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สมบัตแิม่เหลก็และไดเลก็ตริกของพอลเิมอร์ผสมแม่เหลก็ 
ชิตณรงค์  ศิริสถิตย์กุล 

สาขาวชิาฟิสิกส์ ส านกัวชิาวทิยาศาสตร์ มหาวทิยาลยัวลยัลกัษณ์ 
 

บทคดัย่อ   

วสัดุคอมโพสิตของแม่เหลก็และพอลิเมอร์ ไดรั้บความสนใจจากวงการวทิยาศาสตร์และวศิวกรรมวสัดุ เพราะเป็นวสัดุท่ีผสานสมบติัท่ีเป็น

เอกลกัษณ์ของแม่เหลก็ เขา้กบัสมบติัเชิงกลท่ีโดดเด่นของพอลิเมอร์ นอกจากน้ียงัสามารถแสดงปรากฏการณ์อ่ืนๆ เช่น Magnetoelectric 

Effect เป็นตน้ บทความน้ีกล่าวถึงการใชก้ฎการผสม อธิบายสมบติัแม่เหลก็และไดอิเลก็ตริกของพอลิเมอร์ท่ีผสมผงแม่เหลก็ 

 

 

การสงัเคราะห์วสัดุคอมโพสิตของแม่เหลก็และพอลิเมอร์ (Magnetic Polymer Composite) ในยคุแรกเนน้การผสมแม่เหลก็ 

Alnico กบั Phenolic Resin จนต่อมาไดมี้การวจิยัและพฒันาวสัดุคอมโพสิตเหล่าน้ีใหมี้ความหลากหลาย มีคุณสมบติัท่ีดีข้ึน อีกทั้งแสดง

ปรากฏการณ์ท่ีน่าสนใจอ่ืนๆ เช่น Magnetoelectric Effect การประยกุตข์องวสัดุคอมโพสิตของแม่เหลก็และพอลิเมอร์ ไดแ้ก่ การใชง้าน

เป็น แม่เหลก็ท่ีมีน ้ าหนกัเบาและดดัเป็นรูปต่างๆได ้วสัดุท่ีดูดกลืนคล่ืนไมโครเวฟ เซนเซอร์ และ ตวัเปล่ียนพลงังาน เป็นตน้ 

 

กฎการผสม (Rule of Mixture) 

เม่ือน าวสัดุตั้งแต่สองชนิดข้ึนไปมาผสมกนั วสัดุใหม่ท่ีไดเ้รียกวา่วสัดุคอมโพสิต (Rule of Mixture) วสัดุเชิงประกอลท่ีไดน้ี้จะมี

คุณสมบติัแบบเดียวกบัวสัดุตั้งตน้หรือคุณสมบติัแบบใหม่ท่ีเกิดข้ึนหลงัจากการผสม ข้ึนอยูก่บัคุณสมบติัของสารตั้งตน้ การกระจายตวั 

และอนัตรกิริยาระหวา่งวสัดุตั้งตน้แต่ละชนิด คุณสมบติัส่วนหน่ึงอธิบายดว้ย กฎการผสม 

 

 

รูปท่ี 1 แนวการให้ความเค้นและความเครียดท่ีเกิดในวสัดคุอมโพสิต 
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กฎของการผสม เป็นการพิจารณาความสมัพนัธ์ของสมบติัใดๆ แบบเชิงเสน้ของคอมโพสิตกบัสมบติัเฉพาะตวัของฟิลเลอร์และ

เมทริกซ์ รวมถึงปริมาณเฟส (Phase) ต่าง ๆ โดยมกัจะใชอ้ธิบายสมบติัทางกายภาพ เช่น มอดูลสัของยงั ( E ) สมัประสิทธ์ิการขยายตวั

เน่ืองจากความร้อน ( ) ความหนาแน่น (  ) หรือสมบติัเชิงกล เช่น ความเคน้ ( 1 และ 2 ) ความเครียด ( 1 และ 2 ) 

คุณสมบติัของคอมโพสิตท่ีถูกอธิบายดว้ยกฎการผสมอยา่งง่าย สามารถประเมินสมบติัเชิงกลและสมบติัทางกายภาพของคอมโพ

สิตเบ้ืองตน้ท่ีเป็นประโยชนต์่อคอมโพสิตเชิงวศิวกรรม โดยเฉพาะกบัคอมโพสิตท่ีสงัเคราะห์เพ่ือการเสริมแรงใหก้บัวสัดุ (ฟิลเลอร์ท่ีเป็น

เสน้ใย) พิจารณาการใชก้ฎการผสมในการอธิบายโดยใหค้่าความเคน้และความเครียดคงท่ี (Constant-Stress and Constant-Strain) ใน

แนวขนานและตั้งฉากกบัตวัเสริมแรงแสดงดงัรูปท่ี 1 

ถา้ผลรวมของแรงท่ีให้แก่คอมโพสิตมีค่าเท่ากบัผลรวมของแรงท่ีให้กบัเมทริกซ์และ        ฟิลเลอร์ คือ 
fmc FFF   และ

ความสมัพนัธ์ของความเคน้  
A

F
   เม่ือ F = โหลด (Load) A  = พ้ืนท่ีหนา้ตดั (Cross sectional) จะไดเ้ป็นสมการท่ี (1) 

ffmmccc AAAP  
                                                                                         

(1) 

จากกฎของฮุก (  E ) จะไดส้มการท่ี (2) 

fffmmmcccc AEAEAEP                                                                                   (2) 

จดัรูปใหม่สมการท่ี (2) ใหม่ จะไดเ้ป็นสมการท่ี (3) 
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เม่ือ  
c

m

A

A    คือ พ้ืนท่ีหรือสัดส่วนโดยปริมาตรของเมทริกซ์ เขียนแทนเป็น mV  และ 
c

f

A

A
    คือ พ้ืนท่ีหรือสัดส่วนโดยปริมาตรของฟิล

เลอร์ เขียนแทนเป็น fV  จึงเขียนสมการท่ี (2) ใหม่เป็นสมการท่ี (4)  

ffmmc EVEVE                                                                                               (4) 

หรือเขียนใหอ้ยูใ่นรูปของความเคน้ ไดเ้ป็นสมการท่ี (5)  

ffmmc VV                                                                                                (5) 

 ฟิลเลอร์ท่ีเป็นผงแม่เหลก็จะท าใหเ้กิดความเป็นแม่เหลก็แบบเฟร์โร (Ferromagnetism) หรือเฟร์รี (Ferrimagnetism) ในพอลิเมอร์

ท่ีไม่เป็นแม่เหล็ก ปริมาณท่ีแสดงความเป็นแม่เหลก็ต่างๆ เช่น แรงลบลา้งแม่เหลก็ (Coercive field), Maximum energy product, สภาพซึม

ได้ทางแม่เหล็ก (Magnetic permeability) และแมกนีไตเซชัน (Magnetization) สามารถวดัได้จากแมกนีโตมิเตอร์ (Magnetometer) ท่ี
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แสดงผลเป็นฮีสเทอรีซีสลูป จากผลการวจิยัในคอมโพสิตของยางและเฟอร์ไรต์ [1,2] พบวา่ สามารถใชก้ฎของการผสม (Rule of mixture) 

อธิบายการเปล่ียนแปลงของสมบติัแม่เหล็กตามองค์ประกอบของคอมโพสิต ไดเ้ช่นเดียวกบัสมบติัเชิงกล เช่นในกรณี แมกนีไตเซชนั

อ่ิมตวัของคอมโพสิต (
mpcM ) มีค่าข้ึนอยูก่บัสดัส่วนโดยน ้ าหนกัของฟิลเลอร์ท่ีเป็นผงแม่เหลก็ ( mW ) กบัพอลิเมอร์ท่ีเป็นเมทริกซ์ (

pW ) 

ppmmmpc WMWMM                                                                                         (6) 

โดยท่ี mM  และ 
pM  คือแมกนีไตเซชนัอ่ิมตวัของผงแม่เหล็กและพอลิเมอร์ ตามล าดบั เน่ืองจากพอลิเมอร์ทุกชนิดไม่แสดงความเป็น

แม่เหลก็แบบเฟร์โร หรือ เฟร์รี pM จึงมีค่าเป็นศูนย ์สมการจึงลดรูปเป็น 

mmmpc WMM                                                                                                            (7) 

อย่างไรก็ตามมีขอ้จ ากดัในการใชก้ฎของการผสมอธิบายสมบัติแม่เหล็กท่ีเป็น Combined property ของคอมโพสิต เพราะอนัตรกิริยา

ระหว่างคลสัเตอร์ของฟิลเลอร์แม่เหล็กท่ีกระจายอยู่ในพอลิเมอร์ จะส่งผลให้ปริมาณทางแม่เหล็กต่างออกไป เช่น ค่าการลบลา้งทาง

แม่เหล็กไม่แปรผนัตรงตามสัดส่วนโดยน ้ าหนกัของฟิลเลอร์แม่เหล็ก หรือแมก้ระทัง่แมกนีไตเซชนัอ่ิมตวัของคอมโพสิต ในกรณีปริมาณ

ฟิลเลอร์มากๆ จนถึงค่า Percolation threshold [3]  ก็ไม่เพ่ิมข้ึนตามสมการ (7)  

กฎของการผสม เป็นการพิจารณาความสมัพนัธ์ของสมบติัใดๆ แบบเชิงเสน้ของคอมโพสิตกบัสมบติัเฉพาะตวัของฟิลเลอร์และ

เมทริกซ์ รวมถึงปริมาณเฟส (Phase) ต่าง ๆ โดยมกัจะใชอ้ธิบายสมบติัทางกายภาพ เช่น สมัประสิทธ์ิการขยายตวัเน่ืองจากความร้อน ความ

หนาแน่น หรือสมบติัเชิงกล เช่น ความเคน้ ความเครียด หรือมอดูลสัของยงั ( E ) คุณสมบติัของคอมโพสิตท่ีถูกอธิบายดว้ยกฎการผสม

อยา่งง่าย สามารถประเมินสมบติัเชิงกลและสมบติัทางกายภาพของคอมโพสิตเบ้ืองตน้ท่ีเป็นประโยชน์ต่อวศิวกรรมวสัดุ โดยเฉพาะกบั

คอมโพสิตท่ีสงัเคราะห์เพ่ือการเสริมแรงใหก้บัวสัดุ มีงานวจิยัของ K.K. Chawla [4]  ท่ีใชก้ฎของการผสมวเิคราะห์สมบติัเชิงกลของวสัดุ

คอมโพสิตท่ีเสริมแรงดว้ยเสน้ใยโลหะ พบวา่กระบวนการเตรียมคอมโพสิตส่งผลต่อการเปล่ียนแปลงโครงสร้างของเมทริกซ์ และค่า

ความเครียดท่ีวดัไดแ้สดงใหเ้ห็นถึงขอบเขตระนาบบริเวณพลาสติกหรือบริเวณท่ีเมทริกซ์แสดงความเป็นพลาสติก ขณะท่ีเสน้ใยโลหะจะ

แสดงความเป็นอิลาสติก นอกจากนั้นยงัมีอิทธิพลส าคญัอ่ืน ๆ ท่ีส่งผลต่อสมบติัเชิงกลดว้ย เช่น Volume fraction โดยงานวจิยัของ C. Lee et 

al [5] ใชก้ฎการผสมส าหรับท านายสมบติัของเสน้ใยท่ีจดัเรียงตวัในลกัษณะมีทิศทางแน่นอน พบวา่ค่าความตา้นทานตอ่แรงดึงท่ีไดเ้ป็นเชิง

เสน้กบักฎการผสม แต่ถา้การจดัเรียงตวัของเสน้ใยเป็นแบบสุ่มความสมัพนัธ์ของความตา้นทานต่อแรงดึงท่ีไดไ้ม่เป็นเชิงเสน้กบักฎการ

ผสม (Non-linear) ซ่ึงสอดคลอ้งกบังานของ S.S. Rangaraj et al [6] ท่ีวดัค่า Ultimate tensile strengths ท่ีพบวา่ความสมัพนัธ์ไม่เป็นแบบเชิง

เสน้ แต่อธิบายวา่เป็นผลมาจากอนัตรกิริยาระหวา่งเสน้ใยกบัเสน้ใยท่ีกระจายตวัไม่สม ่าเสมอ รวมทั้งปัจจยัจากการจดัเรียงแบบสุ่มของเสน้

ใยในเมทริกซ์ดว้ย และไดน้ าเสนอโมเดลดดัแปลงกฎการผสมตามแบบของ Karam วา่สามารถยอมรับค่าความตา้นทานต่อแรงดึงท่ี 

Volume fraction ต ่าและยงัคงมีคา่ท่ีเท่ียงตรงเม่ือ Volume fraction สูง นอกจากโมเดลของ Karam ท่ีถูกเสนอแลว้ยงัมีโมเดลอีกหลายโมเดล

ท่ีถูกน าเสนอเพ่ืออธิบายลกัษณะของฟิลเลอร์แต่ละแบบ (อนุภาคหรือเสน้ใย) รวมไปถึงความอ่อนและความแขง็ของฟิลเลอร์ดว้ย แต่ยงัคง

เง่ือนไขการกระจายตวัอยา่งสม ่าเสมอเป็นเน้ือเดียวกนั เช่นในงานของ H.S. Kim et al [7] ไดท้ านายสมบติัเชิงกลของวสัดุคอมโพสิตตาม

ลกัษณะขา้งตน้ โดยการค านวณดว้ยวธีิไฟไนตอิ์ลิเมนต ์ (Finite element) กบัยนิูตเซลลท่ี์มีแกนสมมาตร (Axisymmetric unit cell) และใช้
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กฎการผสมตามโมเดลของ Voigt และ Reuss ในการวเิคราะห์สมบติัเชิงกล พบวา่กราฟแสดงระนาบพลาสติก (Plastic Flow Curve) 

สอดคลอ้งกบัโมเดลของ Voigt ท่ี Volume fraction สูง ส่วนท่ี Volume fraction ต ่า สอดคลอ้งกนัทั้งโมเดลของ Voigt และ Reuss ทั้งฟิล

เลอร์แบบอ่อนและแบบแขง็ และไดมี้ความพยายามท่ีจะก าหนดหรือสร้างเง่ือนไขของลกัษณะฟิลเลอร์ใหเ้ป็นรูปทรงท่ีแน่นอนมากข้ึน 

เพ่ือช่วยในการอธิบายทั้งท่ีเป็นเสน้ใยและอนุภาค G.R.Liu [8] ไดน้ าเสนอลกัษณะของฟิลเลอร์ท่ีเป็นเสน้ใยวา่มีลกัษณะแบบทรงกระบอก 

(Cylinder) และเป็นแบบทรงกลม (Sphere) ส าหรับอนุภาค เก็บขอ้มูลของค่ามอดูลสัแบบตามยาวพบวา่สอดคลอ้งกนักบัวธีิการอ่ืน ๆ และ

ยงัคงสอดคลอ้งเม่ือเป็นค่ามอดูลสัแบบแนวขวางและแนวเฉือน อยา่งไรก็ตามแต่ ยงัมีปัจจยัเก่ียวกบัขอ้บกพร่องของคอมโพสิตท่ีส่งผลต่อ

สมบติัเชิงกลเช่น ช่องวา่ง (Blowholes), รอยแตก (Cracks), รอยแยกเฟส (Debonding), รูพรุน (Porosity) ดงันั้น B.K. Sarkar et al [9] ได้

วเิคราะห์ขอ้บกพร่องในการผสมดงักล่าว โดยดดัแปลงสมการของกฎการผสมเพ่ืออธิบายขอ้บกพร่องท่ีเกิดข้ึน พบวา่ท่ีระดบัขอ้บกพร่อง

เกิน 30 เปอร์เซ็นตใ์นเมทริกซ์ท่ีเป็นเรซิน ยงัไม่มีผลต่อความแขง็แรงของคอมโพสิต แต่ขอ้บกพร่องเพียงเลก็นอ้ยของเสน้ใยจะมีผลอยา่ง

มาก ขอ้สรุปของความบกพร่องขา้งตน้ ท านายท่ีปริมาณฟิลเลอร์ใกลเ้คียงกบั 40 เปอร์เซ็นตใ์นคอมโพสิต ฟิลเลอร์ท่ีมีลกัษณะอ่ืน เช่น ฟิล

เลอร์ท่ีเป็นไมซ่ึ้งมีรูปทรงไม่แน่นอน ดงัในงาน C. Burgstaller et al [10] ใชโ้มเดลของ Kelly-Tyson ท่ีดดัแปลงมาจากกฎการผสมแลว้

สามารถแสดงความสมัพนัธ์ของ Volume fraction กบัค่าความตา้นทานต่อการดึงแบบเชิงเสน้ได ้ รวมไปถึงการท านายพฤติกรรมของวสัดุ

คอมโพสิตท่ีมีสารตั้งตน้มากกวา่สองชนิด ดงังานของ J.F. Luongo-Ortiz et al [11] แสดงความเป็นเชิงเสน้ของน ้ าหนกัรวมกบัอนัตรกิริยา

ของสารตั้งตน้มากกวา่สองชนิดโดยก าหนดดว้ย Multibody interaction parameters 

ค่าสภาพยอมทางไฟฟ้า (Electrical Permittivity) 

 นอกจากพฤติกรรมทางแม่เหล็กแลว้  ฟิลเลอร์ท่ีเป็นผงแม่เหล็กจะเปล่ียนแปลงสมบติัทางไฟฟ้า คือ สภาพน าไฟฟ้า (Electrical 

conductivity) และค่าสภาพยอมทางไฟฟ้า (Electrical permittivity) อีกดว้ย เน่ืองจากผงแม่เหลก็มีสภาพน าไฟฟ้าสูงกวา่พอลิเมอร์ทัว่ไป จึง

ช่วยในการน าไฟฟ้าไดดี้ข้ึน และประจุไฟฟ้าท่ีบริเวณผิว (Surface charge) ของฟิลเลอร์ท าใหโ้พลาไรเซชนัมีค่าสูงข้ึน สมการของวากเนอร์ 

(Wagner’s equation) สามารถใชอ้ธิบายค่าไดอิเล็กตริก หรือ    สภาพยอมทางไฟฟ้าสัมพทัธ์ ( mpc ) ในกระบวนการโพลาไรเซชนัของ

วสัดุคอมโพสิตท่ีมีอนุภาคทรงกลม โครงสร้างแบบลูกบาศก ์เป็นฟิลเลอร์ปริมาณนอ้ย ๆ จนปราศจากอนัตรกิริยาระหวา่งกนั [12]  

)31(   pmpc                                                                                                 (8) 

โดย   คือ สภาพยอมของพอลิเมอร์ และ   คือ สดัส่วนโดยปริมาตรของฟิลเลอร์ 

สมบติัทางไฟฟ้าของคอมโพสิตจะวเิคราะห์จากการวดัค่าสภาพยอมทางไฟฟ้า ของคอมโพสิต โดยการแสดงความสมัพนัธ์กบัค่า 

Volume fraction ซ่ึงมีปรากฏการทบทวนโมเดลท่ีแสดงความสัมพนัธ์ดังกล่าวในงานของ K. Lal et al [13] เช่น โมเดลของ Rayleigh 

(1892), Wagner (1914), Bruggeman (1935), Bottcher (1952), De Loor (1956) และ Van Beek (1967) โดยอธิบายฟิลเลอร์โลหะท่ีมีลกัษณะ

ทรงกลมและไม่เป็นทรงกลม ส่วนการวดัค่าสภาพยอมทางไฟฟ้าในเมทริกซ์ท่ีเป็นพอลิเมอร์นอกจากมีค่าสมบติัทางแม่เหล็กแลว้ ยงั

สามารถวดัค่าสภาพ ยอมทางไฟฟ้าได้ด้วย เน่ืองฟิลเลอร์ท่ีเป็นโลหะสามารถน าไฟฟ้าได้ดีว่าเมทริกซ์ท่ีเป็นพอลิเมอร์ และงานของ 

Gokturk et al [12] ไดแ้สดงความสมัพนัธ์ของ Volume fraction กบัค่าสภาพยอมทางไฟฟ้า พบวา่ความสมัพนัธ์เป็นแบบเชิงเสน้ 
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ค่าสภาพซึมได้ทางแม่เหลก็ (Magnetic Permeability) 

สมบติัเชิงแม่เหลก็ไฟฟ้าในกรณีความถ่ีสูง คือ เม่ือคล่ืนแม่เหล็กไฟฟ้าช่วงความถ่ีคล่ืนวิทย ุและไมโครเวฟเขา้สู่วสัดุคอมโพสิต

ของแม่เหลก็และพอลิเมอร์ จะเกิดการแมกนีไตเซชนัของไดโพลโมเมนตแ์ม่เหลก็ตามสนามแม่เหลก็ท่ีเปล่ียนแปลงตามเวลา พร้อมไปกบั

การเกิดโพลาไรเซชนัของไดโพลไฟฟ้าตามสนามไฟฟ้าท่ีเปล่ียนแปลงตามเวลา ซ่ึงประจุไฟฟ้าท่ีบริเวณผิวของฟิลเลอร์แม่เหล็กจะท าให้

เกิดปรากฏการณ์แม็กซ์เวลล-์วากเนอร์ (Maxwell-Wagner effect) [14] ส่งผลให้โพลาไรเซชนัท่ีมีค่าสูงกวา่พอลิเมอร์ท่ีปราศจากฟิลเลอร์ 

จึงเกิดการดูดกลืนคล่ืนมากกว่าพอลิเมอร์ท่ีปราศจากฟิลเลอร์ท่ีคล่ืนสามารถทะลุผ่านไดโ้ดยปราศจากอนัตรกิริยา ความสามารถในการ

ดูดกลืนคล่ืนจึงระบุไดด้ว้ยค่าสภาพยอมทางไฟฟ้าและสภาพซึมไดท้างแม่เหล็ก (ซ่ึงเป็นจ านวนเชิงซอ้นในกรณีความถ่ีสูง) ซ่ึงมีส่วนจริง 

และส่วนจินตภาพ ข้ึนอยูก่บัความถ่ีของคล่ืนและองคป์ระกอบของคอมโพสิต  

ส าหรับสภาพซึมไดข้องผงแม่เหลก็ เน่ืองจากกระบวนการ Ferromagnetic resonance และ Domain wall motion เป็นไปตาม 

Lorentzian law [15] 

2)()(1

)1(1

r

r

s

f

f
ffi 







                                                                         (9) 

โดยท่ี   คือ Damping parameter และ f  คือความถ่ี 

ส่วนความถ่ีเรโซแนนซ์ )( rf  สมัพนัธ์กบัสภาพซึมไดส้ถิต )( s  ผา่นกระบวนการ Ferromagnetic resonance และ Domain wall motion 

ตาม Snoek’s law 
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






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โดยท่ี sM คือ แมกนีไตเซชนัอ่ิมตวั และ   เป็นค่าคงท่ี  

สภาพซึมไดจ้ะลดลงท่ีความถ่ีสูง ซ่ึงสามารถขยาย Snoek limit สูงมากกวา่ 1 GHz ดว้ยการผสมเฟอร์ไรต์กบัพอลิเมอร์ เม่ือผง

แม่เหล็กกระจายอยูใ่นพอลิเมอร์เมทริกซ์ สามารถใชก้ฎของการผสม ในการอธิบายค่าของสภาพยอมและสภาพซึมได ้[16] ตามสูตรของ 

Maxwell-Garnet 
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 KK                                                                                         (11) 

หรือสูตรของ Bruggeman-Hanai 
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โดยท่ี  K  คือ สภาพยอม ( ) หรือ สภาพซึมได ้(  ) ของคอมโพสิต 

1K  คือ สภาพยอม ( ) หรือสภาพซึมได ้(  ) ของพอลิเมอร์เมทริกซ์ 

2K  คือ สภาพยอม ( ) หรือสภาพซึมได ้(  ) ของฟิลเลอร์เฟอร์ไรต ์

และ   คือ สดัส่วนโดยปริมาตรของฟิลเลอร์เฟอร์ไรต ์

ซ่ึงสูตรเหล่าน้ี สามารถใชอ้ธิบายผลการวดัสภาพยอม และ สภาพซึมได ้ของ ยางธรรมชาติ พอลียรีูเทน พอลีโพรไพลีน ท่ีผสมโคบอลต์

เฟอร์ไรต ์ [17, 18] และ ยางธรรมชาติท่ีผสมนีโอดีเมียมไอออนโบรอน [19] ได ้
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