Hybrid Energy Harvesting System Based on Regenerative Braking System and Suspension Energy Harvesting for Middle Electric Vehicle
Main Article Content
Abstract
This research proposed a hybrid energy harvesting system (HEHS) based on Suspension Energy Harvesting using a regenerative shock absorber (RSA) with SC/Battery hybrid energy storage system (SCB-HESS) based regenerative braking system (RBS) for the middle electric vehicle (MEV). In the regenerative braking mode, the artificial neural network (ANN)-based RBS control mechanism was utilized to optimize the switching scheme of the three-phase inverter and transferred the braking energy to be stored in the energy storage devices. Furthermore, a supercapacitor-based RSA is capable of harvesting the vehicular suspension-vibration energy and converting it into electrical energy to extend energy storage devices. The experimental total energy harvesting efficiency of the supercapacitor-based RSA ranges between 21.74% and 49.93%, with an average total efficiency of 31.93%. In addition, the research findings revealed that the proposed hybrid energy harvesting system based on SCB-HESS-based RBS with suspension energy harvesting using RSA enhanced the regeneration efficiency of 31.75% compared with SCB-HESS-based RBS MEVs.
Article Details
Article Accepting Policy
The editorial board of Thai-Nichi Institute of Technology is pleased to receive articles from lecturers and experts in the fields of business administration, languages, engineering and technology written in Thai or English. The academic work submitted for publication must not be published in any other publication before and must not be under consideration of other journal submissions. Therefore, those interested in participating in the dissemination of work and knowledge can submit their article to the editorial board for further submission to the screening committee to consider publishing in the journal. The articles that can be published include solely research articles. Interested persons can prepare their articles by reviewing recommendations for article authors.
Copyright infringement is solely the responsibility of the author(s) of the article. Articles that have been published must be screened and reviewed for quality from qualified experts approved by the editorial board.
The text that appears within each article published in this research journal is a personal opinion of each author, nothing related to Thai-Nichi Institute of Technology, and other faculty members in the institution in any way. Responsibilities and accuracy for the content of each article are owned by each author. If there is any mistake, each author will be responsible for his/her own article(s).
The editorial board reserves the right not to bring any content, views or comments of articles in the Journal of Thai-Nichi Institute of Technology to publish before receiving permission from the authorized author(s) in writing. The published work is the copyright of the Journal of Thai-Nichi Institute of Technology.
References
J. Shen and A. Khaligh, “A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system,” IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 223-231, Oct. 2015.
A. Santucci, A. Sorniotti, and C. Lekakou, “Power split strategies for hybrid energy storage systems for vehicular applications,” Journal of Power Sources, vol. 258, pp. 395–407, Jul. 2014.
S. Dusmez and A. Khaligh, “A supervisory power-splitting approach for a new ultracapacitor–Battery vehicle deploying two propulsion machines,” IEEE Transactions on Industrial Informatics, vol. 10, no. 3, pp. 1960–1971, Aug. 2014.
M. Wlas, Z. Krzeminski, J. Guzinski, H. A. Rub, and H. A. Toliyat, “Artificial-neural-network-based sensorless nonlinear control of induction motors,” IEEE Transactions on Energy Conversion, vol. 20, No. 3, pp. 520–528, Sep. 2005.
A. Kuperman, I. Aharon, S. Malki, and A. Kara, “Design of a semiactive battery-ultracapacitor hybrid energy source,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 806-815, Feb. 2013.
X. Nian, F. Peng, and H. Zhang, “Regenerative braking system of electric vehicle driven by brushless DC motor,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5798-5808, Jan. 2014.
U. Aksu and R. Halicioglu, “A review study on energy harvesting systems for vehicles,” Tehnički Glasnik, vol. 12 no. 4, pp. 251-259, Dec. 2018, doi: 10.31803/tg-20180210153816.
M. A. A. Abdelkareem, L. Xu, M. K. A. Ali, A. Elagouz, J. Mi, S. Guo, Y. Liu, and L. Zuo, “Vibration energy harvesting in automotive suspension system: A detailed review,” Applied Energy, vol. 229, pp. 672-699, Nov. 2018.
H. Wang, A. Jasim, and X. Chen, “Energy harvesting technologies in roadway and bridge for different applications-a comprehensive review,” Applied Energy, vol. 212, pp. 1083–1094, Feb. 2018.
C. Wei and X. Jing, “A comprehensive review on vibration energy harvesting: Modelling and realization,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 1–18, Jul. 2017.
W. Salman, L. Qi, X. Zhu, H. Pan, X. Zhang, S. Bano, Z. Zhang, and Y. Yuan, “A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles,” Energy, vol. 159, pp. 361-372, Sep. 2018.
A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2237–2245, Jun. 2008.
L. W. Ching, L. C. Liang, H. P. Min, and W. M. Tzong, “Realization of anti-lock braking strategy for electric scooters,” IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2826–2833, Jun. 2014.
Z. Fang, X. Guo, L. Xu, and H. Zhang, “Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber,” Advances in Mechanical Engineering, vol. 3, pp. 1-9, May 2013, doi: 10.1155/2013/943528.
Z. Zhang, X. Zhang, W. Chen, Y. Rasim, W. Salman, H. Pan, Y. Yuan, and C. Wang, “A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle,” Applied Energy, vol. 178, pp. 177-188, Sep. 2016.
Z. Wang, T. Zhang, and Z. Zhang, “A high-efficiency regenerative shock absorber considering twin ball screws transmissions for application in range-extended electric vehicles,” Energy and Built Environment, vol. 1, no. 1, pp. 36-49, Jan. 2020.
Y. Zhang, X. Zhanga, M. Zhana, K. Guoa, F. Zhao, and Z. Liu, “Study on a novel hydraulic pumping regenerative suspension for vehicles,” Journal of the Franklin Institute, vol. 352, no. 2, pp. 485-499, Feb. 2015, doi: 10.1016/j.jfranklin.2014.06.00.
Z. Zhao, T. Wang, B. Zhang, and J. Shi, “Energy Harvesting from Vehicle Suspension System by Piezoelectric Harvester,” Journal of the Mathematical Problems in Engineering, vol. 2019, 2019, Art. no. 1086983, doi: 10.1155/2019/1086983.