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Abstract

The infinite square well (ISW) is usually the first problem involving bound states studied in quantum mechanics. Although it is
straightforward to determine the stationary states and energy levels, the artificial structure of the problem leads to simple paradoxes
involving quantization and measurability of momentum. We show how the boundary conditions influence the momentum operator P, and

discover the connections between momentum, differentiation and integration, which rescue the hermicity of P and its powers P™.

Keywords: Infinite Square Well, Momentum Operator

The one-dimensional infinite square well (ISW) is discussed in virtually every quantum mechanics text as the first example of
how quantization arises from boundary conditions. Yet the ISW problem gives rise to conceptual paradoxes which can be a distraction at
the initial stage of development of the theory. For example, while energy in the ISW is quantized, momentum is neither quantized nor
measurable (even in principle), shattering the classical relation E = p?/2m. After explaining these paradoxes, we deepen our
understanding of the role of the boundary conditions by exploring the relationship between hermicity of P and the integration by parts
formula. While hermicity of P and P? are easy to establish owing to fortunate happenstances, when we try to show that P3 and higher

powers are Hermitian, we are forced to amend the conventional expressions for derivatives of the wave function.
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A Paradox

The one-dimensional infinite square well problem is defined by the potential

0, 0<x<L
Vi) = {oo, otherwise

The energy levels for a particle with mass m confined in an ISW of width L are quantized [1] with

h2m?n?
Ey=—-.
* 2ml?

If we observe and measure the particle’s energy, we obtain one of the eigenvalues E,, of the Hamiltonian operator H = P2 /2m + V (X)),
and the state vector collapses to the energy eigenstate |E,,)."

A particle in an energy eigenstate |E,,) would seem to have a definite, quantized momentum p,, = im = thnn/L.
Therefore, |E,,) should also be a momentum eigenstate |p,, ) with eigenvalues p,, = thmn/L. If |p,) is a momentum eigenstate, then
(AP)? = (P?) = (P)? = (pu|P?Ipn) — (Pnl(PY?IPn) = Pi{PnlPn) — P7(Pnlpn) = 0, which would be consistent with the wave
function (in p-space) of a momentum eigenstate, (p|p,,) = 6 (p — p,). By the uncertainty principle, therefore, AX = co. But AX < L

since the particle is confined in the well — a contradiction. This paradox is based on several misconceptions.

The Momentum Operator P = —ihD,
Energy eigenstates are not momentum eigenstates. To see this, consider a particle confined within 0 < x < L. The energy

eigenfunctions E, (x) = (x|E,,) in the x-basis [1] are:

nmx
v 2/L sin—, 0<x<L
En(x) = L : (1)

0 , otherwise

Therefore, on the open interval (0, L):

d nmx hnm
(x|P|E,) = —iha(wIZ/L smT) \/Z/L cos— #+ AJ2/L sm— (x|A|Ep).

Since P|E,) # A|E,,) for any number A, energy eigenstates are not momentum eigenstates.

a . . . . .. .
It is not necessary to make an arbitrarily precise measurement. If the precision of the measurement is
159
better than (E,, — E,,_1)/2, we know the particle’s energy is exactly E, and its state vector is |E,,)

immediately after the measurement is made.
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Momentum eigenstates |p) do not exist. Such a state would violate the uncertainty principle, as explained above. Alternatively,
suppose P has an eigenvector |p); say P|p) = p|p) where p is a real number.” The wave function P, (x) = (x|p) in the x-basis

satisfies:

— iR () = Py, (x) . @)

The solution to (2) is ¥, (x) = (2h)~Y/2e®*/M normalized to (p'|p) = §(p — p'). But Y, (x) is not supported in [0, L];
moreover, P, (x) is never zero, so it cannot satisfy the boundary conditions. Therefore, |p) is not a possible ISW state vector.

More generally, no state |1)) is allowed whose wave function in p-space ¥ (p) = (p|) is too “sharply peaked.” Specifically,
AX < L implies AP = hi/2AX = h/2L. This means ISW state vectors must have well-spread wave functions in p-space. The narrower

the well, the larger the variance in ¥ (p).

Momentum cannot be measured, even in principle. If momentum could be measured with a high degree of precision, the state
vector would collapse to an eigenvector |p) or to a state with a sharply-peaked wave function in p-space, which we have seen is not
possible. Nevertheless, any state can be expressed as a superposition of momentum pseudoeigenstates [1p) = [(p|)|p) dp — “pseudo”

because the individual eigenstates |p) are not found in the ISW. In x-space, this superposition is given by

¥ = elh = | " Yl dp = —— | " e/ (p) dp )
—00 VZTCh —00
where
(o) L 1 L )
D = = = * = — —ipx/h
B(®) = (o) ] (pl)elp) dx ] (YY) dx = — j e Px/M () dx @

These equations recapitulate the relationship between (x|1) and (p|y) as Fourier transforms.

Unique energy without unique momentum. A particle in an energy eigenstate | E,,) has a unique energy Ej,, but is a superposition
of states with different momenta. We conclude that E = p?/2m is not a correct or meaningful equation for the particle. While the

pseudoeigenstates |p) are not found in the ISW, the particle has a momentum probability density |(p|y}|? given by (4).

® Could P have an imaginary eigenvalue? Suppose P|p) = ip|p) for some p € R. Then the solution to
) isp,(x) = Ae~P*/" Sych a wave function cannot be normalized on (—00, ) either to (p’|p) = 1
1

or (p'|p) = 6(p — p"), so we rule this out. 60

¢ The support of a function f, written supp(f), is the set of x for which f(x) # 0.



ananilandlng
\’x\tiy Thai Journal of Physics Vol. 37 No. 4 (2020) 158-173

How can we understand the statement “momentum cannot be measured”? Momentum, unlike energy and position, cannot be
measured with arbitrarily high precision. Can we understand, physically, why momentum is resistant to measurement? Yes: one way to
measure a particle’s momentum with arbitrarily high precision is to scatter off the particle a photon with arbitrarily low frequency.
(Shankar [2] (p. 123) shows how to reconstruct the initial and final momenta p and p’ of a particle after collision with a photon, as a
function of the incoming and outgoing frequencies of the photon w and w’, both of which can be known exactly in principle. One finds
that w — 0 implies @' — 0 for any choice of p, which in turn implies that p — p’ can be made as small as desired.) But the frequency
of a photon trapped inside an ISW of width L is quantized with w = nmc/L (see Garrison and Chiao [3], Eq. 2.15). Therefore, the

photon’s maximum wavelength is A = 2mc/w,,, = 2L; so we cannot make a measurement in the ISW with photons of arbitrarily long

‘min

wavelength. (Fullingd [4] discusses the momentum measurement problem in a wider experimental context.)

Energy eigenfunctions in momentum space. To penetrate the conundrum of an energy eigenstate being a superposition of
momentum states, it is instructive briefly to examine the momentum probability density |[{p|E,)|?. (Liang, Zhang and Dardenne [5]
provide a thorough summary of momentum distributions in the ISW problem.) A particle in an energy eigenstate |E,,) has a wave function

in p-space:

E.(p) = (plEy) ]w< ) (x|, dt = —— JL —ipx/h g T
= = XX X = € sin x .
A A L

Evaluation of the integral gives

Eu(p) = \2a/mim1emive {(—1)" Slznaczz()p++pp§) - Slznaoép—_ppg)}

where @« = L/2h and P, = 4 | 2mE, = nnh/L = nn/Za. Squaring gives:

ooz 1 (sin?la(p +py)] | sin’la(p —p,)] 2sin[a(p — pn)] sinla(p + p,)]
|En(p)| = .

mal G T Gopyz D ® =)@ +pp)

This function has two peaks at p = +p,, (except forn = 1). Asn — oo:

d . o . .
Fulling addresses the non-measurability of momentum in the ISW by gedanken experiments such as
measuring time-of-flight, slit-and-screen diffraction and bending of paths in a magnetic field, as well as
161
scattering with other particles, and notes that “the localized nature of the experiments makes precise

momentum measurements impossible.”
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a) If a is held fixed, the shape of the peaks at +p,, = +nm/2a remains almost the same, but the peaks move further apart with
increasing n (due to increasing energy).

b) Ifn/a = (2/m)p, is held fixed, the peaks grow higher and narrower. This makes sense since @ — o (L — ) approaches
the case of the free particle.

Figures 1 and 2 show |E'n(p)|2 forn = 10,and @ = 10 and a = 20.

Figure 1 The momentum probability density |E'n(p) |2 of a particle in an energy eigenstate |E,,) forn = 10 and a = 10

Lol L

Figure 2 The momentum probability density |En (p) |2 of a particle in an energy eigenstate |E,,) forn = 10 and a = 20
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Hermicity of P

It is a postulate of quantum mechanics that observable quantities are representable as Hermitian operators [1][2]. We will see
that hermicity of P is equivalent to integration by parts (with vanishing of the boundary term), which in turn relies upon a function being
the integral of its derivative.

The fundamental theorem of calculus f; f'(t)dt = f(x) — f(a) is usually proved when f is differentiable and f"is
continuous everywhere in the domain of f. However, the energy eigenfunctions E,, (x) in (1) are not differentiable at x = 0 and x = L:
E,, (x) has a cusp at the boundaries so Ey, (x) has jump discontinuities at these points. Indeed, if |1} is any state vector in the ISW with
wave function P(x) = (x|y), its derivative ' (x) must be discontinuous at x = 0 and x = L. We want to apply the fundamental
theorem of calculus to discontinuous functions like these; therefore, we need to know the weakest conditions under which a function is
the integral of its derivative.

The theory of Lebesgue integration introduces the property of absolute continuity of a function, which is stronger than pointwise
or uniform continuity.” It is a theorem (Rudin [6], Theorem 7.18) that f: [a, b] = C is absolutely continuous if and only if f has a

L3

derivative f' “almost everywhere”, f' is integrable and

£ = f(a) + f £ s)

forall a < x < b. In other words, f is the integral of its derivative. (“Almost everywhere” means everywhere except on a set of measure
zero. A set E has measure zero if it can be covered by a finite or countable union of intervals (;, 8;) whose total length Y.(8; — @;) can
be made arbitrarily small. In other words, for any € > 0 there exists a countable collection of intervals I; = (a;, 8;) such that E € U I;
and Y(B; — a;) < €.)

Lebesgue measure and the Lebesgue integral are building blocks of integration theory (Rudin [6] is the standard reference). We
will not require any deep results of this theory here, apart from basic terminology and the theorem stated in (5), which we will take as the

definition of absolute continuity. We will assume that all wave functions and their derivatives are absolutely continuous except at a finite

° Note that )’ (x) = 0 forx < 0 and x > L. If 1’ is continuous at x = 0, then 1’ (0) = 0. Hence
Y(0) =’ (0) = 0. These initial conditions force the unique solution to any equation of the form
Y (x) + a()yY'(x) + b(x)yY(x) = c(x) to be the trivial Y(x) = 0. The Schrodinger equation
Hip = E has this form. ¥ (x) = 0 is not a physical solution to the Schrédinger equation since it cannot

be normalized. Hence 1 (0) = ¥’ (0) is not possible. The same applies at x = L.

" A function f:la, b] = Cis absolutely continuous on [a, b] if for every € > 0 there exists § > 0 such 163

that if (@y, B1), ..., (&, By) is any pairwise disjoint collection of intervals within [a, b] whose lengths

satisfy Y=, (B; — a;) < 6, then X, |f(B) — f(a)| <e.
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number of points (specifically, two). While there exist continuous functions which are differentiable almost everywhere and do not satisfy
(5), these tend to be pathological and would not occur in physical problems.® There also exist continuous functions which are not
differentiable on a set of positive measure (e.g., an interval); there are even continuous functions which are nowhere differentiable! We
will ignore such pathological examples and assume that all solutions to Schrodinger’s equation are absolutely continuous, and therefore

differentiable almost everywhere and satisfy (5).

Remarks:

a) Itis easy to see that a function v with a jump discontinuity cannot satisfy (5). Suppose v(x) has a jump discontinuity at X = ¢. Then

limfc+€v’(x) dx=0=v(c")—v(c) = leiﬁ)l(v(c +e)—v(c— e)) .

€lo c—e

Therefore, for some € > 0:

JHEU’ zv(c+e)—vic—¢).

Cc—€

If v: [a, b] — C is continuous except for a jump discontinuity at x = ¢ (a < ¢ < b), then

fabv’(x) dx = <LC-€+L<:€+ j:re)v’(x) dx

#+ (v(ic—€)—v(@) + (vic+e) —vic—e) + (v(b) —v(c+e¢))
=v(b) —v(a).

b) Suppose u, v: R — C and uv is discontinuous at x = c. (This requires only that v is discontinuous at x = ¢ and u(c) # 0.) Then
by the previous result, f:(uv)' # u(b)v(b) — u(a)v(a). Therefore, we see that uv is (absolutely) continuous on [a, b] if and

only if integration by parts is valid.

¢ The Cantor function & () is a continuous, monotone-increasing function which maps [0,1] to [0,1], is

differentiable almost everywhere, and satisfies £’ (x) = 0 (see Rudin [6], Example 7.16(b)). Define:

§2x) , ifo<x<1/2
fX)=7¢C—-2x), if1/2<x<1
0 , otherwise

164
Then f is continuous on R, satisfies f(0) = f(1) = 0, and (Pf|g) = 0 for every |g). The Cantor

function is uniformly but not absolutely continuous.
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Theorem 1: P is Hermitian.
Proof: Let |f)and |g) be arbitrary ISW state vectors, and f (x) and g(x) their wave functions in x-space. Note that continuity plus

supp(f) € [0, L] implies that £ (0) = f(L) = 0. We would like to argue:

® ? L} * *© ® I*x L} * L} 17*
fPgy= [ flming1 2 =inrg” - [ fol-ingl = [ [-infTg = erlg). ©
Since f*g is continuous on R, the integration by parts is valid. Therefore (PTf|g) = (f|P|g) = (fIPg) = (Pf|g), which implies
pt=p.

Remarks:
a) There is no contradiction in the fact that momentum p is not measurable (observable) while the operator P is Hermitian. It is a

postulate of quantum mechanics that observable quantities correspond to Hermitian operators, but the converse need not hold.

b) The relation (f|Pg) = (Pf|g) holds so long as one of the two functions f, g vanishes at +00, since only one function need vanish

to make the boundary term in (6) vanish.

¢) Eq. (6) shows that, generally speaking (not just for the ISW problem), hermicity of P is equivalent to the integration by parts formula.
Consequently, P is Hermitian on any collection of state vectors |1)) whose wave functions 1 (x) = (x|} are absolutely continuous

. . . . . _ . (o] 2
(guarantees that integration by parts is valid) and satisfy {(+00) = 0 (boundary term vanishes). Note that f_wll,b(x)l dx < o

does not imply that 1 (£o0) = 0, as the example (x) = exp(—x? sin? 7x) in Figure 3 demonstrates.

\/ | |

0:5

UL

0 1 2 3 4 5 6 7

Figure 3 The function Y (x) = exp(—x? sin? mx) is square integrable but does not vanish at £
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d) Eq. (6) can hold with both sides = t00. Example: let f(x) = 4/x(L —x) if 0 < x < L, and f(x) = 0 otherwise. Note that f is
continuous on [0, L] and f' € L[0,L]. But f' & L?[0, L], therefore (Pf|Pf) = 0.1f g = Pf, then {Pf|g) = (f|Pg) = ." In

this case 2m(H) = (f|P?|f) = oo, so the particle would have infinite energy, which is not physically realistic.

Hermicity of P?
Hermicity of H = P?/2m + V (X) is expected, since H corresponds to an observable (the total energy). Indeed, hermicity of

P2 should follow from hermicity of P, since:
([P*1Ty| = WIP* = (PTy|P = (PY|P = (PTPY| = (P*Y].

A possible objection to this argument is that (P is not a bra (equivalently: |Pi) is not a ket) in the ISW, since the wave function
(x|Py) = —ihp’(x) is not defined at x = 0 and x = L. (This is consistent with the fact that the particle reflects off the boundary and
has no well-defined momentum at these points.) So |Py) has no projection onto the x-basis vectors |x = 0) and |x = L). Therefore, is
the expression (P |P well defined?

One might dismiss these objections on the grounds that inner products are integrals (¢ |y) = fOL ¢*(x)Y(x) dx; therefore, the
definition (or lack thereof) of the integrands at finite number of points does not matter. But herein lies the rub. While the discontinuities
of ' (x) at x = 0 and x = L do not affect its properties as an integrand, we will see that "' (x) includes factors of §(x) and 6 (x — L)
to preserve the relation [ 1)"" = ', and these do affect the properties of 1"’ as an integrand.

To illustrate the problem in concrete and dramatic fashion, consider an ISW with walls at x = 0 and x = 1. Let |f) and | g)
be (unnormalized) state vectors with wave functions f(x) = (1 — x) arctan x and g(x) = x(1 — x) on the interval 0 < x < 1, and

vanishing elsewhere. We calculate:

2r+In2 -7
(FIPg) = (Pflg) = ————
1- 1n2
(fIP?g) = (P*flg) = ——5—
but:
/4 — 1

0=(fIP*g) #(P°flg) =~

This seems to indicate (f|P3g) # (P3f|g). Moreover, if the particle’s state is |g), then we can compute the expected values:

(H) =(glHg) = h*/6m
(H?) = (g|H?g) = 0

166

" We will deliberately abuse notation and refer to functions Pf and Pf (x) when we mean {(x|Pf).
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which yields the absurd result AH? = (H?) — (H)? = —h*/36m?2. In addition, (H?) = (g|H?|g) = (Hg|Hg) = h*/m?; hence
(Hg|Hg) # (g|H?g), which would suggest that H is not Hermitian. (Belloni and Robinett' [7] and Bonneau et al.’ [8] discuss similar
contradictions.) These results indicate that something is wrong with our inner product calculations. In the next section we will identify
the oversight when we prove the hermicity of P™. But first we dispense with the case n = 2, which can be done quickly owing to a stroke

of luck.

Theorem 2: P? = —h2(D,)? is Hermitian.

Proof: As in (6), we would like to argue that

S {f1pg) = f fgt

_ J fl*gl ‘_ fl*g j fll*g —_ _ szlg) (7)

Both sets of boundary terms vanish because f *and g are supported in [0, L]. But the integration by parts formula f (w)' = f uv' +
f u'v requires that uv be absolutely continuous. In the first integration by parts uv = f*g’, and in the second integration by parts uv =
f"*g. Since f'and g'are discontinuous at x = 0 and x = L, we are rightly concerned that f*g’ and f'*g might be discontinuous at the
boundaries. Fortunately, f *and g both vanish at the boundaries; therefore, f*g' and f'*g are continuous. Consequently, f*g’ and f'*g

are the integrals of their derivatives, and the integration by parts is correct.

Higher powers of P

Hermicity of P™ should follow from hermicity of P using the relation (4,4, - A,)T = AnJr ~-A2TA1T, which implies
Pt = pt" = P™ But as noted in the previous section, | Py) is not an ISW state vector and the validity of this argument is not clear. In
proving that P2 is Hermitian we were lucky that the boundary terms vanished owing to the presence of at least one factor that vanished
at the boundaries of the well. When we try to show that higher powers of P are Hermitian, we find ourselves integrating f(uv)’ =

Juv' + [ u'v where both factors in the product uv are discontinuous at the boundaries.

" Belloni and Robinett demonstrate the same contradiction when computing the expected value of even
powers of the momentum operator (E,,|P27|E,,) in an energy eigenstate, due to incorrect treatment of

the boundaries.

! Bonneau, Faraut, and Valent distinguish between Hermitian and self-adjoint operators. They state that

P = —ihD, is Hermitian on the set D(P) = {¢, ¢' € L2[0,L]; ¢$(0) = ¢(L) = 0} but not self-
167
adjoint, since PT = —ihD, has the same formal expression but acts on a different space of functions

(without boundary conditions).
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For example, if we try to argue that (P3f|g) = (P%f|Pg) = (Pf|P?g) = (f|P3g), the middle equality is equivalent to f_mm f'"g =

- ffooo f"*g"" , which would follow from integrating by parts

f g+ f frg" = fiawyrifw{;=o ®)

Ix I

if the second equality in (8) were valid. But f'* g’ is generally not continuous at x = 0 and x = L since both f'* and g’are discontinuous

at these points. Therefore, (8) is generally false when f'* and g'represent conventional derivatives.

Remarks:

a) Suppose ¢: R — C is continuous except at X = ¢ where ¢ has a jump discontinuity. We define the “completed derivative”:

d'(x) = ¢'(x) + (p(c*) — Pp(c))(x — ). (9a)
This ensures that
C+€_
i [ 0 dx = ¢ - 9.
€lo c—e
Note that ¢'(x) = ¢'(x) everywhere except at x = c. The supplementary §-function “defines” ¢’ (x) at x = ¢ so that ¢ is the

integral of its derivative. Similarly, if ¢p: R — C is supported in [0, L], is continuously differentiable on the open interval [0, L], and

has jump discontinuities at x = 0 and x = L, then we can write the completed derivative a(x) as

(%) = @' (x) + $(0")8(x) — (LS (x — L). (9b)

b) If ¢:R — C is continuous except at x = a and x = b where ¢ has jump discontinuities, we can calculate straightforwardly

b . . . . . . . o
fa ¢'(x)dx = p(b™) — ¢p(a™). There is no need to introduce §-functions since we are not integrating across the discontinuity.

c) When ¢(x) is discontinuous at x = ¢, we take

@ 1
| s - ) =58 + 9

168
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since &§(x) is an even function. This can lead to contradictions (Griffiths and Walborn [9]); however, identical terms of this type will

appear in the expressions for both (Pf|g) and (f|Pg), so the specific definition adopted is immaterial when proving the equality.
Now we come to the main theorem of this section.

Theorem 3: P™ is Hermitian for all n = 1. We will give two proofs.

Proof #1: It suffices to prove that

{fIPg) = (Pflg) (10

when f = Pl and g = P™y for some ISW state vectors ) and |y). Once this is established, by successive applications of (10) we
P g Y P Y Y pp

obtain
(FIP"g) = (PfIP""1g) = (P*f|P""2g) = - = (P"1 f|Pg) = (P"f| ).
Since P*¥ = (—ihD,)¥, both f = Pl and g = P™y may be discontinuous at x = 0 and x = L. By (9b):
700 = g0+ g(0)8() — g8 Cx — ). (1
We compute:
~ 41y = [ g ax
- [ Zf(x)*(g’(x) + 908 — g — 1)) d
- f g+ {g(o+) | Zf(x)*é(x) dx} - {g(L-) | Zf(x)*S(x -1 dx}

=f'g

- g+ L0 90" — 2 Fy 91
RS g S fL)g

L 1 1
== [ £rg 437090 = 3£ g0 (12

169
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Notice that the inner product has three pieces: a boundary term, an integral over the well, and a term arising from the 8-functions that

belong to g'. Conversely:

1 ® N
F P = [ (760 + FO98() - A5G - 1)) g (o) dx
L o )
= f frg+ {f<o+)* f 5(0)°g(x) dx}— {f(L-)* f 5(x - L) g(x) dx}
0 —00 —00

L 1 1
= [ £rg+37 0900 -5 £ g 13
0

Adding (12) plus (13):

(fIPg) —(Pflg) =10

which completes the proof.

It is instructive to show (f|P™g) = (P™f|g) in a single step to illustrate the role of §-functions in higher derivatives.
Proof #2: Suppose |f) and |g) are state vectors in the ISW. Then f'(x) and g'(x) are discontinuous at x = 0 and x = L. For the sake

of simplicity, assume that f'(x) is discontinuous only at x = 0. (The discontinuity at x = L will be included later.) By (9a) we can write

fre) = f"0) + f1(07)8(x) .

Since f'' may be discontinuous at x = 0, we also have

FO@) = FO0) + £(01)8(x) + £(07)8" (x) .
Continuing in this fashion:

n—-1

F6) = F0G) + ). FOkD (0180 )
k=0

n-1

= FM@ + ) FOED DS (Do (1)
k=0

170
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where we have used 8 ® (x) = §(x)(—=D,)*.* (See [10], Example 1.29.) Therefore:

@0 P"Flg) = (FP]g) = (F™]g) + D {FOD(O0M)80(-D¥]g)
k=0
L n-l o
= | f™ g+ ) DO [ 5()g@(x) dx
Jreer, J.

L n—-1
. 1
N RS VA COREICOY
0 k=0
If we include the discontinuity at x = L we obtain:

(in)™P"flg) = f f®™ g+ Z(—l)k[f(n_k_l)(0+)*g(k)(0+) — fOk=D (L) g (L)
0 k=0

L 1 n—-1
* L 1* L™
= f f™g - EZ(—l)"f(” kg @]
0 k=0
Integration by parts can be used repeatedly on the first term:

L _ L
* Ak L —1)* s
ff(”)y=f(" 1)g|0+—] foD'g

0 0

_]c(n 1)* _f(n 2)* |0 f f(n 2)* g
= p gl pne2 |, g g f F-3)" g @)
n-1 L
* L™
= ) DR g [ pg,
k=0 0

Therefore (15) gives:

L 1 n-1 . -
(0P flg) = (1" [ Fg® 45 Y (CDRFOR g
0 k=0

“In other words, f_ee W) f(x) dx = (—1)kF®(0).

(1s)

(16)
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Conversely, repeating the same steps we obtain:
L 1 n-1
ih) ™ * * LT
(i) ™(fIP"g) = {f|g®) :f frg™ _EZ(_I)kf(k) gk 1)|0+
0 k=0

Re-index the last sum by settingm =n — k — 1:

[UnN

L n—
i) Mf1Pg) = [ fg™ —EZ Lyt plnemeny g
0 :

n—

* L~
Z 1)mf(n—m—1) g(m)|0+

m=0

Tl

f frgm o+
Equivalently:
L 1n
. L~
()P g = (<17 [ g 45 ) (g | (7)
0 =

Comparing (16) and (17) shows (f|P"g) = (P"f|g).

Conclusion

The infinite square well is usually the first problem studied after the free particle. The pedagogical soundness of this
presentation, however, is open to question. The artificial constraints of the ISW invoke the need for mathematical methods whose
complexity is in inverse proportion to the ISW’s apparent simplicity. We demonstrated the equivalence of hermicity of momentum with
integration by parts, and used the ISW problem to show how boundary conditions impact the way derivatives and integrals must be treated
when computing inner products of the kind (f|P™g). More sophisticated analyses of self-adjoint operators in Hilbert spaces (Bonneau
et al. [8] and Araujo et al. [11]) reveal even deeper complexities arising from the ISW’s boundary conditions. The ubiquitous infinite

square well is not as simple as it seems.
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