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Abstract

In 2016, Chachiyo proposed a simple expression with only three parameters for the correlation energy of the uniform electron
gas in the range of 1 < r_ < 100. This so-called Chachiyo formula gives reasonable agreement with the results from the quantum Monte-

Carlo simulations by Ceperley and Alder (CA). In this paper, I propose the TCUP formula, written as;

281660 19.5920 N 20.5613 exp (0.9529 \/Z — 0.3444 rs)

3/2 2

T
s Ty Ts

e, (r;) =-0.0311log| 1+

This is a modification of the Chachiyo formula, which can reproduce the two well-known analytic limits, i.e. the high-density and the
low-density limits. In addition, this modified formula gives an excellent fitting to the Perdew-Zunger data which combines the results of

CA and the analytic high-density limit. Thus, it covers the more extending range of 0.01 < r_ < 100.
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The correlation energy of the electron gas arises from the many-body interaction among the electrons. In the uniform electron

gas, it can be calculated from the expression;
E =€..— ¢ (1)

where € c is the average correlation energy per electron. £ Gs is the average ground state energy per electron and Eyp is the average
Hartree-Fock energy per electron. The density of the electron gas can be defined by n = (S T[T:)_l, which is the ratio of one electron
and the average spherical volume with radius T, The parameter T is also known as the Wigner-Seitz radius. The energy in this paper is
expressed in Rydberg (Ry) unit, unless otherwise stated, and 7 is in the unit of Bohr radius a,.

There exist two analytic limits of € c in the paramagnetic (PM) state at the low and high density, i.e. r o> landr PSS 1,
respectively. The evaluation of & c in the low-density limit was pioneered by Wigner [1]. He proposed that the electron gas at very low
density undergoes a phase transition into a regular lattice. Then he used the Wigner-Seitz cell to calculate £ GS of the system. At that time,
Epyp Was already known. Thus, Eq. (1) can be fulfilled. Later, there exist several correction terms from the electron lattice vibration as

well [2]. At the present, the most acceptable analytic expression of € . in the low-density limit can be written as [1,2]

0.8757 2.65 294
SC(T‘S)=——+3—/2——2 2
"s Ts Ts

The evaluation of €, in the high-density limit was pioneered by Gell-mann and Brueckner [3]. They used quantum field theory
(QFT) to study nuclear matters. By using a perturbation method, Gell-mann and Brueckner were able to obtain two of the leading terms
of € - More elaborate works have been carried out by using the QFT perturbation series and Feynman diagrams [4]. The widely accepted

analytic expression of € c in the high-density limit can be written as [3,4],

e, (r;) = —0.094 + 0.062210g(r,) - 0.036 7+ 0.018 7, log ) 3)

The great challenge comes from the fact that these two analytic limits, Eq. (2) and (3), do not join smoothly. Applications in density
functional theory (DFT) need a smooth function of & . inawiderange of 7. There have been numerous ways to find € . in between these
two analytic limits, such as performing even more elaborate QFT works or resorting to a non-perturbative method. The most important
non-perturbative method is the quantum Monte-Carlo (QMC) method which performs numerical path integration of the known

Hamiltonian of the uniform electron gas in the range of 1 < r_ < 100 [5]. It is regarded as the most accurate method for the correlation
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energy of the uniform electron gas. The QMC method can be used to show how the correlation energy in the different limits can join each
other. However, the results are still only discrete numerical data points.
Another simplest way is to find a good interpolation scheme, and yet containing most of the known physics properties [6,7].

Recently, Chachiyo [8] has proposed a new interpolation scheme of € c which composes of only three parameters as;

B C
g (r) =Alog(1+ 24 —;) )
r

s Ty

where A = (log2 — 1)/7r2, B, and C; are the three parameters. Chachiyo suggested that B, = 20.4562557 a, and C, = 20.4562557 a(z)
for the electron gas in the PM state [8]. This formula is a very smooth function with smooth derivative which is suitable for the applications
in DFT [9,10]. Furthermore, it gives a reasonable comparison with the QMC results of Ceperley and Alder (CA) in the range of 1 < 7 <

100 [5]. Eq. (4) together with Chachiyo’s original parameters shall be referred to as the Chachiyo formula from now on.

Modified Chachiyo Formula

The aim of this paper is to extract the known physics properties from the Chachiyo formula and to propose a modified expression

which contains most of the information from Eq. (2) and (3). At this stage, it is essential to introduce the modified expression.

B
B Clexp(—c—z\/r:+czrs+C3rslog(rs)) )
g (r) =Alog(1+ 2+ 3—/22 + 1 5 )
"s Ts Ts

where B, and € ; are the modified parameters. The reason for extending the number of parameters will be elaborated in the subsequent
paragraphs. For, B, = 0, and C, = C, = 0, this equation reduces straightforwardly to Eq. (4). It is common to set A = (log2 — 1) /7T2
which is derived directly from the QFT [6-8].

By taking the limit r_ > 1 of Eq. (5), I can estimate €, as;

AB AB —2 (6)
07 2
&, (rs) =~ + +0 (rs )
By comparing with the analytic low-density limit, Eq. (2), I can derive;
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0.8757
B, =-— =28.1660a, ™
A
and,
2.65
B, =2 — 8523454 ®)
A

By having B, in Eq. (5), I can express physics of the low density limit up to the order of r;3/2. The term of order rs_z depended on the
exponential term, exp(C,r + C,7_log (rs)), which is strongly related to the high density limit. I will show later in Eq. (11) and (12)
that, in the exact limits, C , <0 and C 3 <0. Therefore, this exponential term goes to zero at large T Thus, the coefficient of rs_z in Eq.
(2) cannot be obtained from the exact limit of Eq. (5). This is the limitation of Eq. (5). If C , > 0, which may occur in the later fitting
process, there will be incorrect mixing between low-density and high-density limits, see Eq. (11). If C 5 > 0, the exponential term would
also diverge at large r_. In this case, I might need to remove that problematic parameter from Eq. (5). This is also another limitation.

By taking the limit 7, « 1 of Eq. (5), I can estimate &, as;

2

sc(rs)zAlog(Cl)—ZAlog(rs)+A %+B—22+C2 rs+AC3rslog(rs)+0(r:/2)
,2c

©)

The modified term C,r_+ C,7_log (rs), which appears in the exponential term in Eq. (5), plays an important role in Eq. (9). The term

B B
- C—Z r_in Eq. (5) is also essential. Without this term, there will appear an extra term C—z r inEq. (9) with no supporting physics and
1 1

does not match with any term in the analytic limits. By comparing Eq. (9) with the analytic high-density limit, Eq. (3), I can derive;

0.094 2

C, =exp (—T> =20.5613 q, (10)

and
0036 B, B - 1
= ——————1_"Z— _88040q, (an

A C1 2C
and,
0.018 -
,=——=-05790a, (12)
A

By using C,, C,, and C, from Eq. (10), (11) and (12), respectively, Eq. (9) is exactly equal to Eq. (3) up to the order of r_ log (rs). Itis

worth noting that C,, in Eq. (11) behaves as a mixing regulator which controls the mixing between the parameters of the low-density limit
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2

. e . . . B 0.036 B . N
B, and of high-density limits C,. The most influential term is — —2 | as the terms — o and — c_l almost cancel, and this also implies
2¢; 1

that if B, # 0, the analytic C, will always be negative.
In order to investigate the limits of Eq. (4), I apply the condition that B,=0,and C, = C, = 0toEq. (6) and (9). Then Eq. (6)

reduces to [11];
e (r) ~ -4 0(r7?) (13)

It can express physics of the low-density limit up to the order of rs_l only. This is one of the limitations of Eq. (4). Next, Eq. (9) reduces

to [11];

AB
e (r) ~ Alog(C,) — 2Alog (rs) + C—lrs +0 (r:) (14)
1

By comparing Eq. (14) with Eq. (3), I found also that;
- 115794, (15)

This is equivalent to solving Eq. (11) with the conditions B, = 0 and C, = 0. Accidentally, the ratio in Eq. (15) is close, but not equal,
to unity. Thus, it implies that B, = (1 + A)C, could be a reasonable approximation. Chachiyo [8] suggested that A =0 agl, whereas
Karasiev [12] suggested that A = 0.0627 agl. For the exact conditions of the Chachiyo formula, i.e. A =0 a;1 and €, = 20.4562557 ai
[8], Eq. (14) becomes g, (rs) ~ —0.094 + 0.0622 log (rs) — 0.031 r_ which closely resembles Eq. (3). Thus, the Chachiyo formula

gives excellent description to the high-density limit. The major drawback is that Eq. (13) becomes £, (rs) = - 0'i360 which is quite

N

different from the leading terms of Eq. (2). Furthermore, the A approximation is inconsistent with Eq. (7) and (10), which gives % =
1

28.1660
20.5613

=1.3699 a;1 or A =0.3699 agl. I shall refer to this problem as the % inconsistency. If this inconsistency remains, both analytic
1
limits, Eq. (2) and (3) cannot be achieved simultaneously. This is also the major limitation of Eq. (4) where the parameter set {A, B,C 1}

is not large enough to cover all the physics properties of Eq. (2)and (3). I will show later that the % inconsistency cannot be cured by
1

fitting. One way to cure this inconsistency is to solve Eq. (11) with C, # 0.
Unlike Eq. (4), it is clearly seen through Eq. (6)—(12) that Eq. (5) has a potential to reproduce both of the analytic limits, Eq.
(2) and (3), simultaneously. Next, I will show how well Eq. (5) can represent the data from the QMC method. In this paper, I use & . data

points from the works of Perdew and Zunger (CAPZ) [6]. The CAPZ data points combine the QMC results from the CA work [5] with
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the results from the analytic high-density limit. It covers a wider range of 0.01 < r_ < 100. The numerical data points are shown in the
Appendix. I intend not to use the CA data directly because it covers the range of 1 < r_ < 100 only. It does not contain the data in the

high-density limit. As Eq. (5) contains the high-density terms explicitly, I would also like to see how well it can represent the high-density

limit.

Fitting Results and Discussion

In order to measure the accuracy of several models, I define;

2 1 . Model CAPZ (16)

) AN CP R E
i

and perform the least squares fit between a selected model and the CAPZ data points [6], N = 13. M is the number of fitting parameters,

for example if T set B, and C; as the fitting parameters of Eq. (4), then M = 2, and if I set all B, and Cj as the fitting parameters of Eq.

(5), then M = 5. From Eq. (16), I can estimate ){2 = 02, where o is the standard deviation. The CAPZ data is in the units of eV and

accurate to the second decimal place [6], thus I am looking for ¢ < 0.005 eV.

For the PM state, several sets of the parameters are summarized in Table 1.

Table 1 The parameters of the correlation energy in the paramagnetic (PM) state. [ use A = loi# (Ry).
Eq. (4) with Chachiyo Eq. (4) with full | Eg. (5) with Eq. TCUP formula | Eq.(5) with
Eq. (7), (10) formula [8] fitting (7, (8), (10)—(12) (Eq. (17)) full fitting
B, (a,) 28.1660 20.4562557 21.7291 28.1660 28.1660 25.0494
B, @) 0 0 0 -85.2345 -19.5920 -18.5019
C, (ai) 20.5613 20.4562557 22.4063 20.5613 20.5613 21.9395
C, (a;I) 0 0 0 -8.8040 -0.3444 -0.2739
c, (a:) 0 0 0 -0.5790 0.0 0.0279
M - 1 2 - 2 5
o 0.056 0.028 0.009 Howk 0.014 0.006

""The parameter values from the analytic limits give negative argument in one of the logarithmic terms in the intermediate range of r_.
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The results in Table 1 also show that the analytically derived values of the parameters are not suitable for the interpolation. For example,
Eq. (4) with the analytic parameters Eq. (7) and (10) gives a large o, = 0.056 eV. With Chachiyo’s original parameters [8], M = 1, Eq.
(4) gives 0,y = 0.028 eV. The reason is that &, in the region of intermediate values of r_ is not well represented by either Eq. (2) or (3).
In order to provide accurate description of CAPZ, some parameters need to be smeared out via the fitting process [6]. For example, Eq.

(4) with the least squares fit of B, and C; gives 0,,,, = 0.009 eV, which is close to the target 0,,,, < 0.005 eV. This is a very impressive
B
fitting result. [ shall refer to this result as the full fitting of Eq. (4). In this scheme, I find that the C—l inconsistency still remains, i.e. the
1

full fitting gives Iz—i< 1. By substituting the full fitting parameters of Eq. (4) in Table 1 into Eq. (14), I find that €, (rs) ~ —0.097 +

0.0622 log (r S) —0.030 7, which is still in good agreement with the leading terms of the analytic high density limit. However, Eq. (13)

0.6756

becomes €, (r S) = , which is still not much improved. At this point, it seems that if I insist to keep the accuracy, one of the

N

analytic limits will be lost, and vice versa.

Form Table 1, I find also that the analytically derived values of the parameters of Eq. (5) are not suitable for the interpolation.
This is because they impose too much constraint, so that the logarithmic term is diverged in the intermediate range. However, Eq. (5)
contains more added parameters, which are suitable for the adjustment purpose. Some leading terms of the analytic limits could be restored

on the expense of these added parameters. Of course, the lowest g,,,, = 0.006 €V comes from the full fitting of Eq. (5), using all B, and

0.7788 0.58
- 3/2
TS rs

c ;as the fitting parameters, and hence M = 5. The fitting results are reported in Table 1. The full fitting gives €, (rs) =~

in the low-density limit and ¢, (rs) ~ —0.096 + 0.0622log (rs) —0.0387,—0.0017_log (rs) in the high-density limit. I find that, in
this fitting scheme, B, and C; are much smaller than that from Eq. (8) and (11). This is due to the smearing effect. Most of all, C ;> 0,
and consequently the r_log (r S) term has incorrect sign. It may also cause a divergence beyond v = 100. Thus, Eq. (5) with this set of
parameters might not be applicable outside the fitting range. If Eq. (5) with these full fitting parameters is used in an application that the
electron density is confined within the fitting range, i.e. 0.01 < r_ < 100, it will be very accurate. However, if it is used for any prediction
beyond r_ = 100, this might fail. It is worth noting that the magnitude of C; is very much smaller than that from Eq. (12) due to the

smearing effect as well. It plays only an insignificant role. Therefore, this is the reason to omit C5 in the next task.
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Figure 1 Shows the correlation energy in the paramagnetic (PM) state as a function of the Wigner-Seitz radius. The results are from the

CAPZ data [6] (filled circles), the Chachiyo formula [8] (opened squares) and the TCUP formula, Eq. (17), (opened circles with dashed

line)

If I would like Eq. (5) to reproduce both of the exact limits, I can choose to fix B, and C; to be equal to the value from Eq. (7)

and (10). I still can perform the least square fitting by using B,, C; and G5 as the fitting parameters. However, as discussed earlier, 3

plays only an insignificant role, hence I choose to set C, = 0. Thus, in this fitting scheme, only B, and C, are the fitting parameters, and

hence M = 2. The fitting still gives reasonable results with o, = 0.014. The parameters are reported in Table 1. I shall refer to this

formula as the TCUP formula [13]. The TCUP formula can be explicitly expressed as;

/ 281660 195920 20-5613exp (0.9529 \/r: — 0.3444 rs)\ (17)
e, (r,) =—0.0311log| 1+ -+ ;
\ rs T T /
Furthermore, I substitute the TCUP parameters into Eq. (6), and find that;
0.8757 0.61
Sc (rs) ~ _T— 3—/2' (18)
s T
and Eq. (9) becomes;
e (r,) ~ —0.094+0.0622l0g () — 0.046 7 +0.07 log (r). (19)
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The leading terms of Eq. (18) and (19) are indeed exact, compared with those of Eq. (2) and (3). By trading the accuracy, I gain the exact

limits. The problem of the c_l inconsistency is now lifted. Furthermore, this formula can be used in an application that the electron density
1

may not be confined in the fitting range. The TCUP formula gives the power of extrapolation as well.

Figure 1 shows the graphs of ¢ (r_) in the PM state. The numerical data points are shown in the Appendix. The filled circles
are the CAPZ data points [6], the opened circles are from the TCUP formula, and the opened squares are from the Chachiyo formula [8].
The graphical symbols are designed to aid visualization. If the three models are in good agreement, the filled circle, opened circle and
opened square symbols at a given r_ will be at the center of each other. From Figure 1, it can be easily seen that the fitting result from
TCUP formula is in good agreement with the CAPZ data points [6] in the PM state with 0py, = 0.014 eV. The Chachiyo formula [8] also
gives good agreement with the CAPZ data points [6] with o, = 0.028 eV.

For completion, I consider the ferromagnetic (FM) data [6] as well. For the FM state, Eq. (4) with the Chachiyo’s original
parameters [8] gives 0, = 0.014 eV. Eq. (4) with the least squares fit gives o,,, = 0.006 V. The full fitting of Eq. (5) gives an

amazingly accurate result with a very low g, = 0.004 eV. The parameters and the results for the FM state are summarized in Table 2.

Table 2 The parameters of the correlation energy in the ferromagnetic (FM) state. I use A = lof% (Ry).
Chachiyo formula [8] Eq. (4) with full fitting Eq. (5) with full fitting
B, (a,) 27.4203609 26.2241 34.6064
B, (@) 0 0 -27.6895
[ (az) 27.4203609 31.5400 31.2835
c, (ag ) 0 0 -0.3816
c, (a(;l) 0 0 0.0441
M 1 2 5
p 0.014 0.006 0.004
Conclusions

The Chachiyo formula [8] is an elegant model for representing the correlation energy of the uniform electron gas with an
economic parameter set. By using the least squares fit, Eq. (4) provides excellent description to the CAPZ data [6] with 0,,,, = 0.009 eV
and o, = 0.006 eV. However, the function form and the parameter space of the formula prohibits the validation of the analytic limits,

Eq. (2) and (3), simultaneously. Thus, I have proposed the modified formula, Eq. (5), which is also in a simple form with smooth
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derivative, and it can reproduce the analytic forms of both the high-density and low-density limits. Its fitting is in excellent agreement

with the CAPZ data points [6] with opy = 0.006 ¢V and o, = 0.004 eV. By trading with a little less accuracy, I can gain the exact

analytic limits. This leads to the new “TCUP” formula, Eq. (17), which can give reasonable description of the correlation energy of the

uniform electron inside the fitting range and also have an extrapolating power outside the fitting range as well. This could be useful for

studying some exotic phases, such as Wigner crystallization [1,2].
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Appendix numerical data points of the correlation energy, all in units of eV.

T CAPZ (PM) [6] Chachiyo [8] TCUP (Eq. (17))
0.01 -5.21 -5.18 -5.18
0.1 -3.30 -3.27 -3.28
0.5 -2.07 -2.04 -2.08
1 -1.62 -1.58 -1.63
2 -1.23 -1.18 -1.22
3 -1.01 -0.98 -1.01
4 -0.87 -0.85 -0.87
5 -0.77 -0.75 -0.77
6 -0.69 -0.68 -0.69
10 -0.51 -0.50 -0.51
20 -0.31 -0.31 -0.33
50 -0.16 -0.15 -0.17
100 -0.09 -0.08 -0.10
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