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Abstract 

The infinite square well (ISW) is usually the first problem involving bound states studied in quantum mechanics. Although it is 

straightforward to determine the stationary states and energy levels, the artificial structure of the problem leads to simple paradoxes 

involving quantization and measurability of momentum. We show how the boundary conditions influence the momentum operator  𝑃, and 
discover the connections between momentum, differentiation and integration, which rescue the hermicity of 𝑃 and its powers 𝑃𝑛. 

Keywords:  Infinite Square Well, Momentum Operator 

 

The one-dimensional infinite square well (ISW) is discussed in virtually every quantum mechanics text as the first example of 
how quantization arises from boundary conditions. Yet the ISW problem gives rise to conceptual paradoxes which can be a distraction at 
the initial stage of development of the theory. For example, while energy in the ISW is quantized, momentum is neither quantized nor 
measurable (even in principle), shattering the classical relation 𝐸 = 𝑝2 2𝑚⁄ . After explaining these paradoxes, we deepen our 
understanding of the role of the boundary conditions by exploring the relationship between hermicity of 𝑃 and the integration by parts 
formula. While hermicity of 𝑃 and 𝑃2 are easy to establish owing to fortunate happenstances, when we try to show that 𝑃3 and higher 
powers are Hermitian, we are forced to amend the conventional expressions for derivatives of the wave function. 
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A Paradox 
The one-dimensional infinite square well problem is defined by the potential 
 

𝑉(𝑥) = { 
0 , 0 < 𝑥 < 𝐿
∞, otherwise  . 

 
The energy levels for a particle with mass 𝑚 confined in an ISW of width 𝐿 are quantized [1] with 

 

𝐸𝑛 =
ℏ2𝜋2𝑛2

2𝑚𝐿2
 . 

 
If we observe and measure the particle’s energy, we obtain one of the eigenvalues 𝐸𝑛 of the Hamiltonian operator 𝐻 = 𝑃2 2𝑚⁄ + 𝑉(𝑋), 
and the state vector collapses to the energy eigenstate |𝐸𝑛⟩.a 

A particle in an energy eigenstate |𝐸𝑛⟩ would seem to have a definite, quantized momentum 𝑝𝑛 = ±√2𝑚𝐸𝑛 = ±ℏ𝜋𝑛 𝐿⁄ . 
Therefore, |𝐸𝑛⟩ should also be a momentum eigenstate |𝑝𝑛⟩ with eigenvalues 𝑝𝑛 = ±ℏ𝜋𝑛 𝐿⁄ . If |𝑝𝑛⟩ is a momentum eigenstate, then 
 (∆𝑃)2 = 〈𝑃2〉 − 〈𝑃〉2 = ⟨𝑝𝑛|𝑃2|𝑝𝑛⟩ − ⟨𝑝𝑛|〈𝑃〉2|𝑝𝑛⟩ = 𝑝𝑛

2⟨𝑝𝑛|𝑝𝑛⟩ − 𝑝𝑛
2⟨𝑝𝑛|𝑝𝑛⟩ = 0, which would be consistent with the wave 

function (in 𝑝-space) of a momentum eigenstate, ⟨𝑝|𝑝𝑛⟩ = 𝛿(𝑝 − 𝑝𝑛). By the uncertainty principle, therefore, ∆𝑋 = ∞. But ∆𝑋 ≤ 𝐿 
since the particle is confined in the well — a contradiction. This paradox is based on several misconceptions. 

 
The Momentum Operator 𝑷 = −𝒊ℏ𝑫𝒙 
Energy eigenstates are not momentum eigenstates. To see this, consider a particle confined within 0 ≤ 𝑥 ≤ 𝐿. The energy 

eigenfunctions 𝐸𝑛(𝑥) ≡ ⟨𝑥|𝐸𝑛⟩ in the 𝑥-basis [1] are: 
 

𝐸𝑛(𝑥) = { 
√2 𝐿⁄ sin

𝑛𝜋𝑥

𝐿
, 0 ≤ 𝑥 ≤ 𝐿
 

0            , otherwise
 .                                                                     (1) 

 
Therefore, on the open interval (0, 𝐿): 

 

⟨𝑥|𝑃|𝐸𝑛⟩ = −𝑖ℏ
𝑑

𝑑𝑥
(√2 𝐿⁄ sin

𝑛𝜋𝑥

𝐿
) =

ℏ𝑛𝜋

𝑖𝐿
√2 𝐿⁄ cos

𝑛𝜋𝑥

𝐿
≠  𝜆√2 𝐿⁄ sin

𝑛𝜋𝑥

𝐿
= ⟨𝑥|𝜆|𝐸𝑛⟩ . 

 
Since 𝑃|𝐸𝑛⟩ ≠ 𝜆|𝐸𝑛⟩ for any number 𝜆, energy eigenstates are not momentum eigenstates. 

_________________ 
a It is not necessary to make an arbitrarily precise measurement. If the precision of the measurement is 
better than (𝐸𝑛 − 𝐸𝑛−1) 2⁄ , we know the particle’s energy is exactly 𝐸𝑛  and its state vector is |𝐸𝑛⟩ 
immediately after the measurement is made. 
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Momentum eigenstates |𝑝⟩ do not exist. Such a state would violate the uncertainty principle, as explained above. Alternatively, 
suppose 𝑃  has an eigenvector |𝑝⟩; say 𝑃|𝑝⟩ =  𝑝|𝑝⟩ where 𝑝 is a real number.b The wave function 𝜓𝑝(𝑥) ≡ ⟨𝑥|𝑝⟩ in the 𝑥-basis 
satisfies: 
 

−𝑖ℏ𝜓𝑝
′ (𝑥) = 𝑝𝜓𝑝(𝑥) .       (2) 

 
The solution to (2) is 𝜓𝑝(𝑥) = (2𝜋ℏ)−1 2⁄ 𝑒𝑖𝑝𝑥 ℏ⁄ , normalized to ⟨𝑝′|𝑝⟩ = 𝛿(𝑝 − 𝑝′). But 𝜓𝑝(𝑥) is not supportedc in [0, 𝐿]; 

moreover, 𝜓𝑝(𝑥) is never zero, so it cannot satisfy the boundary conditions. Therefore, |𝑝⟩ is not a possible ISW state vector. 
More generally, no state |𝜓⟩ is allowed whose wave function in 𝑝-space 𝜓̂(𝑝) ≡ ⟨𝑝|𝜓⟩ is too “sharply peaked.” Specifically, 

∆𝑋 ≤ 𝐿 implies ∆𝑃 ≥ ℏ 2∆𝑋⁄ ≥ ℏ 2𝐿⁄ . This means ISW state vectors must have well-spread wave functions in 𝑝-space. The narrower 
the well, the larger the variance in 𝜓̂(𝑝). 

 
Momentum cannot be measured, even in principle. If momentum could be measured with a high degree of precision, the state 

vector would collapse to an eigenvector |𝑝⟩ or to a state with a sharply-peaked wave function in 𝑝-space, which we have seen is not 
possible. Nevertheless, any state can be expressed as a superposition of momentum pseudoeigenstates |𝜓⟩ = ∫⟨𝑝|𝜓⟩ |𝑝⟩ 𝑑𝑝 — “pseudo” 
because the individual eigenstates |𝑝⟩ are not found in the ISW. In 𝑥-space, this superposition is given by 
 

𝜓(𝑥) = ⟨𝑥|𝜓⟩ = ∫ ⟨𝑥|𝑝⟩⟨𝑝|𝜓⟩
∞

−∞

𝑑𝑝 =
1

√2𝜋ℏ
∫ 𝑒𝑖𝑝𝑥 ℏ⁄  𝜓̂(𝑝)

∞

−∞

𝑑𝑝                                                (3) 

 
where 
 

𝜓̂(𝑝) = ⟨𝑝|𝜓⟩ = ∫ ⟨𝑝|𝑥⟩⟨𝑥|𝜓⟩
∞

−∞

𝑑𝑥 = ∫ ⟨𝑥|𝑝⟩∗𝜓(𝑥)
𝐿

0

𝑑𝑥 =
1

√2𝜋ℏ
∫ 𝑒−𝑖𝑝𝑥 ℏ⁄  𝜓(𝑥)

𝐿

0

𝑑𝑥 .                       (4) 

 
These equations recapitulate the relationship between ⟨𝑥|𝜓⟩ and ⟨𝑝|𝜓⟩ as Fourier transforms. 
 

Unique energy without unique momentum. A particle in an energy eigenstate |𝐸𝑛⟩ has a unique energy 𝐸𝑛, but is a superposition 
of states with different momenta. We conclude that 𝐸 = 𝑝2 2𝑚⁄  is not a correct or meaningful equation for the particle. While the 
pseudoeigenstates |𝑝⟩ are not found in the ISW, the particle has a momentum probability density |⟨𝑝|𝜓⟩|2 given by (4). 

 
 _________________ 

b Could 𝑃 have an imaginary eigenvalue? Suppose 𝑃|𝑝⟩ =  𝑖𝑝|𝑝⟩ for some 𝑝 ∈ ℝ. Then the solution to 
(2) is 𝜓𝑝(𝑥) = 𝐴𝑒−𝑝𝑥 ℏ⁄ . Such a wave function cannot be normalized on (−∞, ∞) either to ⟨𝑝′|𝑝⟩ = 1 
or ⟨𝑝′|𝑝⟩ = 𝛿(𝑝 − 𝑝′), so we rule this out. 
c The support of a function 𝑓, written supp(𝑓), is the set of 𝑥 for which 𝑓(𝑥) ≠ 0. 
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How can we understand the statement “momentum cannot be measured”? Momentum, unlike energy and position, cannot be 
measured with arbitrarily high precision. Can we understand, physically, why momentum is resistant to measurement? Yes: one way to 
measure a particle’s momentum with arbitrarily high precision is to scatter off the particle a photon with arbitrarily low frequency. 
(Shankar [2] (p. 123) shows how to reconstruct the initial and final momenta 𝑝 and 𝑝′ of a particle after collision with a photon, as a 
function of the incoming and outgoing frequencies of the photon 𝜔 and 𝜔′, both of which can be known exactly in principle. One finds 
that 𝜔 → 0 implies 𝜔′ → 0 for any choice of 𝑝, which in turn implies that 𝑝 − 𝑝′ can be made as small as desired.) But the frequency 
of a photon trapped inside an ISW of width 𝐿 is quantized with 𝜔 = 𝑛𝜋𝑐 𝐿⁄  (see Garrison and Chiao [3], Eq. 2.15). Therefore, the 
photon’s maximum wavelength is 𝜆 = 2𝜋𝑐 𝜔min⁄ = 2𝐿; so we cannot make a measurement in the ISW with photons of arbitrarily long 
wavelength. (Fullingd [4] discusses the momentum measurement problem in a wider experimental context.) 

 
Energy eigenfunctions in momentum space. To penetrate the conundrum of an energy eigenstate being a superposition of 

momentum states, it is instructive briefly to examine the momentum probability density |⟨𝑝|𝐸𝑛⟩|2. (Liang, Zhang and Dardenne [5] 
provide a thorough summary of momentum distributions in the ISW problem.) A particle in an energy eigenstate |𝐸𝑛⟩ has a wave function 
in 𝑝-space: 
 

𝐸̂𝑛(𝑝) = ⟨𝑝|𝐸𝑛⟩ = ∫ ⟨𝑝|𝑥⟩⟨𝑥|𝐸𝑛⟩
∞

−∞

𝑑𝑥 =
1

√𝜋ℏ𝐿
∫ 𝑒−𝑖𝑝𝑥 ℏ⁄ sin

𝑛𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 . 

 
Evaluation of the integral gives 
 

𝐸̂𝑛(𝑝) = √2𝛼 𝜋⁄ 𝑖𝑛+1𝑒−𝑖𝑝𝛼 {(−1)𝑛
sin 𝛼(𝑝 + 𝑝𝑛)

2𝛼(𝑝 + 𝑝𝑛)
−

sin 𝛼(𝑝 − 𝑝𝑛)

2𝛼(𝑝 − 𝑝𝑛)
} 

 

where 𝛼 ≡ 𝐿 2ℏ⁄  and 𝑝
𝑛

≡ √2𝑚𝐸𝑛 = 𝑛𝜋ℏ 𝐿⁄ = 𝑛𝜋 2𝛼⁄ . Squaring gives: 
 

|𝐸̂𝑛(𝑝)|
2

=
1

2𝜋𝛼
{

sin2[𝛼(𝑝 + 𝑝𝑛)]

(𝑝 + 𝑝𝑛)2
+

sin2[𝛼(𝑝 − 𝑝𝑛)]

(𝑝 − 𝑝𝑛)2
− (−1)𝑛

2 sin[𝛼(𝑝 − 𝑝𝑛)] sin[𝛼(𝑝 + 𝑝𝑛)]

(𝑝 − 𝑝𝑛)(𝑝 + 𝑝𝑛)
} . 

 
This function has two peaks at 𝑝 = ±𝑝𝑛 (except for 𝑛 = 1). As 𝑛 → ∞: 
 
 
 
 _________________ 

d Fulling addresses the non-measurability of momentum in the ISW by gedanken experiments such as 
measuring time-of-flight, slit-and-screen diffraction and bending of paths in a magnetic field, as well as 
scattering with other particles, and notes that “the localized nature of the experiments makes precise 
momentum measurements impossible.” 
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a) If 𝛼 is held fixed, the shape of the peaks at ±𝑝𝑛 = ±𝑛𝜋 2𝛼⁄  remains almost the same, but the peaks move further apart with 
increasing 𝑛 (due to increasing energy). 

b) If 𝑛 𝛼⁄ = (2 𝜋⁄ )𝑝𝑛 is held fixed, the peaks grow higher and narrower. This makes sense since 𝛼 → ∞ (𝐿 → ∞) approaches 
the case of the free particle. 

Figures 1 and 2 show |𝐸̂𝑛(𝑝)|
2 for 𝑛 = 10, and 𝛼 = 10 and 𝛼 = 20. 

 
 

Figure 1 The momentum probability density |𝐸̂𝑛(𝑝)|
2

 of a particle in an energy eigenstate |𝐸𝑛⟩ for 𝑛 = 10 and 𝛼 = 10 
 

 
 

Figure 2 The momentum probability density |𝐸̂𝑛(𝑝)|
2 of a particle in an energy eigenstate |𝐸𝑛⟩ for 𝑛 = 10 and 𝛼 = 20 
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Hermicity of 𝑷 
It is a postulate of quantum mechanics that observable quantities are representable as Hermitian operators [1][2]. We will see 

that hermicity of 𝑃 is equivalent to integration by parts (with vanishing of the boundary term), which in turn relies upon a function being 
the integral of its derivative. 

The fundamental theorem of calculus ∫ 𝑓′(𝑡)
𝑥

𝑎
𝑑𝑡 = 𝑓(𝑥) − 𝑓(𝑎)  is usually proved when 𝑓  is differentiable and 𝑓′ is 

continuous everywhere in the domain of 𝑓. However, the energy eigenfunctions 𝐸𝑛(𝑥) in (1) are not differentiable at 𝑥 = 0 and 𝑥 = 𝐿: 
𝐸𝑛(𝑥) has a cusp at the boundaries so 𝐸𝑛

′ (𝑥) has jump discontinuities at these points. Indeed, if |𝜓⟩ is any state vector in the ISW with 
wave function 𝜓(𝑥) = ⟨𝑥|𝜓⟩, its derivative 𝜓′(𝑥) must be discontinuous at 𝑥 = 0 and 𝑥 = 𝐿.e We want to apply the fundamental 
theorem of calculus to discontinuous functions like these; therefore, we need to know the weakest conditions under which a fu nction is 
the integral of its derivative. 

The theory of Lebesgue integration introduces the property of absolute continuity of a function, which is stronger than pointwise 
or uniform continuity.f It is a theorem (Rudin [6], Theorem 7.18) that 𝑓: [𝑎, 𝑏] → ℂ is absolutely continuous if and only if 𝑓 has a 
derivative 𝑓′ “almost everywhere”, 𝑓′ is integrable and 
 

𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑓′
𝑥

𝑎

                                                                                            (5) 

 
for all 𝑎 ≤ 𝑥 ≤ 𝑏. In other words, 𝑓 is the integral of its derivative. (“Almost everywhere” means everywhere except on a set of measure 
zero. A set 𝐸 has measure zero if it can be covered by a finite or countable union of intervals (𝛼𝑖 , 𝛽𝑖) whose total length ∑(𝛽𝑖 − 𝛼𝑖) can 
be made arbitrarily small. In other words, for any 𝜖 > 0 there exists a countable collection of intervals 𝐼𝑖 = (𝛼𝑖 , 𝛽𝑖) such that 𝐸 ⊆ ⋃ 𝐼𝑖  
and ∑(𝛽𝑖 − 𝛼𝑖) < 𝜖.) 

Lebesgue measure and the Lebesgue integral are building blocks of integration theory (Rudin [6] is the standard reference). We 
will not require any deep results of this theory here, apart from basic terminology and the theorem stated in (5), which we will take as the 
definition of absolute continuity. We will assume that all wave functions and their derivatives are absolutely continuous except at a finite 

_________________ 
e Note that 𝜓′(𝑥) = 0 for 𝑥 ≤ 0 and 𝑥 ≥ 𝐿 . If 𝜓′  is continuous at 𝑥 = 0, then 𝜓′(0) = 0. Hence 
𝜓(0) = 𝜓′(0) = 0. These initial conditions force the unique solution to any equation of the form 
𝜓′′(𝑥) + 𝑎(𝑥)𝜓′(𝑥) + 𝑏(𝑥)𝜓(𝑥) = 𝑐(𝑥)  to be the trivial 𝜓(𝑥) = 0 . The Schrödinger equation 
𝐻𝜓 = 𝐸𝜓 has this form. 𝜓(𝑥) = 0 is not a physical solution to the Schrödinger equation since it cannot 
be normalized. Hence 𝜓(0) = 𝜓′(0) is not possible. The same applies at 𝑥 = 𝐿. 
f A function 𝑓: [𝑎, 𝑏] → ℂ is absolutely continuous on [𝑎, 𝑏] if for every 𝜖 > 0 there exists 𝛿 > 0 such 
that if (𝛼1, 𝛽1), … , (𝛼𝑛, 𝛽𝑛) is any pairwise disjoint collection of intervals within [𝑎, 𝑏] whose lengths 
satisfy ∑ (𝛽𝑖 − 𝛼𝑖)

𝑛
𝑖=1 < 𝛿, then ∑ |𝑓(𝛽𝑖) − 𝑓(𝛼𝑖)|𝑛

𝑖=1 < 𝜖. 
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number of points (specifically, two). While there exist continuous functions which are differentiable almost everywhere and do not satisfy 
(5), these tend to be pathological and would not occur in physical problems.g There also exist continuous functions which are not 
differentiable on a set of positive measure (e.g., an interval); there are even continuous functions which are nowhere differentiable! We 
will ignore such pathological examples and assume that all solutions to Schrödinger’s equation are absolutely continuous, and therefore 
differentiable almost everywhere and satisfy (5). 
 
Remarks: 
a) It is easy to see that a function 𝑣 with a jump discontinuity cannot satisfy (5). Suppose 𝑣(𝑥) has a jump discontinuity at 𝑥 = 𝑐. Then 
 

lim
𝜖↓0

∫ 𝑣′(𝑥)
𝑐+𝜖

𝑐−𝜖

𝑑𝑥 = 0 ≠ 𝑣(𝑐+) − 𝑣(𝑐−) = lim
𝜖↓0

(𝑣(𝑐 + 𝜖) − 𝑣(𝑐 − 𝜖)) . 

 
Therefore, for some 𝜖 > 0: 
 

∫ 𝑣′
𝑐+𝜖

𝑐−𝜖

≠ 𝑣(𝑐 + 𝜖) − 𝑣(𝑐 − 𝜖) . 

 
If 𝑣: [𝑎, 𝑏] → ℂ is continuous except for a jump discontinuity at 𝑥 = 𝑐 (𝑎 ≤ 𝑐 ≤ 𝑏), then 

 

∫ 𝑣′(𝑥)
𝑏

𝑎

𝑑𝑥 = (∫ + ∫ + ∫  
𝑏

𝑐+𝜖

𝑐+𝜖

𝑐−𝜖

𝑐−𝜖

𝑎

) 𝑣′(𝑥) 𝑑𝑥 

≠ (𝑣(𝑐 − 𝜖) − 𝑣(𝑎)) + (𝑣(𝑐 + 𝜖) − 𝑣(𝑐 − 𝜖)) + (𝑣(𝑏) − 𝑣(𝑐 + 𝜖)) 

= 𝑣(𝑏) − 𝑣(𝑎) . 

 
b) Suppose 𝑢, 𝑣 : ℝ → ℂ and 𝑢𝑣 is discontinuous at 𝑥 = 𝑐. (This requires only that 𝑣 is discontinuous at 𝑥 = 𝑐 and  𝑢(𝑐) ≠ 0.) Then 

by the previous result, ∫ (𝑢𝑣)′𝑏

𝑎
≠ 𝑢(𝑏)𝑣(𝑏) − 𝑢(𝑎)𝑣(𝑎). Therefore, we see that 𝑢𝑣 is (absolutely) continuous on [𝑎, 𝑏] if and 

only if integration by parts is valid. 

_________________ 
g The Cantor function 𝜉(𝑥) is a continuous, monotone-increasing function which maps [0,1] to [0,1], is 
differentiable almost everywhere, and satisfies 𝜉′(𝑥) = 0 (see Rudin [6], Example 7.16(b)). Define: 
 

𝑓(𝑥) = {
𝜉(2𝑥)     , if 0 ≤ 𝑥 ≤ 1 2⁄

 𝜉(2 − 2𝑥) , if 1 2⁄ ≤ 𝑥 ≤ 1
0         , otherwise

 

 

Then 𝑓 is continuous on ℝ, satisfies 𝑓(0) = 𝑓(1) = 0, and ⟨𝑃𝑓|𝑔⟩ = 0 for every |𝑔⟩. The Cantor 
function is uniformly but not absolutely continuous. 
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Theorem 1: 𝑃 is Hermitian. 
Proof: Let |𝑓⟩and |𝑔⟩ be arbitrary ISW state vectors, and 𝑓(𝑥) and 𝑔(𝑥) their wave functions in 𝑥-space. Note that continuity plus 
supp(𝑓) ⊆ [0, 𝐿] implies that 𝑓(0) = 𝑓(𝐿) = 0. We would like to argue: 
 

⟨𝑓|𝑃𝑔⟩ = ∫ 𝑓∗[−𝑖ℏ𝑔′]
∞

−∞

=
?

−𝑖ℏ𝑓∗𝑔|
−∞

∞

− ∫ 𝑓′∗[−𝑖ℏ𝑔]
∞

−∞

= ∫ [−𝑖ℏ𝑓′]∗𝑔
∞

−∞

= ⟨𝑃𝑓|𝑔⟩ .                        (6) 

 
Since 𝑓∗𝑔 is continuous on ℝ, the integration by parts is valid. Therefore ⟨𝑃†𝑓|𝑔⟩ ≡ ⟨𝑓|𝑃|𝑔⟩ = ⟨𝑓|𝑃𝑔⟩ = ⟨𝑃𝑓|𝑔⟩, which implies 
𝑃† = 𝑃. 
 
Remarks: 
a) There is no contradiction in the fact that momentum 𝑝 is not measurable (observable) while the operator 𝑃 is Hermitian. It is a 

postulate of quantum mechanics that observable quantities correspond to Hermitian operators, but the converse need not hold. 
 
b) The relation ⟨𝑓|𝑃𝑔⟩ = ⟨𝑃𝑓|𝑔⟩ holds so long as one of the two functions 𝑓, 𝑔 vanishes at ±∞, since only one function need vanish 

to make the boundary term in (6) vanish. 
 
c) Eq. (6) shows that, generally speaking (not just for the ISW problem), hermicity of 𝑃 is equivalent to the integration by parts formula. 

Consequently, 𝑃 is Hermitian on any collection of state vectors |𝜓⟩ whose wave functions 𝜓(𝑥) = ⟨𝑥|𝜓⟩ are absolutely continuous 
(guarantees that integration by parts is valid) and satisfy 𝜓(±∞) = 0 (boundary term vanishes). Note that ∫ |𝜓(𝑥)|2∞

−∞
𝑑𝑥 < ∞ 

does not imply that 𝜓(±∞) = 0, as the example 𝜓(𝑥) = exp(−𝑥2 sin2 𝜋𝑥) in Figure 3 demonstrates. 
 

 
 

Figure 3 The function 𝜓(𝑥) = exp(−𝑥2 sin2 𝜋𝑥) is square integrable but does not vanish at ±∞ 



 Thai Journal of Physics                                                        Vol. 37 No. 4 (2020) 158-173                                                                                       
 

 
 

 

166 
 

d) Eq. (6) can hold with both sides = ±∞. Example: let 𝑓(𝑥) = √𝑥(𝐿 − 𝑥)  if 0 ≤ 𝑥 ≤ 𝐿, and 𝑓(𝑥) = 0 otherwise. Note that 𝑓 is 
continuous on [0, 𝐿] and 𝑓′ ∈ 𝐿1[0, 𝐿]. But 𝑓′ ∉ 𝐿2[0, 𝐿], therefore ⟨𝑃𝑓|𝑃𝑓⟩ = ∞. If 𝑔 = 𝑃𝑓, then ⟨𝑃𝑓|𝑔⟩ = ⟨𝑓|𝑃𝑔⟩ = ∞.h In 
this case 2𝑚〈𝐻〉 = ⟨𝑓|𝑃2|𝑓⟩ = ∞, so the particle would have infinite energy, which is not physically realistic. 

 
Hermicity of 𝑷𝟐 
Hermicity of 𝐻 = 𝑃2 2𝑚⁄ + 𝑉(𝑋) is expected, since 𝐻 corresponds to an observable (the total energy). Indeed, hermicity of 

𝑃2 should follow from hermicity of 𝑃, since: 
 

⟨[𝑃2]†𝜓| = ⟨𝜓|𝑃2 = ⟨𝑃†𝜓|𝑃 = ⟨𝑃𝜓|𝑃 = ⟨𝑃†𝑃𝜓| = ⟨𝑃2𝜓| . 
 
A possible objection to this argument is that ⟨𝑃𝜓| is not a bra (equivalently: |𝑃𝜓⟩ is not a ket) in the ISW, since the wave function 
⟨𝑥|𝑃𝜓⟩ = −𝑖ℏ𝜓′(𝑥) is not defined at 𝑥 = 0 and 𝑥 = 𝐿. (This is consistent with the fact that the particle reflects off the boundary and 
has no well-defined momentum at these points.) So |𝑃𝜓⟩ has no projection onto the 𝑥-basis vectors |𝑥 = 0⟩ and |𝑥 = 𝐿⟩. Therefore, is 
the expression ⟨𝑃𝜓|𝑃 well defined? 

One might dismiss these objections on the grounds that inner products are integrals ⟨𝜙|𝜓⟩ = ∫ 𝜙∗(𝑥)𝜓(𝑥)
𝐿

0
𝑑𝑥; therefore, the 

definition (or lack thereof) of the integrands at finite number of points does not matter. But herein lies the rub. While the discontinuities 
of 𝜓′(𝑥) at 𝑥 = 0 and 𝑥 = 𝐿 do not affect its properties as an integrand, we will see that 𝜓′′(𝑥) includes factors of 𝛿(𝑥) and 𝛿(𝑥 − 𝐿) 
to preserve the relation ∫ 𝜓′′ = 𝜓′, and these do affect the properties of 𝜓′′ as an integrand. 

To illustrate the problem in concrete and dramatic fashion, consider an ISW with walls at 𝑥 = 0 and 𝑥 = 1. Let |𝑓⟩ and |𝑔⟩ 
be (unnormalized) state vectors with wave functions 𝑓(𝑥) = (1 − 𝑥) arctan 𝑥 and 𝑔(𝑥) = 𝑥(1 − 𝑥) on the interval 0 ≤ 𝑥 ≤ 1, and 
vanishing elsewhere. We calculate: 
 

⟨𝑓|𝑃𝑔⟩ = ⟨𝑃𝑓|𝑔⟩ =
2𝜋 + ln 2 − 7

6𝑖ℏ
 

⟨𝑓|𝑃2𝑔⟩ = ⟨𝑃2𝑓|𝑔⟩ =
1 − ln 2

ℏ2
 

but: 

0 = ⟨𝑓|𝑃3𝑔⟩ ≠ ⟨𝑃3𝑓|𝑔⟩ =
𝜋 4⁄ − 1

𝑖ℏ3
 . 

 
This seems to indicate ⟨𝑓|𝑃3𝑔⟩ ≠ ⟨𝑃3𝑓|𝑔⟩. Moreover, if the particle’s state is |𝑔⟩, then we can compute the expected values: 
 

〈𝐻〉 = ⟨𝑔|𝐻𝑔⟩ = ℏ2 6𝑚⁄  

〈𝐻2〉 = ⟨𝑔|𝐻2𝑔⟩ = 0 

_________________ 
h We will deliberately abuse notation and refer to functions 𝑃𝑓 and 𝑃𝑓(𝑥) when we mean ⟨𝑥|𝑃𝑓⟩. 
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which yields the absurd result ∆𝐻2 = 〈𝐻2〉 − 〈𝐻〉2 = −ℏ4 36𝑚2⁄ . In addition, 〈𝐻2〉 = ⟨𝑔|𝐻2|𝑔⟩ = ⟨𝐻𝑔|𝐻𝑔⟩ = ℏ4 𝑚2⁄ ; hence 
⟨𝐻𝑔|𝐻𝑔⟩ ≠ ⟨𝑔|𝐻2𝑔⟩, which would suggest that 𝐻 is not Hermitian. (Belloni and Robinetti [7] and Bonneau et al.j [8] discuss similar 
contradictions.) These results indicate that something is wrong with our inner product calculations. In the next section we will identify 
the oversight when we prove the hermicity of 𝑃𝑛. But first we dispense with the case 𝑛 = 2, which can be done quickly owing to a stroke 
of luck. 
 
Theorem 2: 𝑃2 = −ℏ2(𝐷𝑥)2 is Hermitian. 
Proof: As in (6), we would like to argue that 
 

−
1

ℏ2
⟨𝑓|𝑃2𝑔⟩ = ∫ 𝑓∗𝑔′′

∞

−∞

=
?

𝑓∗𝑔′|
−∞

∞

− ∫ 𝑓′∗𝑔′
∞

−∞

=
?

−𝑓′∗𝑔|
−∞

∞

+ ∫ 𝑓′′∗𝑔
∞

−∞

= −
1

ℏ2
⟨𝑃2𝑓|𝑔⟩ .               (7) 

 
Both sets of boundary terms vanish because 𝑓∗and 𝑔 are supported in [0, 𝐿]. But the integration by parts formula ∫(𝑢𝑣)′ = ∫ 𝑢𝑣′ +

∫ 𝑢′𝑣 requires that 𝑢𝑣 be absolutely continuous. In the first integration by parts 𝑢𝑣 = 𝑓∗𝑔′, and in the second integration by parts 𝑢𝑣 =

𝑓′∗𝑔. Since 𝑓′and 𝑔′are discontinuous at 𝑥 = 0 and 𝑥 = 𝐿, we are rightly concerned that 𝑓∗𝑔′ and 𝑓′∗𝑔 might be discontinuous at the 
boundaries. Fortunately, 𝑓∗and 𝑔 both vanish at the boundaries; therefore, 𝑓∗𝑔′ and 𝑓′∗𝑔 are continuous. Consequently, 𝑓∗𝑔′ and 𝑓′∗𝑔 
are the integrals of their derivatives, and the integration by parts is correct. 
 

Higher powers of 𝑷 
Hermicity of 𝑃𝑛  should follow from hermicity of 𝑃  using the relation (𝐴1𝐴2 ⋯ 𝐴𝑛)† = 𝐴𝑛

† ⋯ 𝐴2
†𝐴1

† , which implies 
𝑃𝑛† = 𝑃†𝑛 = 𝑃𝑛. But as noted in the previous section, |𝑃𝜓⟩ is not an ISW state vector and the validity of this argument is not clear. In 
proving that 𝑃2 is Hermitian we were lucky that the boundary terms vanished owing to the presence of at least one factor that vanished 
at the boundaries of the well. When we try to show that higher powers of 𝑃 are Hermitian, we find ourselves integrating ∫(𝑢𝑣)′ =

∫ 𝑢𝑣′ + ∫ 𝑢′𝑣 where both factors in the product 𝑢𝑣 are discontinuous at the boundaries.

_________________ 
i Belloni and Robinett demonstrate the same contradiction when computing the expected value of even 
powers of the momentum operator ⟨𝐸𝑛|𝑃2𝑞|𝐸𝑛⟩ in an energy eigenstate, due to incorrect treatment of 
the boundaries. 
j Bonneau, Faraut, and Valent distinguish between Hermitian and self-adjoint operators. They state that 
𝑃 = −𝑖ℏ𝐷𝑥 is Hermitian on the set 𝒟(𝑃) = {𝜙, 𝜙′ ∈ 𝐿2[0, 𝐿];  𝜙(0) = 𝜙(𝐿) = 0} but not self-
adjoint, since 𝑃† = −𝑖ℏ𝐷𝑥  has the same formal expression but acts on a different space of functions 
(without boundary conditions). 
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For example, if we try to argue that ⟨𝑃3𝑓|𝑔⟩ = ⟨𝑃2𝑓|𝑃𝑔⟩ = ⟨𝑃𝑓|𝑃2𝑔⟩ = ⟨𝑓|𝑃3𝑔⟩, the middle equality is equivalent to ∫ 𝑓′′∗𝑔′∞

−∞
=

− ∫ 𝑓′∗𝑔′′∞

−∞
 , which would follow from integrating by parts 

 

∫ 𝑓′′∗𝑔′
∞

−∞

+ ∫ 𝑓′∗𝑔′′
∞

−∞

= ∫ (𝑓′∗𝑔′)′
∞

−∞

=
?

𝑓′∗𝑔′|
−∞

∞

= 0                                                                 (8) 

 
if the second equality in (8) were valid. But 𝑓′∗𝑔′  is generally not continuous at 𝑥 = 0 and 𝑥 = 𝐿 since both 𝑓′∗ and 𝑔′are discontinuous 
at these points. Therefore, (8) is generally false when 𝑓′∗ and 𝑔′represent conventional derivatives. 
 
Remarks: 
a) Suppose 𝜙: ℝ → ℂ is continuous except at 𝑥 = 𝑐 where 𝜙 has a jump discontinuity. We define the “completed derivative”: 
 

𝜙′̅̅ ̅(𝑥) = 𝜙′(𝑥) + (𝜙(𝑐+) − 𝜙(𝑐−))𝛿(𝑥 − 𝑐) .     (9a) 
 

This ensures that 
 

lim
𝜖↓0

∫ 𝜙′̅̅ ̅(𝑥)
𝑐+𝜖

𝑐−𝜖

𝑑𝑥 = 𝜙(𝑐+) − 𝜙(𝑐−) . 

 
Note that 𝜙′̅̅ ̅(𝑥) = 𝜙′(𝑥) everywhere except at 𝑥 = 𝑐. The supplementary 𝛿-function “defines” 𝜙′(𝑥) at 𝑥 = 𝑐 so that 𝜙 is the 
integral of its derivative. Similarly, if 𝜙: ℝ → ℂ is supported in [0, 𝐿], is continuously differentiable on the open interval [0, 𝐿], and 
has jump discontinuities at 𝑥 = 0 and 𝑥 = 𝐿, then we can write the completed derivative 𝜙′̅̅ ̅(𝑥) as 

 
𝜙′̅̅ ̅(𝑥) = 𝜙′(𝑥) + 𝜙(0+)𝛿(𝑥) − 𝜙(𝐿−)𝛿(𝑥 − 𝐿) .     (9b) 

 
b) If 𝜙: ℝ → ℂ  is continuous except at 𝑥 = 𝑎  and 𝑥 = 𝑏  where 𝜙  has jump discontinuities, we can calculate straightforwardly 

∫ 𝜙′(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝜙(𝑏−) − 𝜙(𝑎+). There is no need to introduce 𝛿-functions since we are not integrating across the discontinuity. 

 
c) When 𝜙(𝑥) is discontinuous at 𝑥 = 𝑐, we take 
 

∫ 𝜙(𝑥)𝛿(𝑥 − 𝑐)
∞

−∞

=
1

2
(𝜙(𝑐+) + 𝜙(𝑐−)) 
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since 𝛿(𝑥) is an even function. This can lead to contradictions (Griffiths and Walborn [9]); however, identical terms of this type will 
appear in the expressions for both ⟨𝑃𝑓|𝑔⟩ and ⟨𝑓|𝑃𝑔⟩, so the specific definition adopted is immaterial when proving the equality. 

 
Now we come to the main theorem of this section. 

 
Theorem 3: 𝑃𝑛 is Hermitian for all 𝑛 ≥ 1. We will give two proofs. 
Proof #1: It suffices to prove that 
 

⟨𝑓|𝑃𝑔⟩ = ⟨𝑃𝑓|𝑔⟩        (10) 
 
when 𝑓 = 𝑃𝑙𝜑 and 𝑔 = 𝑃𝑚𝛾 for some ISW state vectors |𝜑⟩ and |𝛾⟩. Once this is established, by successive applications of (10) we 
obtain 
 

⟨𝑓|𝑃𝑛𝑔⟩ = ⟨𝑃𝑓|𝑃𝑛−1𝑔⟩ = ⟨𝑃2𝑓|𝑃𝑛−2𝑔⟩ = ⋯ = ⟨𝑃𝑛−1𝑓|𝑃𝑔⟩ = ⟨𝑃𝑛𝑓|𝑔⟩ . 
 
Since 𝑃𝑘 = (−𝑖ℏ𝐷𝑥)𝑘, both 𝑓 = 𝑃𝑙𝜑 and 𝑔 = 𝑃𝑚𝛾 may be discontinuous at 𝑥 = 0 and 𝑥 = 𝐿. By (9b): 
 

𝑔′̅(𝑥) = 𝑔′(𝑥) + 𝑔(0+)𝛿(𝑥) − 𝑔(𝐿−)𝛿(𝑥 − 𝐿) .      (11) 
 
We compute: 
 

−
1

𝑖ℏ
⟨𝑓|𝑃𝑔⟩ = ∫ 𝑓(𝑥)∗𝑔′̅(𝑥)

∞

−∞

𝑑𝑥 

= ∫ 𝑓(𝑥)∗(𝑔′(𝑥) + 𝑔(0+)𝛿(𝑥) − 𝑔(𝐿−)𝛿(𝑥 − 𝐿))
∞

−∞

𝑑𝑥 

= ∫ 𝑓∗𝑔′
𝐿

0

+ {𝑔(0+) ∫ 𝑓(𝑥)∗𝛿(𝑥)
∞

−∞

𝑑𝑥} − {𝑔(𝐿−) ∫ 𝑓(𝑥)∗𝛿(𝑥 − 𝐿)
∞

−∞

𝑑𝑥} 

 

 
= 𝑓∗𝑔|

0+

𝐿−

− ∫ 𝑓′∗𝑔
𝐿

0

+
1

2
𝑓(0+)∗𝑔(0+) −

1

2
𝑓(𝐿−)∗𝑔(𝐿−) 

= − ∫ 𝑓′∗𝑔
𝐿

0

+
1

2
𝑓(𝐿−)∗𝑔(𝐿−) −

1

2
𝑓(0+)∗𝑔(0+)                                                               (12) 
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Notice that the inner product has three pieces: a boundary term, an integral over the well, and a term arising from the δ-functions that 
belong to 𝑔′̅. Conversely: 
 

1

𝑖ℏ
⟨𝑃𝑓|𝑔⟩ = ∫ (𝑓′(𝑥) + 𝑓(0+)𝛿(𝑥) − 𝑓(𝐿−)𝛿(𝑥 − 𝐿))

∗
𝑔(𝑥)

∞

−∞

𝑑𝑥 

= ∫ 𝑓′∗𝑔
𝐿

0

+ {𝑓(0+)∗ ∫ 𝛿(𝑥)∗𝑔(𝑥)
∞

−∞

𝑑𝑥} − {𝑓(𝐿−)∗ ∫ 𝛿(𝑥 − 𝐿)∗𝑔(𝑥)
∞

−∞

𝑑𝑥} 

= ∫ 𝑓′∗𝑔
𝐿

0

+
1

2
𝑓(0+)∗𝑔(0+) −

1

2
𝑓(𝐿−)∗𝑔(𝐿−)                                                                        (13) 

 
Adding (12) plus (13): 
 

⟨𝑓|𝑃𝑔⟩ − ⟨𝑃𝑓|𝑔⟩ = 0 
 
which completes the proof. 
 

It is instructive to show ⟨𝑓|𝑃𝑛𝑔⟩ = ⟨𝑃𝑛𝑓|𝑔⟩ in a single step to illustrate the role of 𝛿-functions in higher derivatives. 
Proof #2: Suppose |𝑓⟩ and |𝑔⟩ are state vectors in the ISW. Then 𝑓′(𝑥) and 𝑔′(𝑥) are discontinuous at 𝑥 = 0 and 𝑥 = 𝐿. For the sake 
of simplicity, assume that 𝑓′(𝑥) is discontinuous only at 𝑥 = 0. (The discontinuity at 𝑥 = 𝐿 will be included later.) By (9a) we can write 
 

𝑓′′̅̅̅̅ (𝑥) = 𝑓′′(𝑥) + 𝑓′(0+)𝛿(𝑥) . 
 
Since 𝑓′′ may be discontinuous at 𝑥 = 0, we also have 
 

𝑓(3)̅̅ ̅̅ ̅(𝑥) = 𝑓(3)(𝑥) + 𝑓′′(0+)𝛿(𝑥) + 𝑓′(0+)𝛿′(𝑥) . 
 
Continuing in this fashion: 
 

𝑓(𝑛)̅̅ ̅̅ ̅(𝑥) = 𝑓(𝑛)(𝑥) + ∑ 𝑓(𝑛−𝑘−1)(0+)𝛿(𝑘)(𝑥)

𝑛−1

𝑘=0

 

= 𝑓(𝑛)(𝑥) + ∑ 𝑓(𝑛−𝑘−1)(0+)𝛿(𝑥)(−𝐷𝑥)𝑘

𝑛−1

𝑘=0

                                                (14) 
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where we have used 𝛿(𝑘)(𝑥) = 𝛿(𝑥)(−𝐷𝑥)𝑘.k (See [10], Example 1.29.) Therefore: 
 

(𝑖ℏ)−𝑛⟨𝑃𝑛𝑓|𝑔⟩ = ⟨𝑓(𝑛)̅̅ ̅̅ ̅|𝑔⟩ = ⟨𝑓(𝑛)|𝑔⟩ + ∑⟨𝑓(𝑛−𝑘−1)(0+)𝛿(𝑥)(−𝐷𝑥)𝑘|𝑔⟩

𝑛−1

𝑘=0

 

= ∫ 𝑓(𝑛)∗
𝑔

𝐿

0

+ ∑(−1)𝑘𝑓(𝑛−𝑘−1)(0+)∗

𝑛−1

𝑘=0

∫ 𝛿(𝑥)𝑔(𝑘)(𝑥)
∞

−∞

𝑑𝑥 

= ∫ 𝑓(𝑛)∗
𝑔

𝐿

0

+
1

2
∑(−1)𝑘𝑓(𝑛−𝑘−1)(0+)∗𝑔(𝑘)(0+)

𝑛−1

𝑘=0

 . 

 
If we include the discontinuity at 𝑥 = 𝐿 we obtain: 
 

(𝑖ℏ)−𝑛⟨𝑃𝑛𝑓|𝑔⟩ = ∫ 𝑓(𝑛)∗
𝑔

𝐿

0

+ ∑(−1)𝑘[𝑓(𝑛−𝑘−1)(0+)∗𝑔(𝑘)(0+) − 𝑓(𝑛−𝑘−1)(𝐿−)∗𝑔(𝑘)(𝐿−)]

𝑛−1

𝑘=0

 

= ∫ 𝑓(𝑛)∗
𝑔

𝐿

0

−
1

2
∑(−1)𝑘𝑓(𝑛−𝑘−1)∗

𝑔(𝑘)|
0+

𝐿−
𝑛−1

𝑘=0

 .                                                                                 (15) 

 
Integration by parts can be used repeatedly on the first term: 
 

∫ 𝑓(𝑛)∗
𝑔

𝐿

0

= 𝑓(𝑛−1)∗
𝑔|

0+

𝐿−

− ∫ 𝑓(𝑛−1)∗
𝑔′

𝐿

0

 

= 𝑓(𝑛−1)∗
𝑔|

0+

𝐿−

− 𝑓(𝑛−2)∗
𝑔′|

0+

𝐿−

+ ∫ 𝑓(𝑛−2)∗
𝑔′′

𝐿

0

 

= 𝑓(𝑛−1)∗
𝑔|

0+

𝐿−

− 𝑓(𝑛−2)∗
𝑔′|

0+

𝐿−

+ 𝑓(𝑛−3)∗
𝑔′′|

0+

𝐿−

− ∫ 𝑓(𝑛−3)∗
𝑔(3)

𝐿

0

 

= ⋯ 

= ∑(−1)𝑘𝑓(𝑛−𝑘−1)∗
𝑔(𝑘)|

0+

𝐿−
𝑛−1

𝑘=0

+ (−1)𝑛 ∫ 𝑓∗𝑔(𝑛)
𝐿

0

 . 

Therefore (15) gives: 
 

(𝑖ℏ)−𝑛⟨𝑃𝑛𝑓|𝑔⟩ = (−1)𝑛 ∫ 𝑓∗𝑔(𝑛)
𝐿

0

+
1

2
∑(−1)𝑘𝑓(𝑛−𝑘−1)∗

𝑔(𝑘)|
0+

𝐿−
𝑛−1

𝑘=0

                           (16) 

 

_________________ 
k In other words, ∫ 𝛿(𝑘)(𝑥)𝑓(𝑥)

𝜖

−𝜖
𝑑𝑥 = (−1)𝑘𝑓(𝑘)(0). 



 Thai Journal of Physics                                                        Vol. 37 No. 4 (2020) 158-173                                                                                       
 

 
 

 

172 
 

Conversely, repeating the same steps we obtain: 
 

(−𝑖ℏ)−𝑛⟨𝑓|𝑃𝑛𝑔⟩ = ⟨𝑓|𝑔(𝑛)̅̅ ̅̅ ̅⟩ = ∫ 𝑓∗𝑔(𝑛)
𝐿

0

−
1

2
∑(−1)𝑘𝑓(𝑘)∗

𝑔(𝑛−𝑘−1)|
0+

𝐿−
𝑛−1

𝑘=0

 . 

 
Re-index the last sum by setting 𝑚 = 𝑛 − 𝑘 − 1: 
 

(−𝑖ℏ)−𝑛⟨𝑓|𝑃𝑛𝑔⟩ = ∫ 𝑓∗𝑔(𝑛)
𝐿

0

−
1

2
∑ (−1)𝑛−𝑚−1

𝑛−1

𝑚=0

𝑓(𝑛−𝑚−1)∗
𝑔(𝑚)|

0+

𝐿−

 

= ∫ 𝑓∗𝑔(𝑛)
𝐿

0

+
(−1)𝑛

2
∑ (−1)𝑚𝑓(𝑛−𝑚−1)∗

𝑔(𝑚)|
0+

𝐿−
𝑛−1

𝑚=0

 . 

 
Equivalently: 
 

(𝑖ℏ)−𝑛⟨𝑓|𝑃𝑛𝑔⟩ = (−1)𝑛 ∫ 𝑓∗𝑔(𝑛)
𝐿

0

+
1

2
∑ (−1)𝑚𝑓(𝑛−𝑚−1)∗

𝑔(𝑚)|
0+

𝐿−
𝑛−1

𝑚=0

 .                         (17) 

 
Comparing (16) and (17) shows ⟨𝑓|𝑃𝑛𝑔⟩ = ⟨𝑃𝑛𝑓|𝑔⟩. 
 

Conclusion 
The infinite square well is usually the first problem studied after the free particle. The pedagogical soundness of this 

presentation, however, is open to question. The artificial constraints of the ISW invoke the need for mathematical methods  whose 
complexity is in inverse proportion to the ISW’s apparent simplicity. We demonstrated the equivalence of hermicity of momentum with 
integration by parts, and used the ISW problem to show how boundary conditions impact the way derivatives and integrals must be treated 
when computing inner products of the kind ⟨𝑓|𝑃𝑛𝑔⟩. More sophisticated analyses of self-adjoint operators in Hilbert spaces (Bonneau 
et al. [8] and Araujo et al. [11]) reveal even deeper complexities arising from the ISW’s boundary conditions. The ubiquitous infinite 
square well is not as simple as it seems. 
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