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บทคดัย่อ  

 ขั้นตอนวิธีหวงั-ลนัเดาเป็นหน่ึงในวิธีมอนติคาร์โลท่ีใชส้ร้างความหนาแน่นสถานะจากการเดินสุ่มในปริภูมิพลงังาน ความ
หนาแน่นสถานะซ่ึงในเร่ิมตน้นั้นเป็นปริมาณท่ีไม่ทราบค่า จะถูกปรับแก้ระหว่างกระบวนการเดินสุ่มจนกระทัง่เป็นไปตามเกณฑ์ท่ี
ก าหนด ดว้ยวิธีดงักล่าวท าให้เราค านวณปริมาณอุณหพลศาสตร์ไดอ้ย่างแม่นย  าโดยไม่ตอ้งประสบปัญหาการเขา้สู่สมดุลอยา่งเช่ืองชา้
บริเวณจุดวิกฤติ เน่ืองจากความหนาแน่นสถานะไม่ข้ึนกบัอุณหภูมิ เพ่ือสาธิตขั้นตอนวิธีหวงั-ลนัเดา เราใชว้ิธีการดงักล่าวกบัแบบจ าลอง
คิวสเตทพอตส์ดว้ย 𝑞 = 10 สถานะ บนแลตทิซส่ีเหล่ียมในสองมิติ แบบจ าลองจะแสดงการเปล่ียนเฟสล าดบัหน่ึงส าหรับ  𝑞 > 4 จากผล
การจ าลอง ความจุความร้อนของระบบท่ีมีขนาดจ ากดั ค  านวณจากความหนาแน่นสถานะ จะเขา้สู่ค่าสูงสุดท่ีอุณหภูมิวิกฤติ เม่ือวิเคราะห์
ผลของขนาดระบบ อุณหภูมิวกิฤติในลิมิตอุณหพลศาสตร์จะสามารถหาค่าได ้

ค าส าคญั: ขั้นตอนวธีิหวงั-ลนัเดา, แบบจ าลองพอตส์, วธีิมอนติคาร์โล 
 

Abstract 

Wang-Landau algorithm is a variant of Monte Carlo methods used to generate the density of states by performing random walks 

in the energy space. The density of states, an initially unknown parameter, is modified during the random walk process until criteria are 

met. This method enables us to calculate the thermodynamic variables accurately without encountering the critical slowing down near 

the critical point as the density of states is independent of temperature. To illustrate the Wang-Landau algorithm, we apply the method to 
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the q-state Potts model with 𝑞 = 10 states on a two-dimensional square lattice. The model exhibits a first-order phase transition for 𝑞 >

4. From simulation results, the heat capacity of finite size systems, calculated from the density of states, reaches its maximum value at 
the critical temperature. By analyzing the finite size effect, the critical temperature in the thermodynamic limit is obtained. 

Keywords:  Wang-Landau algorithm, Potts model, Monte Carlo method 

 

เน้ือหาของฟิสิกส์เชิงสถิติสามารถสรุปใหก้ระชบัผา่นเพียงสมการเดียว คือ 
 

𝑍 = ∑ e−𝐸𝑎/𝑘𝐵𝑇
𝑎       (1) 

 
โดยท่ีฟังก์ชนั 𝑍 มีช่ือเรียกว่า ฟังก์ชนัแบ่งส่วน (Partition function) หาไดจ้ากผลรวมของสถานะ 𝑎 มีพลงังาน 𝐸𝑎 ของทุก ๆ สถานะท่ี
เป็นไปไดท้ั้งหมด เม่ือระบบอยูใ่นสมดุลความร้อนกบัส่ิงแวดลอ้มท่ีอุณหภูมิ  𝑇 ส่วน 𝑘𝐵 คือ ค่าคงท่ีโบลตซ์มนัน์ ขอ้มูลทั้งหมดของระบบ
ถูกรวบรวมไวใ้นฟังกช์นัแบ่งส่วน ยกตวัอยา่งเช่น พลงังานอิสระเฮลม์โฮลทซ์ (Helmholtz free energy) หาไดจ้าก 

 
𝐹 = −𝑘𝐵𝑇 ln 𝑍      (2) 
 

อยา่งไรก็ตาม มีระบบเพียงไม่ก่ีระบบเท่านั้นท่ีสามารถเขียนฟังกช์นัแบ่งส่วนใหอ้ยูใ่นรูปท่ีกระชบัได ้และแน่นอนวา่ส่วนใหญ่ก็
เป็นเน้ือหาท่ีอยูใ่นหนงัสือฟิสิกส์เชิงสถิติ ส าหรับระบบส่วนใหญ่ท่ีอนุภาคมีอนัตรกริยาต่อกนั ฟังก์ชนัแบ่งส่วนตอ้งอาศยัการประมาณ
แทบทั้งส้ิน 

ส าหรับการประมาณโดยใช้คอมพิวเตอร์เขา้มาช่วยค านวณ หน่ึงในวิธีท่ีไดรั้บความนิยมคือ วิธีมอนติคาร์โล (Monte Carlo 
method) [1] ใจความหลกัของวธีิมอนติคาร์โลคือ ใชเ้ลขสุ่ม (เทียม) เพ่ือส ารวจสถานะของระบบท่ีเป็นอิสระต่อกนัใหไ้ดม้ากท่ีสุดเท่าท่ีจะ
ท าได ้โดยหวงัวา่จ านวนสถานะท่ีเป็นอิสระต่อกนัเหล่าน้ี จะเป็นตวัแทนท่ีดีของสถานะทั้งหมดของระบบ วิธีท่ีง่ายท่ีสุดคือ สร้างสถานะ
สุ่มมาจ านวน 𝑁 สถานะ แต่ละสถานะ 𝑖 จะใหป้ริมาณของระบบท่ีเราสนใจเท่ากบั  𝐴𝑖  ค่าเฉล่ียของปริมาณน้ีจึงประมาณไดว้า่ 

 
〈𝐴𝑖〉𝑒𝑠𝑡 =

1

𝑁
∑ 𝐴𝑖

𝑁
𝑖=1 ≈ 〈𝐴𝑖〉                                (3)  

 
เพ่ือให้ค่าประมาณ 〈𝐴𝑖〉𝑒𝑠𝑡 ใกลเ้คียงกบัค่าเฉล่ียจริง 〈𝐴𝑖〉 มากท่ีสุด จ านวนสถานะสุ่มท่ีสร้างข้ึนมาตอ้งมีจ านวนมาก ๆ 𝑁 → ∞ ถา้
จ านวนสถานะสุ่ม 𝑁 มีค่านอ้ย ๆ สถานะท่ีไดอ้าจจะไม่เป็นตวัแทนท่ีดีของระบบ ส าหรับวิธีสร้างสถานะสุ่มท่ีดีกวา่คือ การสุ่มตวัอยา่งท่ี
ส าคญั (Importance sampling) ซ่ึงมีหลากหลายรูปแบบ ยกตวัอยา่งเช่น การสุ่มตวัอยา่งท่ีส าคญัแบบเมโทรโปลิส (Metropolis importance 
sampling) เม่ือรวมวิธีมอนติคาร์โลกบัการสุ่มตวัอย่างท่ีส าคญั เราสามารถจ าลองระบบท่ีอุณหภูมิ  𝑇 ต่าง ๆ ได ้โดยทัว่ไปแลว้ สถานะ
สมดุลสุดท้ายของระบบจะไม่ข้ึนกับสถานะเร่ิมต้น ถ้าระบบวิวฒัน์ไปโดยใช้เวลา  𝑡 ≫ 𝜏 นานกว่าเวลาท่ีระบบใช้ผ่อนคลาย 𝜏 
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(Relaxation time) มาก ๆ ดงันั้น ระยะเวลาท่ีใชใ้นการจ าลองทางคอมพิวเตอร์โดยวิธีดงักล่าวนอกจากจะข้ึนอยู่กบัจ านวนสถานะสุ่ม 𝑁 
แลว้ ยงัข้ึนอยูก่บัเวลาผอ่นคลายของระบบ 𝜏 ดว้ยเช่นกนั ส าหรับระบบท่ีมีการเปล่ียนเฟสล าดบัสอง (Second-order phase transition) ผ่าน
อุณหภูมิวิกฤต (Critical temperature)  𝑇𝑐  เวลาผ่อนคลาย 𝜏 จะสเกลตามผลต่างอุณหภูมิเทียบกบัอุณหภูมิวิกฤตเป็นไปตามความสัมพนัธ์ 
[2]  
 

𝜏 ∝ |𝑇 − 𝑇𝑐|−𝜈𝑧              (4) 
 

โดยท่ี ν และ 𝑧 เป็นเลขช้ีก าลงัวิกฤต (Critical exponents) เม่ือขนาด 𝐿 ของระบบลู่เขา้สู่ลิมิตอุณหพลศาสตร์ 𝐿 → ∞ เวลาผ่อนคลายจะมี
ค่าเป็นอนนัตท่ี์อุณหภูมิวิกฤติดงักล่าว ส าหรับระบบอ่ืน ๆ ท่ีมีเฟสร่วมหลายเฟส (Coexisting phases) ท่ีจุดเปล่ียนเฟสล าดบัหน่ึง (First-
order phase transition) หรือระบบท่ีมีภูมิพลงังาน (Energy landscape) ท่ีซับซ้อน เช่น แบบจ าลองสปินกลาส (Spin glass model) การท่ี
ระบบจะขา้มก าแพงศกัยจ์ากเฟสหน่ึงไปยงัอีกเฟสหน่ึงเป็นเหตุการณ์ท่ีมีโอกาสเกิดข้ึนไดน้อ้ย ท าใหต้อ้งเสียเวลามากในการจ าลองระบบ  
เพ่ือท่ีจะขา้มปัญหาเหล่าน้ี จ าเป็นตอ้งใชเ้ทคนิคท่ีซบัซอ้นข้ึน หรือไม่ก็หาทางเลือกอ่ืนท่ีแตกต่างออกไป 

หวงัและลนัเดา [3,4] ไดน้ าเสนอวิธีมอนติคาร์โลอีกวิธีหน่ึงท่ีสามารถแกปั้ญหาขา้งตน้ได ้โดยการหาความหนาแน่นสถานะ 
(Density of states)  ของระบบท่ีพลงังาน 𝐸 ใด ๆ โดยตรง ค่าเฉล่ียของปริมาณมหภาคท่ีเป็นฟังก์ชนัของพลงังาน 𝐸 ท่ีอุณหภูมิใด ๆ ก็จะ
สามารถหาไดจ้ากความหนาแน่นสถานะดงักล่าว ขั้นตอนวิธีหวงั-ลนัเดาไดถู้กน าไปปรับปรุงและประยกุต์ใชอ้ย่างกวา้งขวาง ตวัอย่าง
บทความท่ีศึกษาขั้นตอนวิธีหวงั-ลนัเดา เช่น การประยุกต์ใช้กับระบบท่ีต่อเน่ือง [5] และระบบท่ีมีตวัแปรบ่งบอกระเบียบ (Order 
parameter) หลายตวัแปร [6] รวมถึงการปรับปรุงขั้นตอนวิธีให้มีประสิทธิภาพยิ่งข้ึน [7,8] และการแก้ปัญหาบริเวณขอบของความ
หนาแน่นสถานะ [9] นอกจากจากน้ี ขั้นตอนวิธีหวงั-ลนัเดายงัถูกน าไปใชก้บัแบบจ าลองต่าง ๆ เช่น เพ่ือหาประจุศูนยก์ลาง (Central 
charge) ในทฤษฎีสนามคงแบบ (Conformal field theory) [10] หาเอนโทรปีของระบบแม่เหล็กแอนติเฟร์โรเจือจางโดยใช้แบบจ าลอง     
ไอซิง (Ising model)  [11] หาแผนภาพสถานะของแบบจ าลองพอตส์บนแลตทิซสามเหล่ียม [12] และศึกษาจุดวิกฤติในแบบจ าลองบลูม- 
กาเปล (Blume-Capel model) [13] หรือแมก้ระทัง่น าไปใชเ้ป็นขั้นตอนวธีิหาค่าเหมาะท่ีสุด (Optimization algorithm) [14]  

ส าหรับวตัถุประสงคข์องบทความน้ีคือ น าเสนอวิธีการจ าลองทางคอมพิวเตอร์ทางเลือกอีกวิธีการหน่ึง เพ่ือให้ผูอ่้านท่ีมีความ
สนใจในดา้นน้ีไดน้ าไปประยกุตใ์ชง้าน โดยจะเนน้เฉพาะส่วนส าคญัของขั้นตอนวิธีหวงั-ลนัเดา เม่ือผูส้นใจสามารถเขียนแบบจ าลองและ
เปรียบเทียบผลไดแ้ลว้ ก็จะเป็นเร่ืองง่ายท่ีจะสร้างขั้นตอนวธีิหวงั-ลนัเดาท่ีซบัซอ้นข้ึนไปอีก 
 
  ขั้นตอนวธีิหวงั-ลนัเดา 
 ขั้นตอนวธีิหวงั-ลนัเดา (Wang-Landau algorithm) [3,4] เป็นขั้นตอนวธีิมอนติคาร์โลท่ีหาความหนาแน่นสถานะ  𝑔(𝐸) ส าหรับ
พลงังาน 𝐸 ใด ๆ เม่ือรู้ความหนาแน่นสถานะ ก็สามารถค านวณฟังกช์นัแบ่งส่วนไดโ้ดยตรง เป็นไปตามสมการ (1) 
 

𝑍 = ∑ e−𝐸𝑎/𝑘𝐵𝑇
𝑎 = ∑ 𝑔(𝐸)e−𝐸/𝑘𝐵𝑇

𝐸      (5) 
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มีความน่าจะเป็นท่ีจะเจอระบบมีพลงังาน 𝐸 เท่ากบั  
 

𝑝(𝐸) = 𝑔(𝐸)e−𝐸/𝑘𝐵𝑇/𝑍               (6) 
 

ท าใหป้ริมาณของระบบ 𝐴(𝐸) สามารถหาค่าเฉล่ียไดจ้าก 
 

〈𝐴(𝐸)〉 = ∑ 𝑝(𝐸)𝐴(𝐸)𝐸                            (7) 
 

เพ่ือท่ีจะหาความหนาแน่นสถานะ 𝑔(𝐸) จินตนาการวา่มีการเดินแบบสุ่ม (Random walk) ในปริภูมิพลงังาน (Energy space) ทุก
พลงังานจะถูกเยีย่มเยยีนในจ านวนท่ีเท่ากนั ถา้ความน่าจะเป็นในการเดินแบบสุ่มไปเยี่ยมพลงังานดงักล่าวแปรผนัตรงกบั 1/𝑔(𝐸) การท่ี
พลงังานทุกพลงังานถูกเยี่ยมเยียนในจ านวนท่ีเท่ากนั จะท าให้ฮิสโทแกรมพลงังานนั้นเรียบ บางคร้ังจึงเรียกขั้นตอนวิธีหวงั-ลนัเดาวา่เป็น
วธีิฮิสโทแกรมเรียบ (Flat histogram method) เน่ืองจากในการจ าลองเร่ิมแรกนั้น ยงัไม่ทราบความหนาแน่นสถานะท่ีถูกตอ้ง ดงันั้นใจความ
หลกัของขั้นตอนวิธีหวงั-ลนัเดาก็คือ สร้างวิธีปรับเปล่ียนความหนาแน่นสถานะระหวา่งการเยี่ยมเยียน จนท าให้ฮิสโทแกรมพลงังานนั้น
เรียบ  

สมมุติวา่ระบบอยูใ่นสถานะเร่ิมตน้ 𝑚 มีพลงังาน 𝐸𝑚 สร้างสถานะทดลองแบบสุ่ม 𝑛 มีพลงังาน 𝐸𝑛  ความน่าจะเป็นท่ีจะเดินสุ่ม
ไปเยีย่มสถานะทดลอง 𝑛 มีค่าเท่ากบั 

 

𝑝(𝐸𝑚 → 𝐸𝑛) = min [𝑔(𝐸𝑚)/𝑔(𝐸𝑛), 1]                    (8) 
 

ถา้ความน่าจะเป็น 𝑝(𝐸𝑚 → 𝐸𝑛) ถูกยอมรับ ก็จะเดินสุ่มไปเยี่ยมสถานะทดลอง 𝑛 จริง ท าให้สถานะสุดทา้ย 𝑓 ของระบบเปล่ียนไปเป็น
สถานะ 𝑓 = 𝑛 ท่ีมีพลงังาน 𝐸𝑓 = 𝐸𝑛 ในทางตรงกนัขา้ม ถา้ความน่าจะเป็นดงักล่าวถูกปฏิเสธ ก็จะไม่เดินสุ่มไปเยี่ยมสถานะทดลองนั้น 
แต่จะไปเยี่ยมสถานะเร่ิมตน้ 𝑓 = 𝑚 มีพลงังาน 𝐸𝑓 = 𝐸𝑚 แทน เม่ือสถานะสุดทา้ย 𝑓 ถูกเยี่ยมเยียน ก็จะปรับความหนาแน่นสถานะเป็น 
𝑔(𝐸𝑓) ← 𝑘𝑔(𝐸𝑓) และปรับฮิสโทแกรมพลงังานเป็น ℎ(𝐸𝑓) ← ℎ(𝐸𝑓) + 1 เม่ือ 𝑘 = 𝑘0 > 1 เป็นค่าคงท่ีเร่ิมตน้ การเดินสุ่มไป
เยี่ยมสถานะต่าง ๆ จะด าเนินต่อไป จนกระทัง่ฮิสโทแกรมพลงังานเรียบ ก็จะปรับค่าคงท่ี 𝑘 ← √𝑘 และตั้งค่า ℎ(𝐸) = 0 ใหม่ ส าหรับ 
ทุก ๆ ค่า 𝐸 หลงัจากนั้นเร่ิมกระบวนการเดินสุ่มใหม่ จนกระทัง่ค่าคงท่ี 𝑘 ≤ 𝑘𝑓 เป็นไปตามเง่ือนไขท่ีก าหนด เป็นอนัส้ินสุดกระบวนการ
เดินสุ่ม พร้อมกบัไดค้วามหนาแน่นสถานะ 𝑔(𝐸) ท่ีตอ้งการ เกณฑ์ท่ีบอกว่าฮิสโทแกรมพลงังานเรียบ อาจก าหนดไดว้่า ℎ(𝐸) ≥ 𝑐ℎ̅ 
ส าหรับทุก ๆ ค่า 𝐸 เม่ือ ℎ̅ คือ ค่าเฉล่ียฮิสโทแกรมและ 0 ≤ 𝑐 ≤ 1 คือ ตวัแปรท่ีบ่งบอกความเรียบของฮิสโทแกรม เช่น ถา้ 𝑐 = 0.8 

หมายความวา่ ℎ(𝐸) ของทุก ๆ ค่า 𝐸 มีค่ามากกวา่หรือเท่ากบั 80% ของค่าเฉล่ียฮิสโทแกรม ขั้นตอนวธีิหวงั-ลนัเดาสามารถสรุปไดด้งัน้ี 
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1) ก าหนดค่าเร่ิมตน้ ℎ(𝐸) = 0, 𝑔(𝐸) = 1 ส าหรับทุก ๆ ค่า 𝐸 ก าหนดค่าคงท่ี 𝑘0,  𝑘𝑓  และค่าคงท่ี 𝑐 ก าหนดสถานะเร่ิมตน้ 𝑚 
ของระบบ  

2) ส าหรับล าดบั  𝑖 = 0, 1, 2, 3, …  ท่ี  𝑘𝑖 > 𝑘𝑓 
2.1) สร้างสถานะทดลอง 𝑛 แบบสุ่ม  
2.2) ค านวณความน่าจะเป็นท่ีจะเยีย่มสถานะทดลอง 𝑝(𝐸𝑚 → 𝐸𝑛) = min [𝑔(𝐸𝑚)/𝑔(𝐸𝑛), 1] 
2.3) สร้างเลขสุ่ม 0 < 𝑟 < 1 ถา้  𝑝(𝐸𝑚 → 𝐸𝑛) > 𝑟  ไปเยี่ยมสถานะทดลอง 𝑛 สถานะสุดท้ายของระบบคือ 𝑓 = 𝑛 มี

พลงังาน 𝐸𝑓 = 𝐸𝑛 
2.4) ถา้ 𝑝(𝐸𝑚 → 𝐸𝑛) ≤ 𝑟  ไปเยีย่มสถานะเร่ิมตน้ 𝑚 สถานะสุดทา้ยของระบบคือ 𝑓 = 𝑚 มีพลงังาน 𝐸𝑓 = 𝐸𝑚 
2.5) ปรับความหนาแน่นสถานะเป็น 𝑔(𝐸𝑓) ← 𝑘𝑖𝑔(𝐸𝑓) และปรับฮิสโทแกรมพลงังานเป็น ℎ(𝐸𝑓) ← ℎ(𝐸𝑓) + 1 
2.6) ทดสอบวา่ฮิสโทแกรมพลงังานเรียบหรือไม่ ถา้  ℎ(𝐸) ≥ 𝑐ℎ̅ ส าหรับทุก ๆ ค่า 𝐸 ปรับค่าคงท่ี  𝑘𝑖+1 ← √𝑘𝑖 และตั้งค่า 

ℎ(𝐸) = 0 ใหม่ แลว้ไปยงัขอ้ 2) 
2.7) ถา้ ℎ(𝐸) < 𝑐ℎ̅ ส าหรับบางค่า 𝐸 ไปยงัขอ้ 2.1) 

3) ถา้ 𝑘𝑖 ≤ 𝑘𝑓  ส้ินสุดกระบวนการเดินสุ่ม 
 เพื่อสาธิตการประยกุตใ์ชง้านวธีิหวงั-ลนัเดาในระบบท่ีมีเฟสร่วมหลายเฟสท่ีจุดเปล่ียนเฟสล าดบัหน่ึง จะศึกษาแบบจ าลองระบบ
ทางแม่เหลก็ท่ีเรียกวา่ แบบจ าลองพอตส์ (Potts model) ในสองมิติ 
 
  แบบจ าลองพอตส์ 
 แบบจ าลองพอตส์ หรือแบบจ าลองคิวสเตทพอตส์ (𝑞-state Potts model) เป็นแบบจ าลองท่ีถูกสร้างข้ึนมาเพ่ือใชศึ้กษาสมบติั  
ทางแม่เหลก็ของระบบท่ีประกอบดว้ยสปินท่ีมีอนัตรกริยาต่อกนั ฮามิลโตเนียนของระบบเม่ือไม่มีสนามแม่เหลก็ภายนอกสามารถเขียนได้
เป็น [15] 
 

𝐻 = −𝐽 ∑ 𝛿𝑠𝑖, 𝑠𝑗〈𝑖𝑗〉                                    (9) 
 

สปิน 𝑠𝑖 =  1, 2, 3, … , 𝑞 มีสถานะได ้𝑞 สถานะ ท่ีแตกต่างกนั สัญลกัษณ์ 𝛿𝑠𝑖, 𝑠𝑗
 แทนโครเนกเกอร์เดลตา เม่ือสปิน 𝑠𝑖 และสปิน 𝑠𝑗 ท่ี

เป็นเพื่อนบา้นใกลสุ้ด (Nearest neighbor) มีสถานะเหมือนกนั พลงังานระหวา่งพนัธะมีค่าเท่ากบั −𝐽  และมีค่าเท่ากบั 0 ถา้สปิน 𝑠𝑖 และ
สปิน 𝑠𝑗 มีสถานะท่ีต่างกนั โดยมีค่าคงท่ี  𝐽 > 0 แทนความแรงของพนัธะ สังเกตวา่ ผลรวมจะคิดเฉพาะสปินเพื่อนบา้นใกลสุ้ด 𝑠𝑗 ของ
สปิน 𝑠𝑖 เท่านั้น ระบบมีสถานะพ้ืนท่ีสมมูลกันได้ 𝑞 สถานะ ท่ีสปินทุกตวัในระบบมีสถานะ 𝑞 เหมือนกัน เม่ือ 𝑞 = 2 แบบจ าลอง           
พอตส์จะเหมือนกบัแบบจ าลองไอซิง และเม่ือ 𝑞 → ∞ แบบจ าลองพอตส์จะเหมือนกบัแบบจ าลองเอก็ซ์วาย (XY model) 

ส าหรับระบบสปินบนแลตทิซส่ีเหล่ียมในสองมิติ การเปล่ียนเฟสแม่เหล็กจะเป็นการเปล่ียนเฟสล าดบัสองเม่ือ 𝑞 ≤ 4 และจะ
เป็นการเปล่ียนเฟสล าดบัหน่ึงเม่ือ 𝑞 > 4 อุณหภูมิวกิฤตส าหรับ 𝑞 = 2 และ 𝑞 ≥ 4  มีค่าเท่ากบั 
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𝑘𝐵𝑇𝑐 = 𝐽/ ln(1 + √𝑞)                                          (10) 
 

ยกตวัอยา่งเช่น เม่ือแทน 𝑞 = 2 และ 𝐽 = 2 จะได ้ 𝑘𝐵𝑇𝑐 = 2.2691 … เท่ากบัอุณหภูมิวกิฤติของแบบจ าลองไอซิง 
 
  ผลการจ าลองและวเิคราะห์ผล 
 บทความน้ี ยกตวัอยา่งการประยกุตใ์ชข้ั้นตอนวิธีหวงั-ลนัเดาในแบบจ าลองพอตส์บนแลตทิซส่ีเหล่ียมสองมิติ ท่ีสปินมีสถานะ
ได้ทั้ งหมด 𝑞 = 10 สถานะ เพ่ือความสะดวกจะก าหนดให้ 𝑘𝐵 = 1 และ 𝐽 = 1 ขนาดของแลตทิซอยู่ในช่วง 𝐿 = 4 × 4 ถึง 𝐿 =

20 × 20 เง่ือนไขขอบของแลตทิซส่ีเหล่ียมจะเป็นแบบคาบ (Periodic boundary conditions) ขนาดของแลตทิซ ดงักล่าวสามารถจ าลอง
บนคอมพิวเตอร์ทัว่ไปไดโ้ดยใชเ้วลาไม่นานมาก ตวัคงท่ีต่าง ๆ ท่ีใชใ้นวิธีหวงั-ลนัเดามีค่าดงัน้ี 𝑘0 = 𝑒 ≈ 2.71828, 𝑘𝑓 = 10−8 ถึง 
𝑘𝑓 = 10−6 และ 𝑐 = 0.80 ถึง 𝑐 = 0.95 ข้ึนอยูก่บัขนาดของแลตทิซ 
 รูปท่ี 1 แสดงความหนาแน่นสถานะท่ีค่าพลงังานต่าง ๆ เม่ือเพ่ิมขนาดของระบบ ความหนาแน่นสถานะก็จะเพ่ิมข้ึนดว้ย พลงังาน
ต่อสปิน 𝐸/𝑁 มีค่าอยูใ่นช่วง −2.0 ถึง 0.0 สังเกตวา่ ค่าความหนาแน่นสถานะอยูใ่นสเกล ln[𝑔(𝐸)] ความจุความร้อน 𝐶𝑉(𝑇) หาได้
จากสมการ 
 

𝐶𝑉(𝑇) = (〈𝐸2〉 − 〈𝐸〉2)/𝑘𝐵𝑇2                                          (11) 
 

รูปท่ี 2 แสดงความจุความร้อนต่อสปินท่ีอุณหภูมิต่าง ๆ ความจุความร้อนจะลู่ออกท่ีอุณหภูมิวกิฤติ อยา่งไรก็ตาม ส าหรับระบบท่ี
มีขนาดจ ากดั ค่าสูงสุดของความจุความร้อนก็จะถูกจ ากดัเช่นกนั ค่าสูงสุดจึงเพ่ิมข้ึนตามขนาดของระบบ นอกจากน้ี อุณหภูมิวิกฤติของ
ระบบท่ีมีขนาดจ ากดั  𝑇𝑐(𝐿) ยงัสเกลตามขนาดของระบบ  𝐿 สามารถเขียนไดเ้ป็น 

 
𝑇𝑐(𝐿) = 𝑇𝑐 + 𝑎𝐿−𝑏                                    (12) 
 

โดย 𝑎, 𝑏 เป็นค่าคงท่ี และ 𝑇𝑐 = 𝑇𝑐(𝐿 → ∞) เป็นอุณหภูมิวิกฤติเม่ือขนาดของระบบลู่เขา้สู่ลิมิตอุณหพลศาสตร์ 𝐿 → ∞ รูปแทรก     
(ในรูปท่ี 2) แสดงความสัมพนัธ์ระหวา่งอุณหภูมิวิกฤติของระบบท่ีมีขนาดจ ากดักบัค่า 𝐿−𝑏 จุดคือ ค่าท่ีไดจ้ากการจ าลอง ส่วนเส้นประได้
จากการหาค่าเหมาะสมจากสมการ (12) มีค่าเท่ากบั 𝑎 = 1.482, 𝑏 = 1.020 และ 𝑇𝑐 = 0.701(8) ซ่ึงมีค่าใกลเ้คียงกบัค่าอุณหภูมิ
วกิฤติตามสมการ (10) เท่ากบั 𝑇𝑐 = 0.7012 … 
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รูปที่ 1 ความหนาแน่นสถานะท่ีค่าพลังงานและขนาดต่าง ๆ ของระบบ ความหนาแน่นสถานะอยู่ในสเกล  ln[𝑔(𝐸)] และค่า 𝐸/𝑁 คือ 
พลงังานต่อสปิน 
 

 
 

รูปที่ 2 ความจุความร้อนต่อสปินท่ีอุณหภูมิและขนาดต่าง ๆ ของระบบ มีค่าสูงสุดท่ีอุณหภูมิวิกฤติซ่ึงสเกลตามขนาดของระบบ รูปแทรก
แสดงความสัมพันธ์ระหว่างอุณหภูมิวิกฤติของระบบท่ีมีขนาดจ ากัดกับขนาดของระบบตามสมการ (12) จุดแทนค่าท่ีได้จากการจ าลอง 
ส่วนเส้นประแทนค่าท่ีได้จากการหาค่าเหมาะสมตามสมการดังกล่าว 
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สรุปผล 
บทความน้ีไดน้ าเสนอขั้นตอนวิธีหวงั-ลนัเดา ซ่ึงเป็นวิธีมอนติคาร์โลอีกวิธีหน่ึง ขั้นตอนวิธีหวงั-ลนัเดาสามารถใชห้าความ

หนาแน่นสถานะไดโ้ดยตรง ท าให้หลีกเหล่ียงปัญหาต่าง ๆ เม่ือระบบอยู่ใกลอุ้ณหภูมิวิกฤติ เน่ืองจากความหนาแน่นสถานะไม่ข้ึนกบั
อุณหภูมิ ท าให้วิธีหวงั-ลนัเดาสามารถใชห้าค่าเฉล่ียปริมาณของระบบท่ีอุณหภูมิต่าง ๆ โดยท่ีไม่ตอ้งจ าลองระบบจริงท่ีอุณหภูมิเหล่านั้น 
เพ่ือสาธิตการประยุกต์ใชง้าน เราไดใ้ชข้ั้นตอนวิธีหวงั-ลนัเดากบัแบบจ าลองพอตส์ ระบบประกอบดว้ยสปินท่ีมีสถานะไดท้ั้ งหมด 10 
สถานะ วางตวัอยูบ่นแลตทิซส่ีเหล่ียมในสองมิติ จากผลการจ าลอง เราไดค้่าความหนาแน่นสถานะท่ีพลงังานและขนาดต่าง ๆ ของระบบ 
ความจุความร้อนสามารถหาค่าไดเ้ม่ือรู้ความหนาแน่นสถานะท่ีพลงังานต่าง ๆ  เม่ือพิจารณาผลของขนาดระบบ ท าให้สามารถประมาณ
อุณหภูมิวิกฤติในลิมิตอุณหพลศาสตร์ ซ่ึงสอดคลอ้งกบัค่าอุณหภูมิวิกฤติทางทฤษฎี ขั้นตอนวิธีหวงั-ลนัเดาสามารถน าไปประยกุตใ์ชก้บั
แบบจ าลองอ่ืน ๆ นอกเหนือไปจากแบบจ าลองทางแม่เหลก็ 
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