 0.3 แสดงในรูปที่ 4-7 

 

 
 

รูปที่ 4 กราฟแสดงความสัมพันธ์ระหว่างพารามิเตอร์ความหนาแน่นกับตัวประกอบมาตราส่วน ส าหรับ 𝑚 = 0 
 

 
 

รูปที่ 5 กราฟแสดงความสัมพันธ์ระหว่างพารามิเตอร์ความหนาแน่นกับตัวประกอบมาตราส่วน ส าหรับ 𝑚 = 0.1 
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รูปที่ 6 กราฟแสดงความสัมพันธ์ระหว่างพารามิเตอร์ความหนาแน่นกับตัวประกอบมาตราส่วน ส าหรับ 𝑚 = 0.2 
 

 
 

รูปที่ 7 กราฟแสดงความสัมพันธ์ระหว่างพารามิเตอร์ความหนาแน่นกับตัวประกอบมาตราส่วน ส าหรับ 𝑚 = 0.3 
 

การอภิปรายผล 

ส าหรับ 𝑚 = 0 ซึ่งเป็นแบบจ าลองแบบดั้งเดิมที่ค่าคงที่จักรวาลเป็นค่าคงที่ เมื่อวิเคราะห์สมการ (26) 
พบว่า ในอดีตที่ 𝑎 มีค่าน้อย ๆ จักรวาลจะขยายตัวด้วยความหน่วง เพราะค่าสัมบูรณ์ของพจน์แรกมีค่ามากกว่าค่า
สัมบูรณ์ของพจน์ที่สอง เมื่อเวลาผ่านไป 𝑎 มีค่าเพิ่มข้ึน ดังนั้น ค่าสัมบูรณ์ของพจน์แรกจะลดลงเร่ือย ๆ ในขณะที่
พจน์ที่สองเป็นค่าคงที่ เมื่อค่าสัมบูรณ์ของพจน์แรกน้อยกว่าค่าสัมบูรณ์ของพจน์ที่สอง จักรวาลจะขยายตัว     
ด้วยความเร่ง จุดเปลี่ยนผ่านจากการขยายตัวด้วยความหน่วงมาเป็นการขยายตัวด้วยความเร่งเกิดขึ้นที่          

𝑎  =     23
04 /MG c = 0.60 

ส าหรับ 𝑚 = 0.1, 0.2 และ 0.3 เมื่อวิเคราะห์สมการ (30) และ (40) พบว่า ในอดีตที่ 𝑎 มีค่าน้อย ๆ 
จักรวาลจะขยายตัวด้วยความหน่วง เพราะค่าสัมบูรณ์ของสองพจน์แรกมีค่ามากกว่าค่าสัมบูรณ์ของพจน์ที่สาม เมื่อ
เวลาผ่านไป 𝑎 มีค่าเพิ่มขึ้น ดังนั้น ค่าสัมบูรณ์ของสองพจน์แรกซึ่งลดลงด้วยพจน์ 1/𝑎3 จะลดลงเร็วกว่าค่า
สัมบูรณ์ของพจน์ที่สามซึ่งลดลงด้วยพจน์ 1/𝑎𝑚 เมื่อ 𝑚 = 0.1, 0.2 และ 0.3 เมื่อค่าสัมบูรณ์ของสองพจน์แรก
น้อยกว่าค่าสัมบูรณ์ของพจน์ที่สาม จักรวาลจะขยายตัวด้วยความเร่ง การเปลี่ยนผ่านจากการขยายตัวด้วย
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ความหน่วงมาเป็นการขยายตัวด้วยความเร่งเกิดข้ึนที่ 𝑎 = 0.64, 0.70 และ 0.77 ส าหรับ 𝑚 = 0.1, 0.2 และ 
0.3 ตามล าดับ 

ในอดีตที่จุดเริ่มต้นของยุคพองตัว (Inflation) ซึ่ง 𝑎 ≈ 10-31 [14] ค่าคงที่จักรวาลตามสมการ (5) จะมี
ค่าเป็น 

        p  = 3110 m  = 31
010 m  

โดยที่ Λ𝑝 คือค่าคงท่ีจักรวาลในอดีต และ Λ0 = α คือค่าคงที่จักรวาลในปัจจุบัน ดังนั้น ส าหรับ 𝑚 = 
0.1, 0.2 และ 0.3 ค่าคงที่จักรวาลในปัจจุบันจะมีค่าน้อยกว่าค่าคงที่จักรวาลในอดีต 103.1, 106.2 และ 109.3 
เท่า ตามล าดับ ซึ่งช่วยบรรเทาปัญหาค่าคงที่จักรวาลลงได้เล็กน้อย ซึ่งดีกว่า 𝑚 = 0 ที่ไม่ได้ช่วยบรรเทาปัญหา
ค่าคงที่จักรวาล 
 

สรุปผลการวิจัย  

ในงานวิจัยนี้ เราศึกษาค่าคงที่จักรวาลที่ขึ้นกับเวลาที่แปรผกผันกับการยกก าลังของตัวประกอบมาตรา
ส่วน Λ = α/𝑎𝑚 ผลการวิจัยพบว่า สมการความเร่งเท่านั้นที่เปลี่ยนแปลงไป โดยมีพจน์เพิ่มเติมเข้ามาจาก
แบบจ าลองแบบดั้งเดิมที่ค่าคงที่จักรวาลเป็นค่าคงที่ พจน์ดังกล่าวเป็นผลมาจากการที่ค่าคงที่จักรวาลเปลี่ยนแปลง
ตามเวลา ในขณะที่ สมการฟรีดมันน์ไม่เปลี่ยนแปลงไปจากแบบจ าลองแบบดั้งเดิม นอกจากนี้ แบบจ าลองนี้
สามารถลดรูปไปสู่แบบจ าลองแบบดั้งเดิมได้ เมื่อ 𝑚 = 0 

เราพบว่า เงื่อนไขที่จักรวาลขยายตัวด้วยความเร่งคือ 𝑚 < 2/3 ในบทความวิจัยนี้ เราเลือก 𝑚 = 0.1, 
0.2 และ 0.3 ผลการวิจัยพบว่า แบบจ าลองสามารถให้จักรวาลที่ขยายตัวด้วยความเร่งได้ โดยจุดเปลี่ยนผ่าน 
จากการขยายตัวด้วยความหน่วงมาเป็นการขยายตัวด้วยความเร่งเกิดขึ้นที่ 𝑎 = 0.64, 0.70 และ 0.77 ส าหรับ 
𝑚 = 0.1, 0.2 และ 0.3 ตามล าดับ 

นอกจากนี้ แบบจ าลองยังช่วยบรรเทาปัญหาค่าคงที่จักรวาลลงได้ดีกว่า 𝑚 = 0  
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