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Abstract 

 In 2016, Chachiyo proposed a simple expression with only three parameters for the correlation energy of the uniform electron 

gas in the range of 1 ≤ 𝑟𝑟𝑠𝑠 ≤ 100. This so-called Chachiyo formula gives reasonable agreement with the results from the quantum Monte-

Carlo simulations by Ceperley and Alder (CA). In this paper, I propose the TCUP formula, written as; 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� = −0.0311 log

⎝

⎛1 +
28.1660

𝑟𝑟𝑠𝑠
−

19.5920

𝑟𝑟𝑠𝑠
3/2 +

20.5613 exp �0.9529 �𝑟𝑟𝑠𝑠 − 0.3444 𝑟𝑟𝑠𝑠�

𝑟𝑟𝑠𝑠
2

⎠

⎞ 

This is a modification of the Chachiyo formula, which can reproduce the two well-known analytic limits, i.e. the high-density and the 

low-density limits. In addition, this modified formula gives an excellent fitting to the Perdew-Zunger data which combines the results of 

CA and the analytic high-density limit. Thus, it covers the more extending range of 0.01 ≤ 𝑟𝑟𝑠𝑠 ≤ 100. 
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The correlation energy of the electron gas arises from the many-body interaction among the electrons. In the uniform electron 

gas, it can be calculated from the expression; 

 

𝜀𝜀𝑐𝑐 = 𝜀𝜀𝐺𝐺𝐺𝐺 − 𝜀𝜀𝐻𝐻𝐻𝐻 (1) 

 
where 𝜀𝜀𝑐𝑐 is the average correlation energy per electron. 𝜀𝜀𝐺𝐺𝐺𝐺 is the average ground state energy per electron and 𝜀𝜀𝐻𝐻𝐻𝐻 is the average 

Hartree-Fock energy per electron. The density of the electron gas can be defined by 𝑛𝑛 = �4
3
𝜋𝜋𝑟𝑟𝑠𝑠

3
�
−1

, which is the ratio of one electron 

and the average spherical volume with radius 𝑟𝑟𝑠𝑠. The parameter 𝑟𝑟𝑠𝑠 is also known as the Wigner-Seitz radius. The energy in this paper is 

expressed in Rydberg (Ry) unit, unless otherwise stated, and 𝑟𝑟𝑠𝑠 is in the unit of Bohr radius 𝑎𝑎0.  

There exist two analytic limits of 𝜀𝜀𝑐𝑐 in the paramagnetic (PM) state at the low and high density, i.e. 𝑟𝑟𝑠𝑠 ≫ 1 and 𝑟𝑟𝑠𝑠 ≪ 1, 

respectively. The evaluation of 𝜀𝜀𝑐𝑐 in the low-density limit was pioneered by Wigner [1]. He proposed that the electron gas at very low 

density undergoes a phase transition into a regular lattice. Then he used the Wigner-Seitz cell to calculate 𝜀𝜀𝐺𝐺𝐺𝐺 of the system. At that time, 

𝜀𝜀𝐻𝐻𝐻𝐻 was already known. Thus, Eq. (1) can be fulfilled. Later, there exist several correction terms from the electron lattice vibration as 

well [2]. At the present, the most acceptable analytic expression of 𝜀𝜀𝑐𝑐 in the low-density limit can be written as [1,2] 

 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� = −
0.8757
𝑟𝑟𝑠𝑠

+
2.65

𝑟𝑟𝑠𝑠
3/2 −

2.94

𝑟𝑟𝑠𝑠
2  (2) 

  

The evaluation of 𝜀𝜀𝑐𝑐 in the high-density limit was pioneered by Gell-mann and Brueckner [3]. They used quantum field theory 

(QFT) to study nuclear matters. By using a perturbation method, Gell-mann and Brueckner were able to obtain two of the leading terms 

of 𝜀𝜀𝑐𝑐. More elaborate works have been carried out by using the QFT perturbation series and Feynman diagrams [4]. The widely accepted 

analytic expression of 𝜀𝜀𝑐𝑐 in the high-density limit can be written as [3,4],   

 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� = −0.094 + 0.0622 log �𝑟𝑟𝑠𝑠� − 0.036 𝑟𝑟𝑠𝑠 + 0.018 𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠� (3) 

 

The great challenge comes from the fact that these two analytic limits, Eq. (2) and (3), do not join smoothly. Applications in density 

functional theory (DFT) need a smooth function of 𝜀𝜀𝑐𝑐 in a wide range of 𝑟𝑟𝑠𝑠. There have been numerous ways to find 𝜀𝜀𝑐𝑐 in between these 

two analytic limits, such as performing even more elaborate QFT works or resorting to a non-perturbative method. The most important 

non-perturbative method is the quantum Monte-Carlo (QMC) method which performs numerical path integration of the known 

Hamiltonian of the uniform electron gas in the range of 1 ≤ 𝑟𝑟𝑠𝑠 ≤ 100 [5]. It is regarded as the most accurate method for the correlation 
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energy of the uniform electron gas. The QMC method can be used to show how the correlation energy in the different limits can join each 

other. However, the results are still only discrete numerical data points.       

Another simplest way is to find a good interpolation scheme, and yet containing most of the known physics properties [6,7]. 

Recently, Chachiyo [8] has proposed a new interpolation scheme of 𝜀𝜀𝑐𝑐 which composes of only three parameters as;  

 

𝜀𝜀𝑐𝑐(𝑟𝑟𝑠𝑠) = 𝐴𝐴 log(1 +
𝐵𝐵1
𝑟𝑟𝑠𝑠

+
𝐶𝐶1
𝑟𝑟𝑠𝑠
2) 

(4) 

 

where 𝐴𝐴 = (log 2 − 1)/𝜋𝜋
2
, 𝐵𝐵1, and 𝐶𝐶1 are the three parameters. Chachiyo suggested that 𝐵𝐵1 = 20.4562557 𝑎𝑎0 and 𝐶𝐶1 = 20.4562557 𝑎𝑎0

2
 

for the electron gas in the PM state [8]. This formula is a very smooth function with smooth derivative which is suitable for the applications 

in DFT [9,10]. Furthermore, it gives a reasonable comparison with the QMC results of Ceperley and Alder (CA) in the range of 1 ≤ 𝑟𝑟𝑠𝑠 ≤

100 [5]. Eq. (4) together with Chachiyo’s original parameters shall be referred to as the Chachiyo formula from now on. 

 

  Modified Chachiyo Formula  

 The aim of this paper is to extract the known physics properties from the Chachiyo formula and to propose a modified expression 

which contains most of the information from Eq. (2) and (3). At this stage, it is essential to introduce the modified expression. 

 

𝜀𝜀𝑐𝑐(𝑟𝑟𝑠𝑠) = 𝐴𝐴 log(1 +
𝐵𝐵1
𝑟𝑟𝑠𝑠

+
𝐵𝐵2
𝑟𝑟𝑠𝑠
3/2 +

𝐶𝐶1 exp(−
𝐵𝐵2
𝐶𝐶1

�𝑟𝑟𝑠𝑠 + 𝐶𝐶2𝑟𝑟𝑠𝑠 + 𝐶𝐶3𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠�)

𝑟𝑟𝑠𝑠
2 ) 

(5) 

 

where 𝐵𝐵𝑖𝑖, and 𝐶𝐶𝑗𝑗 are the modified parameters. The reason for extending the number of parameters will be elaborated in the subsequent 

paragraphs. For, 𝐵𝐵2 = 0, and 𝐶𝐶2 = 𝐶𝐶3 = 0, this equation reduces straightforwardly to Eq. (4 ) .  It is common to set 𝐴𝐴 = (log 2 − 1)/𝜋𝜋
2
 

which is derived directly from the QFT [6-8]. 

By taking the limit 𝑟𝑟𝑠𝑠 ≫ 1 of Eq. (5), I can estimate 𝜀𝜀𝑐𝑐 as;  

 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈
𝐴𝐴𝐵𝐵1
𝑟𝑟𝑠𝑠

+
𝐴𝐴𝐵𝐵2
𝑟𝑟𝑠𝑠
3/2 + 𝑂𝑂 �𝑟𝑟𝑠𝑠

−2
� 

(6) 

 

By comparing with the analytic low-density limit, Eq. (2), I can derive; 
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𝐵𝐵1 = −
0.8757
𝐴𝐴

= 28.1660 𝑎𝑎0 (7) 

and, 

𝐵𝐵2 =
2.65
𝐴𝐴

= −85.2345 𝑎𝑎0
3/2

 (8) 

 

By having 𝐵𝐵2 in Eq. (5 ) , I can express physics of the low density limit up to the order of 𝑟𝑟𝑠𝑠
−3/2

.  The term of order 𝑟𝑟𝑠𝑠
−2

 depended on the 

exponential term, exp(𝐶𝐶2𝑟𝑟𝑠𝑠 + 𝐶𝐶3𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠�), which is strongly related to the high density limit. I will show later in Eq. (1 1 )  and (12 ) 

that, in the exact limits, 𝐶𝐶2 < 0 and 𝐶𝐶3 < 0.  Therefore, this exponential term goes to zero at large 𝑟𝑟𝑠𝑠. Thus, the coefficient of 𝑟𝑟𝑠𝑠
−2

 in Eq. 

(2 )  cannot be obtained from the exact limit of Eq. (5 ) .  This is the limitation of Eq. (5 ) .  If 𝐶𝐶2 > 0, which may occur in the later fitting 

process, there will be incorrect mixing between low-density and high-density limits, see Eq. (11). If 𝐶𝐶3 > 0, the exponential term would 

also diverge at large 𝑟𝑟𝑠𝑠. In this case, I might need to remove that problematic parameter from Eq. (5). This is also another limitation.  

By taking the limit 𝑟𝑟𝑠𝑠 ≪ 1 of Eq. (5), I can estimate 𝜀𝜀𝑐𝑐  as;  

 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ 𝐴𝐴 log�𝐶𝐶1� − 2𝐴𝐴 log �𝑟𝑟𝑠𝑠� + 𝐴𝐴�
𝐵𝐵1
𝐶𝐶1

+
𝐵𝐵2
2

2𝐶𝐶1
2 + 𝐶𝐶2� 𝑟𝑟𝑠𝑠 + 𝐴𝐴𝐶𝐶3𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠� + 𝑂𝑂�𝑟𝑟𝑠𝑠

3/2
�  

(9) 

 

The modified term 𝐶𝐶2𝑟𝑟𝑠𝑠 + 𝐶𝐶3𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠�, which appears in the exponential term in Eq. (5 ) , plays an important role in Eq. (9 ) .  The term 

−𝐵𝐵2
𝐶𝐶1
�𝑟𝑟𝑠𝑠 in Eq. (5) is also essential. Without this term, there will appear an extra term 

𝐵𝐵2
𝐶𝐶1
�𝑟𝑟𝑠𝑠 in Eq. (9) with no supporting physics and 

does not match with any term in the analytic limits. By comparing Eq. (9) with the analytic high-density limit, Eq. (3), I can derive;  

 

𝐶𝐶1 = exp�−
0.094
𝐴𝐴

� = 20.5613 𝑎𝑎0
2

 (10) 

and 

𝐶𝐶2 = −
0.036
𝐴𝐴

−
𝐵𝐵1
𝐶𝐶1

−
𝐵𝐵2
2

2𝐶𝐶1
2 =  −8.8040 𝑎𝑎0

−1
 

(11) 

and, 

𝐶𝐶3 =
0.018
𝐴𝐴

= −0.5790 𝑎𝑎0
−1

 (12) 

 

By using 𝐶𝐶1, 𝐶𝐶2, and 𝐶𝐶3 from Eq. (10), (11) and (12), respectively, Eq. (9) is exactly equal to Eq. (3) up to the order of 𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠�. It is 

worth noting that 𝐶𝐶2 in Eq. (11) behaves as a mixing regulator which controls the mixing between the parameters of the low-density limit 
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𝐵𝐵𝑖𝑖 and of high-density limits 𝐶𝐶1.  The most influential term is − 𝐵𝐵2
2

2𝐶𝐶1
2 , as the terms −0.036

𝐴𝐴
 and −𝐵𝐵1

𝐶𝐶1
 almost cancel, and this also implies 

that if 𝐵𝐵2 ≠ 0, the analytic 𝐶𝐶2 will always be negative.  

In order to investigate the limits of Eq. (4), I apply the condition that 𝐵𝐵2 = 0, and 𝐶𝐶2 = 𝐶𝐶3 = 0 to Eq. (6) and (9). Then Eq. (6) 

reduces to [11]; 

 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ −
𝐴𝐴𝐵𝐵1
𝑟𝑟𝑠𝑠

+ 𝑂𝑂�𝑟𝑟𝑠𝑠
−2
�  (13) 

 

It can express physics of the low-density limit up to the order of  𝑟𝑟𝑠𝑠
−1

 only. This is one of the limitations of Eq. (4). Next, Eq. (9) reduces 

to [11]; 

𝜀𝜀𝑐𝑐(𝑟𝑟𝑠𝑠) ≈ 𝐴𝐴 log�𝐶𝐶1� − 2𝐴𝐴 log �𝑟𝑟𝑠𝑠� +
𝐴𝐴𝐵𝐵1
𝐶𝐶1

𝑟𝑟𝑠𝑠  + 𝑂𝑂�𝑟𝑟𝑠𝑠
2
� 

(14) 

 

By comparing Eq. (14) with Eq. (3), I found also that; 

 

𝐵𝐵1
𝐶𝐶1

= −
0.036
𝐴𝐴

= 1.1579 𝑎𝑎0
−1

 
(15) 

 

This is equivalent to solving Eq. (11) with the conditions 𝐵𝐵2 = 0 and  𝐶𝐶2 = 0. Accidentally, the ratio in Eq. (15) is close, but not equal, 

to unity. Thus, it implies that 𝐵𝐵1 ≈ (1 + ∆)𝐶𝐶1 could be a reasonable approximation. Chachiyo [8 ]  suggested that ∆ = 0 𝑎𝑎0
−1

, whereas 

Karasiev [12] suggested that ∆ = 0.0627 𝑎𝑎0
−1

. For the exact conditions of the Chachiyo formula, i.e. ∆ = 0 𝑎𝑎0
−1

 and 𝐶𝐶1 = 20.4562557 𝑎𝑎0
2
 

[ 8 ] , Eq. (1 4 )  becomes 𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ −0.094 + 0.0622 log �𝑟𝑟𝑠𝑠� − 0.031 𝑟𝑟𝑠𝑠 which closely resembles Eq. (3 ) .  Thus, the Chachiyo formula 

gives excellent description to the high-density limit. The major drawback is that Eq. (1 3 )  becomes 𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� = − 0.6360
𝑟𝑟𝑠𝑠

 which is quite 

different from the leading terms of Eq. (2 ) .  Furthermore, the ∆ approximation is inconsistent with Eq. (7 )  and (1 0 ) , which gives 𝐵𝐵1
𝐶𝐶1

=

28.1660
20.5613

= 1.3699 𝑎𝑎0
−1

 or ∆ = 0.3699 𝑎𝑎0
−1

. I shall refer to this problem as the 
𝐵𝐵1
𝐶𝐶1

 inconsistency. If this inconsistency remains, both analytic 

limits, Eq. (2) and (3) cannot be achieved simultaneously. This is also the major limitation of Eq. (4) where the parameter set �𝐴𝐴,𝐵𝐵1,𝐶𝐶1� 

is not large enough to cover all the physics properties of Eq. (2 ) and (3 ) .  I will show later that the 
𝐵𝐵1
𝐶𝐶1

 inconsistency cannot be cured by 

fitting. One way to cure this inconsistency is to solve Eq. (11) with 𝐶𝐶2 ≠ 0.  

Unlike Eq. (4), it is clearly seen through Eq. (6)–(12) that Eq. (5) has a potential to reproduce both of the analytic limits, Eq. 

(2) and (3), simultaneously. Next, I will show how well Eq. (5) can represent the data from the QMC method. In this paper, I use 𝜀𝜀𝑐𝑐 data 

points from the works of Perdew and Zunger (CAPZ) [6].  The CAPZ data points combine the QMC results from the CA work [5] with 
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the results from the analytic high-density limit. It covers a wider range of 0.01 ≤ 𝑟𝑟𝑠𝑠 ≤ 100.  The numerical data points are shown in the 

Appendix. I intend not to use the CA data directly because it covers the range of 1 ≤ 𝑟𝑟𝑠𝑠 ≤ 100 only. It does not contain the data in the 

high-density limit. As Eq. (5) contains the high-density terms explicitly, I would also like to see how well it can represent the high-density 

limit. 

 

  Fitting Results and Discussion 

In order to measure the accuracy of several models, I define;  

 

𝜒𝜒
2

=
1

𝑁𝑁−𝑀𝑀
�(𝜀𝜀𝑐𝑐

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
(𝑟𝑟𝑠𝑠,𝑖𝑖) − 𝜀𝜀𝑐𝑐

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
(𝑟𝑟𝑠𝑠,𝑖𝑖))2

𝑁𝑁

𝑖𝑖

 
(16) 

 

and perform the least squares fit between a selected model and the CAPZ data points [6], 𝑁𝑁 = 13. 𝑀𝑀 is the number of fitting parameters, 

for example if I set 𝐵𝐵1 and 𝐶𝐶1 as the fitting parameters of Eq. (4), then 𝑀𝑀 = 2, and if I set all 𝐵𝐵𝑖𝑖 and 𝐶𝐶𝑗𝑗 as the fitting parameters of Eq. 

(5), then 𝑀𝑀 = 5. From Eq. (16), I can estimate 𝜒𝜒
2
≈ 𝜎𝜎

2
, where 𝜎𝜎 is the standard deviation. The CAPZ data is in the units of eV and 

accurate to the second decimal place [6], thus I am looking for 𝜎𝜎 ≲ 0.005 eV.  

For the PM state, several sets of the parameters are summarized in Table 1.  
 

Table 1 The parameters of the correlation energy in the paramagnetic (PM) state. I use 𝐴𝐴 = log 2−1

𝜋𝜋
2  (𝑅𝑅𝑅𝑅). 

 
Eq. (4) with 
Eq. (7), (10) 

Chachiyo 
formula [8] 

Eq. (4) with full 
fitting 

Eq. (5) with Eq. 
(7), (8), (10)–(12) 

TCUP formula 
(Eq. (17)) 

Eq. (5) with 
full fitting 

𝐵𝐵1 (𝑎𝑎0) 28.1660 20.4562557 21.7291 28.1660 28.1660 25.0494 

𝐵𝐵2 (𝑎𝑎0
3/2

) 0 0 0 -85.2345 -19.5920 -18.5019 

𝐶𝐶1 (𝑎𝑎0
2

) 20.5613 20.4562557 22.4063 20.5613 20.5613 21.9395 

𝐶𝐶2 (𝑎𝑎0
−1

) 0 0 0 -8.8040 -0.3444 -0.2739 

𝐶𝐶3 (𝑎𝑎0
−1

) 0 0 0 -0.5790 0.0 0.0279 

𝑀𝑀 - 1 2 - 2 5 

𝜎𝜎 0.056 0.028 0.009 *** 0.014 0.006 
***The parameter values from the analytic limits give negative argument in one of the logarithmic terms in the intermediate range of 𝑟𝑟𝑠𝑠. 
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The results in Table 1 also show that the analytically derived values of the parameters are not suitable for the interpolation. For example, 

Eq. (4) with the analytic parameters Eq. (7) and (10) gives a large 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.056 eV. With Chachiyo’s original parameters [8], 𝑀𝑀 = 1, Eq. 

(4) gives 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.028 eV. The reason is that 𝜀𝜀𝑐𝑐 in the region of intermediate values of 𝑟𝑟𝑠𝑠 is not well represented by either Eq. (2) or (3). 

In order to provide accurate description of CAPZ, some parameters need to be smeared out via the fitting process [6]. For example, Eq. 

(4) with the least squares fit of 𝐵𝐵1 and 𝐶𝐶1 gives 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.009 eV, which is close to the target 𝜎𝜎𝑃𝑃𝑃𝑃 ≲ 0.005 eV. This is a very impressive 

fitting result. I shall refer to this result as the full fitting of Eq. (4). In this scheme, I find that the 
𝐵𝐵1
𝐶𝐶1

  inconsistency still remains, i.e. the 

full fitting gives  𝐵𝐵1
𝐶𝐶1

< 1. By substituting the full fitting parameters of Eq. (4) in Table 1 into Eq. (14), I find that 𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ −0.097 +

0.0622 log �𝑟𝑟𝑠𝑠� − 0.030 𝑟𝑟𝑠𝑠, which is still in good agreement with the leading terms of the analytic high density limit. However, Eq. (13) 

becomes 𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� = −0.6756
𝑟𝑟𝑠𝑠

 , which is still not much improved. At this point, it seems that if I insist to keep the accuracy, one of the 

analytic limits will be lost, and vice versa. 

Form Table 1, I find also that the analytically derived values of the parameters of Eq. (5) are not suitable for the interpolation. 

This is because they impose too much constraint, so that the logarithmic term is diverged in the intermediate range. However, Eq. (5) 

contains more added parameters, which are suitable for the adjustment purpose. Some leading terms of the analytic limits could be restored 

on the expense of these added parameters. Of course, the lowest 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.006 eV comes from the full fitting of Eq. (5), using all 𝐵𝐵𝑖𝑖 and 

𝐶𝐶𝑗𝑗 as the fitting parameters, and hence 𝑀𝑀 = 5. The fitting results are reported in Table 1. The full fitting gives 𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ − 0.7788
𝑟𝑟𝑠𝑠

+ 0.58

𝑟𝑟𝑠𝑠
3/2 

in the low-density limit and 𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ −0.096 + 0.0622 log �𝑟𝑟𝑠𝑠� − 0.038 𝑟𝑟𝑠𝑠 − 0.001 𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠� in the high-density limit. I find that, in 

this fitting scheme, 𝐵𝐵2 and 𝐶𝐶2 are much smaller than that from Eq. (8) and (11). This is due to the smearing effect. Most of all, 𝐶𝐶3 > 0, 

and consequently the 𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠� term has incorrect sign. It may also cause a divergence beyond 𝑟𝑟𝑠𝑠 = 100. Thus, Eq. (5) with this set of 

parameters might not be applicable outside the fitting range. If Eq. (5) with these full fitting parameters is used in an application that the 

electron density is confined within the fitting range, i.e. 0.01 ≤ 𝑟𝑟𝑠𝑠 ≤ 100, it will be very accurate. However, if it is used for any prediction 

beyond 𝑟𝑟𝑠𝑠 = 100, this might fail. It is worth noting that the magnitude of 𝐶𝐶3  is very much smaller than that from Eq. (12) due to the 

smearing effect as well. It plays only an insignificant role. Therefore, this is the reason to omit 𝐶𝐶3  in the next task.  
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Figure 1 Shows the correlation energy in the paramagnetic (PM) state as a function of the Wigner-Seitz radius. The results are from the 

CAPZ data [6] (filled circles), the Chachiyo formula [8] (opened squares) and the TCUP formula, Eq. (17), (opened circles with dashed 

line) 

 

If I would like Eq. (5) to reproduce both of the exact limits, I can choose to fix 𝐵𝐵1 and 𝐶𝐶1 to be equal to the value from Eq. (7) 

and (10). I still can perform the least square fitting by using 𝐵𝐵2, 𝐶𝐶2 and 𝐶𝐶3 as the fitting parameters. However, as discussed earlier, 𝐶𝐶3  
plays only an insignificant role, hence I choose to set 𝐶𝐶3 = 0. Thus, in this fitting scheme, only 𝐵𝐵2 and 𝐶𝐶2  are the fitting parameters, and 

hence 𝑀𝑀 = 2. The fitting still gives reasonable results with 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.014. The parameters are reported in Table 1. I shall refer to this 

formula as the TCUP formula [13]. The TCUP formula can be explicitly expressed as; 

 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� = −0.0311 log

⎝

⎛1 +
28.1660

𝑟𝑟𝑠𝑠
−

19.5920

𝑟𝑟𝑠𝑠
3/2 +

20.5613 exp �0.9529 �𝑟𝑟𝑠𝑠 − 0.3444 𝑟𝑟𝑠𝑠�

𝑟𝑟𝑠𝑠
2

⎠

⎞ 

(17) 

 

Furthermore, I substitute the TCUP parameters into Eq. (6), and find that; 

 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ −
0.8757
𝑟𝑟𝑠𝑠

+
0.61

𝑟𝑟𝑠𝑠
3/2 , (18) 

and Eq. (9) becomes; 

𝜀𝜀𝑐𝑐 �𝑟𝑟𝑠𝑠� ≈ −0.094 + 0.0622 log �𝑟𝑟𝑠𝑠� − 0.046 𝑟𝑟𝑠𝑠 + 0.0 𝑟𝑟𝑠𝑠 log �𝑟𝑟𝑠𝑠�. (19) 

𝑟𝑟𝑠𝑠 

 

𝜀𝜀𝑐𝑐 
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The leading terms of Eq. (18) and (19) are indeed exact, compared with those of Eq. (2) and (3). By trading the accuracy, I gain the exact 

limits. The problem of the 
𝐵𝐵1
𝐶𝐶1

 inconsistency is now lifted. Furthermore, this formula can be used in an application that the electron density 

may not be confined in the fitting range. The TCUP formula gives the power of extrapolation as well.  

Figure 1 shows the graphs of 𝜀𝜀𝑐𝑐(𝑟𝑟𝑠𝑠) in the PM state. The numerical data points are shown in the Appendix. The filled circles 

are the CAPZ data points [6], the opened circles are from the TCUP formula, and the opened squares are from the Chachiyo formula [8]. 

The graphical symbols are designed to aid visualization. If the three models are in good agreement, the filled circle, opened circle and 

opened square symbols at a given 𝑟𝑟𝑠𝑠 will be at the center of each other. From Figure 1, it can be easily seen that the fitting result from 

TCUP formula is in good agreement with the CAPZ data points [6] in the PM state with 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.014 eV. The Chachiyo formula [8] also 

gives good agreement with the CAPZ data points [6] with 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.028 eV. 

For completion, I consider the ferromagnetic (FM) data [6] as well. For the FM state, Eq. (4) with the Chachiyo’s original 

parameters [8] gives 𝜎𝜎𝐹𝐹𝐹𝐹 = 0.014 eV. Eq. (4) with the least squares fit gives 𝜎𝜎𝐹𝐹𝐹𝐹 = 0.006 eV. The full fitting of Eq. (5) gives an 

amazingly accurate result with a very low 𝜎𝜎𝐹𝐹𝐹𝐹 = 0.004  eV. The parameters and the results for the FM state are summarized in Table 2. 

 

Table 2 The parameters of the correlation energy in the ferromagnetic (FM) state. I use 𝐴𝐴 = log 2−1

2𝜋𝜋
2  (𝑅𝑅𝑅𝑅). 

 Chachiyo formula [8] Eq. (4) with full fitting Eq. (5) with full fitting 

𝐵𝐵1 (𝑎𝑎0) 27.4203609 26.2241 34.6064 

𝐵𝐵2 (𝑎𝑎0
3/2

) 0 0 -27.6895 

𝐶𝐶1 (𝑎𝑎0
2

) 27.4203609 31.5400 31.2835 

𝐶𝐶2 (𝑎𝑎0
−1

) 0 0 -0.3816 

𝐶𝐶3 (𝑎𝑎0
−1

) 0 0 0.0441 

𝑀𝑀 1 2 5 

𝜎𝜎 0.014 0.006 0.004 

 

  Conclusions 

The Chachiyo formula [8] is an elegant model for representing the correlation energy of the uniform electron gas with an 

economic parameter set. By using the least squares fit, Eq. (4) provides excellent description to the CAPZ data [6] with 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.009 eV 

and 𝜎𝜎𝐹𝐹𝐹𝐹 = 0.006 eV. However, the function form and the parameter space of the formula prohibits the validation of the analytic limits, 

Eq. (2) and (3), simultaneously. Thus, I have proposed the modified formula, Eq. (5), which is also in a simple form with smooth 
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derivative, and it can reproduce the analytic forms of both the high-density and low-density limits. Its fitting is in excellent agreement 

with the CAPZ data points [6] with 𝜎𝜎𝑃𝑃𝑃𝑃 = 0.006 eV and 𝜎𝜎𝐹𝐹𝐹𝐹 = 0.004 eV. By trading with a little less accuracy, I can gain the exact 

analytic limits. This leads to the new “TCUP” formula, Eq. (17), which can give reasonable description of the correlation energy of the 

uniform electron inside the fitting range and also have an extrapolating power outside the fitting range as well. This could be useful for 

studying some exotic phases, such as Wigner crystallization [1,2]. 
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Appendix numerical data points of the correlation energy, all in units of eV. 

𝑟𝑟𝑠𝑠 CAPZ (PM) [6] Chachiyo [8] TCUP (Eq. (17)) 

0.01 -5.21 -5.18 -5.18 

0.1 -3.30 -3.27 -3.28 

0.5 -2.07 -2.04 -2.08 

1 -1.62 -1.58 -1.63 

2 -1.23 -1.18 -1.22 

3 -1.01 -0.98 -1.01 

4 -0.87 -0.85 -0.87 

5 -0.77 -0.75 -0.77 

6 -0.69 -0.68 -0.69 

10 -0.51 -0.50 -0.51 

20 -0.31 -0.31 -0.33 

50 -0.16 -0.15 -0.17 

100 -0.09 -0.08 -0.10 
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