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Abstract

The immersed boundary (IB) method is the method for studying flexible structure-fluid interaction. In this article, we present
the mathematical structure of the method which aims to simulate mostly the problems in biofluid dynamics. The philosophy of the IB
method is to make the communication between the Eulerian variables that are used in fluid dynamics and the Lagrangian variables that
are used to describe the elasticity of the material through the Dirac delta function. Since the method was introduced in 1972, it has been

used widely in various structure-fluid interactions. Some applications are mentioned in this article.
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Introduction

The immersed boundary (IB) method was first proposed by Charles S. Peskin [1] and it has been used to study various
flexible material-fluid interactions, such as deformation of red blood cells under shear flow [2], DNA coiling [3], and cellular growth
[4]. The method is both a mathematical formulation and numerical simulation. In this article, a brief review of the method and some
applications will be given. The mathematical formulation of the IB method and descriptions of the numerical algorithm will be

presented. Some applications to structure-fluid interactions will be mentioned as well.
Mathematical Formulation

The spirit of the IB method is the connection between the Lagrangian and Eulerian variables through the Dirac delta function.
Roughly speaking, the structure is described by Lagrangian variables (curvilinear coordinates). Since the structure is deformed
throughout the process, the key step is to introduce the Eulerian variables (Cartesian coordinates) describing the fluid velocity along the

way. The Dirac delta function is then introduced in order to make the communication between the structure and the fluid.

Let us consider an incompressible elastic material embedded in a three-dimensional space. The curvilinear coordinates
attached on the material is specified by Q = (q1, G2, q3). At time t, the material's Cartesian coordinates X = (X, X5, X3) are related to

q through;
X; = X1(q1,92,q3, 1),
X; = X5(q1,92, 93, 1), (D

X3 = X3(q1,92.93,1).
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Let M (q1,q2, q3) be the mass density of the material. Then, the integration | Mdq,dq,dqs gives the mass occupied in the
volume dq,dq,dqs. Please note that M is not a function of time because mass is conserved. We further assume that the elastic energy
stored in the material is a functional of X = (X;,X5,X5) at time t such that E[X(qy,q2,q3,t)]. The elastic force density

F(q1,q2,q3) can be calculated from;

Note that Eq. (2) is completely in Lagrangian form. The equations of fluid are given by the Navier-Stokes equations which can be

described in Eulerian form;
p (% +ux,t)- V) u(x,t) = —VP(x,t) + uViu(x,t) + f(x, 1), 3)
and
V-u(x,t) =0, )

where p is the density of the fluid, u(x, t) is the fluid velocity, P(X,t) is the pressure, { is the dynamic viscosity of the fluid, and
f(x, t) is the external force per unit volume acting on the fluid element. Eq. (3) describes the conservation of momentum. While, Eq.
(4) is the conservation of mass which is the condition of incompressible fluid. The connection between the Lagrangian and Eulerian

variables is done through the Dirac delta function;

p(x,t) = J-M(QPQZ-QS)S(X_X)d(i'ld‘hdq}

f(x,t) sz(ql-qz-qs.t)é'(x —X)dq,dq,dqs.

These equations show the density p(x,t) and the elastic force density f(x, t) in the Eulerian variables. The velocity of the material
point is given by;

2_’: = [u(x,1)6(x — X)dx. ©)

The point on the boundary will move with the local fluid velocity associated to that point. This enforces the no-slip boundary
condition.

Numerical IB Method

In this section, we shall first discuss the spatial discretization by employing two independent grids, i.e., the fluid and structure
grids. Next, the approximate form of the Dirac delta function is discussed. We then describe the temporal discretization. Finally, we

will give the numerical algorithm used for numerical IB method.
Spatial discretization

The fluid grid for the Eulerian variables (simply called the Eulerian grid) is denoted by ge. It is a 3-vector in Cartesian
coordinates with integer components of the form X = he, where € = (€4, €5, €3) and his the size of the spatial step. Similarly, the
structure grid (or the Lagrangian grid) denoted by Gy is the set of (kq, Aqy,kq,Aq2, kg, Aq3) , where kg , kg, , and kg, are integers. The

discretization of the elastic energy can be written as;
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E, = Ekafk’ kb €kl Ko Kl (qul.qu.kqa) Aq,Aq,Aqs, (6)

qz' gz
where Excly ek ek is the local energy density. Then, the discrete elastic force density associated with the point
17423
(kq,Aqy,kq,Aq4, kg, Aq3) is of the form;
de

g ki ke
_Ekél.k’ o q1"dz 133. (7)

F =
kqykqyKay qz'"qz axkql

'kQ2'kQ3

Now, we can write the discrete form of the equations of motion described in Sec. II as;

p(x,t) = Z M(q1,q2,q3)8, (x — X)Aq,Aq,4qs3,
(q1.92.92)€6]
f(x,t) = Z F(q1,q2,93,t)6,(x —X)Aq,Aq,4q;,

(91.92.92)€6

and

ax 3

— = Zxeg, UX )6, X —X)R°. (®)
The approximate Dirac delta function

The three-dimensional Dirac delta function in a discrete form with the spatial width h can be written as;

00 =0 (0 (2 (2),

where X = (x1,%5,X3) is a three-dimensional vector in Cartesian coordinates. Peskin and McQueen [5] give the choice of the delta

function by the simple formula;

E(1 + cos(?)), Ir| = 2,

o) = {4 (10)

0, otherwise,
where @(r) = @(x;/h). i = (1,2,3). Other choices for the successfully approximate delta function are in [8].

Temporal discretization

In order to make the temporal discretization, we use the midpoint method (also known as the second-order Runge-Kutta

method). Let us consider the differential equation of the form;

Y~ f(y), n

ar

with the initial condition ¥ (£5) = Vg. We define;
Ynt+1~ Y = (BOf (}’n %).
they =ty + At,
forn = 0,1,2,3, .... From this scheme, we can move the material point from the position X;; to X4 1;
Xns1 =X = (80) Tueg, W, 1005 (X X, 1) 2 (12)
Numerical algorithm

The numerical algorithm is described as follows. For each time step;
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1. Calculate the elastic force density F(q1, g2, g3,t) on Lagrangian grid

2. Spread the force density from the Lagrangian grid to the Eulerian
grid:f (X, t) = X(q, ..q0)e6; F(91,92,93,8) 6, (X — X)Aq1Aq; 443,

3. Solve the Navier-Stokes equations on the Cartesian coordinates

. . " dX
4. Update the material point position: — = Yxeg, WX, 1), (X — X)h3.
Applications

Many authors have used the IB method for studying various structure-fluid interactions. Since it was introduced to study the
fluid dynamics of heart valves by Peskin [1], the diverse phenomena and systems such as modeling of the whole heart [5], the
deformation of red blood cells under shear flows [2], and fluid-interaction of flexible bacterial flagella [6] have been studied. Recently,

the method has been used to simulate the dynamics of growth vesicles with permeability [7].
Conclusions

The immersed boundary method is the method for simulating incompressible elastic bodies immersed in viscous
incompressible fluid. The main idea of the method is to spread the elastic energy stored in the material from the curvilinear coordinates
to the Cartesian coordinates with the help from the Dirac delta function. Since the IB method was introduced in 1972, a wide range of

applications has been demonstrated. This assures the robustness of the method.
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