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Abstract

Magnetic fields from a planar undulator for a synchrotron source are simulated by using Radia program. The
undulator consists of 4 arrays of permanent magnets. Each array has 41 bars of magnet whose remanent magnetization is
perpendicular to the adjacent one. The simulated magnetic field is periodic and dependent on configuration of the magnets
including the gap and the magnetic period length. Magnetic field can be adjusted by translating an array of magnet relative to
each other. The variation of this field with the translation is symmetric with respect to its direction. By the calculation of the
force from the simulated magnetic field, the zig-zag electron trajectory in the horizontal plane is obtained and leads to the
synchrotron radiation.
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Introduction

In 2001, the Siam Photon Source has first produced synchrotron light in Thailand. Now, the facility is equipped with
beam lines for photoemission spectroscopy, photoelectron emission microscopy, x-ray lithography, x-ray fluorescence, x-ray
absorption spectroscopy and small angle x-ray scattering and has increasing contributions in material science, biomedical
science, physics, chemistry and biology research [1-4]. In the synchrotron facility, electromagnetic wave of high intensity and
brilliance is emitted by electrons, accelerated closed to the speed of light, in the bending magnets around the storage ring.
Some applications of the synchrotron radiation such as soft x-ray spectroscopy, spin-resolved photoelectron spectroscopy and
magnetic circular dichroism require either circularly polarized light or variably polarized light. In order to meet these
requirements, the Siam Photon Source needs insertion devices in a straight section of its storage ring. Insertion devices are

classified into 2 types according to their wiggler strength (K) [5].
K =0.934 BoAp 1)

where 4, is the magnetic period length and By is the peak magnetic field. The device with a low wiggler strength (K <<1) is
called undulator. The undulator offers a high intensity light whereas the wiggler, the other type of insertion device with a
larger wiggler strength, is often used when the high photon energy is needed [5].

Planar undulators, permanent magnet based devices, are installed in synchrotron facillities worldwide [6-8]. In a
design called APPLE Il (Advanced Planar Polarized Light Emitted) [6], there are 4 rows of magnetic bars. Two rows are

placed above electron beams and parallel to the other 2 rows beneath them. In each row, the magnetization of each magnetic
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bar is perpendicular to the adjacent one. Electrons travel in the gap between the rows of magnets have helical trajectory due
to periodic magnetic fields in horizontal and vertical directions. As a result, high intensity x-rays are emitted whose
polarization is changed by translating a row of the magnet relative to the other.

Before constructions, magnetic fields in any insertion devices have to be calculated. Radia, a freeware developed by
researchers at European Synchrotron Radiation Facility since 1997 [9], offers a convenient and efficient way for such
simulations. The program, coded by object-oriented C++ with Mathematica user interface, employs boundary integral
method to calculate magnetic fields from either electromagnets or permanent magnets. A previous study on undulators
showed that it gave similar results to the simulation by a Fortran code [10]. Its versatility extends to the possible calculations
of magnetic field in other devices. In this work, we implement Radia to show magnetic fields and resulting electron
trajectories in a planar undulator

Methods

To simulate the magnetic field from the APPLE planar undulator, 4 arrays of permanent magnets are drawn on
Radia. Their geometry and the coordinates are indicated in Figure 1. Each array has 41 magnets (only 12 bars are exemplified
in Figure 1) whose dimensions are 100 x 20 x 25 mm®. The remanent magnetization of the magnets is set at 1.38 T, which is
realistically obtainable in Nd-Fe-B based permanent magnets. For an exception, the bars at both ends are smaller and supply
weaker field than the rest in the array to compensate the orbit distortion of electrons [5]. The magnetic field is calculated as a
function of several parameters namely an undulator gap (Gap), magnetic period length () and the length of array translation
(ID Length). In additions, the relation between the magnetic pole width and the maximum magnetic field, also known as peak

field, is studied. Finally, the trajectory of an electron in this magnetic field can also be calculated from the force acting on it.
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Figure 1 Diagram of planar undulator.

Results and discussion

By setting the conditions x = z = 0, Gap = 10 mm, 4, = 80 mm, the vertical magnetic field (B.) along the y-axis
shown in Figure 2 for 10 periods (Nper = 10) is periodic. The field has its peaks around 0.5 T. From such figures, the peak
field can be deduced in the case of varying pole widths at a constant gap of 30 mm. The peak field in Figure 3 has roughly
linear variation with the pole widths of less than 5 mm. The sensitivity of peak field to the change in pole width is reduced

from 5 mm and approached saturation from 20 mm. This justifies the selection of magnets’ size in Figure 1.
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Figure 2 Simulated vertical magnetic field along the y-axis in planar undulator.
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Figure 3 Peak field obtained from undulator by simulation as a function of pole width.

The dependence of B, on Gap, 4, and ID Length is shown in Figure 4. The B; is about 1.2 T in the case of 3 mm gap
and steadily decreased with increasing gap from 5 to 21 mm as shown in Figure 4(a). The trend can be easily understood
because the arrangement with magnets closer each other should lead to higher magnetic fields. However, it must be taken into
account that the gap larger than 20 mm is typically required to accommodate vacuum pipes of the real storage ring. In
contrast to the dependence on the gap, B; in Figure 4(b) is not monotonically changed with A,. It initially increased with 4, up
to 70 mm, attaining the maximum and then gradually reduced with the further increase in A,. It follows that A, between 70
and 90 mm is preferred in the constructions of undulators of this design. By setting the conditions for large B, (Gap = 10 mm,
Ap = 80 mm), B; is plotted as a function of ID length in Figure 4(c). The field is periodic with a maximum value of 1.2 T and,

hence, symmetric to the direction of the translation.
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In a similar fashion, the horizontal magnetic field can also be simulated. In Figure 5, an electron follows a zig-zag

path in the horizontal (x-y) plane of the helical planar undulator. Such deviation of electrons in response to magnetic field in
the undulator is required for synchrotron radiation because the bending of relativistic electrons leads to the soft x-ray

emission. Moreover, the photon energy from the synchrotron radiation can be calculated from the peak field which is beyond

the scope of this work.
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Figure 4 Peak magnetic field in the z-axis as a function of (a) gap, (b) period and (c) ID-length.

Conclusions
From simulations by Radia program, the magnetic field from the planar undulator and hence the electron trajectories

in this insertion device are dependent on the gap, the magnetic period length and the translation of magnetic array. The
magnetic field is periodic and reduced with the gap. To obtain large magnetic fields, the optimum length of magnetic period

and translation can be found from the simulation.
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Figure 5 Calculated electron trajectory in horizontal plane of planar undulator.
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