Algorithm for Solving the Detour Hinge Vertex Problem on Circular-arc Graphs

Main Article Content

Yoko Nakajima
Shoma Nameki
Tomonari Izumi
Hirotoshi Honma

Abstract

Consider a simple undirected graph gif.latex?G=(V,&space;E) with vertex set gif.latex?V and edge set gif.latex?E. Let gif.latex?G&space;-&space;u be a subgraph induced by the vertex set gif.latex?V&space;-&space;u. The distance gif.latex?d_G(x,&space;y) is defined as the length of the shortest path between vertices gif.latex?x and gif.latex?y in gif.latex?G. The vertex gif.latex?u&space;\in&space;V is a hinge vertex if there are two vertices gif.latex?x,&space;y&space;\in&space;V&space;-&space;u such that gif.latex?d_{G&space;-&space;u}(x,&space;y)>d_{G}(x,&space;y). Let gif.latex?U be a set consisting of all hinge vertices of gif.latex?G. The neighborhood of gif.latex?u, denoted by gif.latex?N(u), is the set of all vertices adjacent to gif.latex?u. We define the detour degree of gif.latex?u as gif.latex?det(u)=\max\{d_{G-u}(x,&space;y)-2&space;\mid&space;d_{G-u}(x,&space;y)>d_{G}(x,&space;y),&space;x,&space;y&space;\in&space;N(u)&space;\} for gif.latex?u&space;\in&space;U. The detour hinge vertex problem aims to determine the hinge vertex gif.latex?u that maximizes gif.latex?det(u) in gif.latex?G. In this study, we proposed an efficient algorithm for solving the detour hinge vertex problem on circular-arc graphs that runs in gif.latex?O(n^2) time, where gif.latex?n is the number of vertices in the graph.

Article Details

Section
Research Article

References

J. M. Chang, C. C. Hsu, Y. L. Wang, and T. Y. Ho, “Finding the set of all hinge vertices for strongly chordal graphs in linear time,” Inf. Sci., vol. 99, no. 3-4, pp. 173–182, 1997.

H. Honma and S. Masuyama, “A parallel algorithm for finding all hinge vertices of an interval graph,” IEICE Trans. Inf. & Syst., vol. E84-D, no. 3, pp. 419–423, 2001.

H. Honma, Y. Nakajima, Y. Igarashi, and S. Masuyama, “Algorithm for finding maximum detour hinge vertices of interval graphs,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E97-A, no. 6, pp. 1365–1369, 2014.

M. Pal, “Intersection graphs: An introduction,” Annals Pure Appl. Math. (APAM), vol. 4, no. 1, pp. 43–91, 2013.

R. M. McConnell, “Linear-time recognition of circular-arc graphs,” Algorithmica, vol. 37, pp. 93–147, 2003.

M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. New York, NY, USA: Academic Press, 1980.

T. Y. Ho, Y. L. Wang, and M. T. Juan, “A linear time algorithm for finding all hinge vertices of a permutation graph,” Inf. Process. Lett., vol. 59, no. 2, pp. 103–107, 1996.

H. Honma, K. Abe, and S. Masuyama, “Erratum and addendum to a linear time algorithm for finding all hinge vertices of a permutation graph,” Inf. Process. Lett., vol. 111, no. 18, pp. 891–894, 2011.

F. R. Hsu, M. K. Shan, H. S. Chao, and R. C. Lee, “Some optimal parallel algorithms on interval and circular-arc graphs,” J. Inf. Sci. Eng., vol. 21, pp. 627–642, 2005.

H. Honma and S. Masuyama, “An optimal parallel algorithm for finding all hinge vertices of a circular-arc graph,” IEICE Trans. Fundam. Electron. Commun. Comput., vol. E91.A, no. 1, pp. 383–391, 2008.

D. Bera, M. Pal, and T. K. Pal, “An efficient algorithm for finding all hinge vertices on trapezoid graphs,” Theory Comput. Syst., vol. 36, no. 1, pp. 17–27, 2003.

H. Honma, Y. Nakajima, and S. Masuyama, “An algorithm for hinge vertex problem on circular trapezoid graphs,” J. Inf. Process., vol. 25, pp. 945–948, 2017.

H. Honma, Y. Nakajima, Y. Igarashi, and S. Masuyama, “Algorithm for identifying the maximum detour hinge vertices of a permutation graph,” IEICE Trans. Fundam. Electron. Commun. Comput., vol. E98-A, no. 6, pp. 1161–1167, 2015.

H. Honma, Y. Nakajima, and S. Masuyama, “An algorithm for the influential hinge vertex problem on interval graphs,” J. Inf. Process., vol. 28, pp. 1047–1051, 2020.