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บทคัดย่อ 
ตัวควบคุม PID ถูกน าเสนอครั้งแรกในปี ค.ศ.1922 และได้รับการยอมรับอย่างกว้างขวางในภาคอุตสาหกรรมมาร่วม 1 ศตวรรษ 

ทั้งนี้เนื่องจากตัวควบคุม PID สามารถปรับปรุงผลตอบสนองภาวะช่ัวครู่และผลตอบสนองสถานะอยู่ตัว อีกทั้งยังสามารถอนุวัตได้
โดยง่าย อย่างไรก็ตาม โดยธรรมชาติแล้วตัวควบคุม PID จะให้สมรรถนะของระบบมีความโดดเด่นเพียงด้านใดด้านหนึ่งตามภาวะ 
แลกกัน เมื่อท าการออกแบบตัวควบคุม PID ให้บรรลุวัตถุประสงค์ด้านการตามรอยสัญญาณอินพุต สมรรถนะในด้านการคุมค่าโหลด 
ของระบบจะลดลง และในทางกลับกันก็เป็นจริง ปัญหาดังกล่าวสามารถแก้ไขได้โดยอาศัยตัวควบคุม PID แบบสองระดับขั้นความเสรี 
บทความนี้น าเสนอการออกแบบตัวควบคุม 2DOF-PID อย่างเหมาะสม โดยใช้ขั้นตอนวิธีการหาค่าเหมาะที่สุดแบบวาฬ ซึ่งเป็นเทคนิค
การค้นหาค่าเหมาะที่สุดแบบเมตาฮิวริสติกที่ทรงประสิทธิภาพ ส าหรับระบบท่ีมีเวลาประวิงซึ่งมีผลตอบสนองล่าช้า และระบบเซอร์โว
ซึ่งมีผลตอบสนองรวดเร็ว ผลการออกแบบจะถูกน าไปเปรียบเทียบกับตัวควบคุม 1DOF-PID จากผลการจ าลองสถานการณ์ พบว่า  
ตัวควบคุม 2DOF-PID ที่ออกแบบด้วยขั้นตอนวิธีการหาค่าเหมาะที่สุดแบบวาฬ สามารถควบคุมระบบที่มีเวลาประวิงและระบบเซอรโ์ว
ได้อย่างมีประสิทธิภาพ โดยมีค่า IAE ที่ลดลงสูงสุดเท่ากับ 19.22% ส าหรับระบบที่มีเวลาประวิง และ 17.14% ส าหรับระบบเซอร์โว 
ส่งผลท าให้ผลตอบสนองแบบตามรอยสัญญาณอินพุตและผลตอบสนองแบบคุมค่าโหลดที่รวดเร็วและราบเรียบกว่าตัวควบคุม 1DOF-
PID อย่างน่าพึงพอใจ 
 

ค ำส ำคัญ :  ตัวควบคุม 1DOF-PID  ตัวควบคุม 2DOF-PID  เทคนิคการค้นหาค่าเหมาะที่สุดแบบเมตาฮิวรสิติก  ขั้นตอนวิธีการหาค่า
เหมาะทีสุ่ดแบบวาฬ 
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Abstract 

The proportional-integral-derivative (PID) controller was first introduced in 1922. It has been widely accepted in 
industry for almost a century, because it can improve transient and steady-state responses as well as easily 
implementation. However, PID controllers tend by nature to excel in one aspect of system performance due to its 
trade-off. When the PID controller is designed to achieve input tracking, the load regulation performance of the 
system is then reduced, and vice versa. This problem can be solved by using a two degree-of-freedom PID (2DOF-
PID) controller. This paper presents the design of the optimal 2DOF-PID controller by using the whale optimization 
algorithm (WOA), one of the most efficient metaheuristic optimization techniques for the time-delayed systems 
having slow responses and the servo systems possessing fast responses. Results obtained by the 2DOF-PID designed 
by the WOA will be compared with those obtained by the 1DOF-PID controller. From the simulation results, it was 
found that the 2DOF-PID controller designed by the WOA algorithm can effectively control the time-delayed system 
and the servo system. A maximum reduction in the IAE has been achieved, with 19.22% for the time-delay system 
and 17.14% for the servo system. Consequently, faster and smoother tracking and load regulation responses have 
been satisfactorily obtained once compared to those of the 1DOF-PID controller. 
 

Keywords: 1DOF-PID controller, 2DOF-PID controller, Metaheuristic optimization techniques, Whale optimization 
algorithm 
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1) บทน า 
ในปี ค.ศ. 1922 ตัวควบคุม PID ได้ถูกน าเสนอครั้งแรกโดย 

Minorsky [1] เพื่อควบคุมและรักษาเสถียรภาพของเรือรบ 
ตัวควบคุม PID สามารถตอบสนองวัตถุประสงค์ของการควบคุม 
ทั้งในด้านการตามรอยสัญญาณอินพุต ( input tracking) หรือ 
การเฝ้าติดตามค าสั่ง (command following) และการคุมค่า 
โหลด (load regulation) หรือการก าจัดการรบกวน (disturbance 
rejection) ตัวควบคุม PID สามารถปรับปรุงผลตอบสนองภาวะ
ช่ัวครู่และผลตอบสนองสถานะอยู่ตัว เพื่อให้ระบบถูกควบคุมมีผล 
ตอบสนองที่รวดเร็วและมีความแม่นย า นอกจากนี้ การออกแบบ
และการอนุวัตตัวควบคุม PID สามารถกระท าได้โดยง่าย ด้วยเหตุนี้ 
ตัวควบคุม PID จึงได้รับการยอมรับและถูกประยุกต์ใช้ในภาค 
อุตสาหกรรมอย่างกว้างขวางในฐานะหัวใจหลักของระบบควบคุม
อัตโนมัติมาร่วม 1 ศตวรรษ [2], [3] 

อย่างไรก็ตาม การใช้ตัวควบคุม PID เพียงตัวเดียว ซึ่งอาจ
เรียกว่า ตัวควบคุม PID แบบหนึ่งระดับขั้นความเสรี (one degree-
of-freedom PID: 1DOF-PID controller) จะส่งผลท าให้สมรรถนะ
ของระบบมีความโดดเด่นเพียงด้านใดด้านหนึ่ง สาเหตุที่เป็นเช่นนี้
เนื่องจากธรรมชาติของระบบ 1DOF ที่มีการใช้ตัวควบคุมเพียง
ตัวเดียว เมื่อท าการปรับจูนตัวควบคุมให้บรรลุวัตถุประสงค์ด้าน
การตามรอยสัญญาณอินพุต สมรรถนะในด้านการคุมค่าโหลดของ
ระบบจะลดลง ในทางตรงกันข้าม เมื่อท าการปรับจูนตัวควบคุม
ให้บรรลุวัตถุประสงค์ด้านการคุมค่าโหลด สมรรถนะในด้านการ
ตามรอยสัญญาณอินพุตของระบบจะลดลง ปรากฏการณ์ดังกล่าวคือ 
ภาวะแลกกัน (trade-off) ของระบบ 1DOF ซึ่งการประยุกต์ใน
ระบบอุตสาหกรรมจริง อาจส่งผลกระทบ เนื่องจากระบบควบคุม
ในภาคอุตสาหกรรมส่วนใหญ่มีความต้องการผลตอบสนองที่มี
การตามรอยสัญญาณอินพุตและการคุมค่าโหลดที่เหมาะสมไป
พร้อมกัน การควบคุมให้ระบบสามารถผลิตผลตอบสนองได้ตาม
วัตถุประสงค์ ทั้งในด้านการตามรอยสัญญาณอินพุตและด้าน 
การคุมค่าโหลดไปพร้อมกัน ระบบควบคุมจะต้องมีโครงสร้างเป็น 
2DOF และใช้ตัวควบคุม PID แบบสองระดับขั้นความเสรี (two 
degree-of-freedom PID controller: 2DOF-PID controller) 
[4]–[7] แนวทางการออกแบบ ตัวควบคุม 2DOF-PID แบบดั้งเดิม 
จะอาศัยหลักเกณฑ์การปรับจูน (tuning rules) [5], [6] ซึ่งมีข้อ 
จ ากัดเกี่ยวกับผลตอบสนองของระบบภายใต้การควบคุม (พลานต์) 
ที่จะต้องมีลักษณะเป็นเส้นโค้งปฏิกิริยา (reaction curve) นั่น
หมายความว่า ถ้าหากพลานต์มีผลตอบสนองไม่เป็นไปตาม

เง่ือนไขดังกล่าว ก็จะไม่สามารถออกแบบตัวควบคุม 2DOF-PID ได้ 
จะเห็นได้ว่า การออกแบบตัวควบคุม 2DOF-PID อย่างเหมาะสม 
ที่สามารถสร้างสมดุลระหว่างการตามรอยสัญญาณอินพุตและ
การคุมค่าโหลด ส าหรับระบบควบคุมประเภทต่าง ๆ ยังคงเป็น
งานที่ท้าทายในทางทฤษฎีระบบควบคุมแบบดั้งเดิม และอาจ
จ าเป็นต้องพึ่งพาเทคนิคการหาค่าเหมาะที่สุด 

ในปัจจุบัน การออกแบบตัวควบคุมได้เปลี่ยนจากแนวทาง 
การปรับจูนแบบดั้งเดิมมาเป็นการหาค่าเหมาะที่สุดแนวใหม่   
โดยอาศัยเทคนิคการค้นหาค่าเหมาะที่สุดแบบเมตาฮิวริสติก 
(metaheuristic optimization techniques) [8] จากการส ารวจ
งานวิจัยที่เกี่ยวข้อง พบว่า ขั้นตอนวิธีการหาค่าเหมาะที่สุดแบบ
วาฬ (Whale Optimization Algorithm: WOA) เป็นเทคนิค
การค้นหาค่าเหมาะที่สุดแบบเมตาฮิวริสติกที่ทรงประสิทธิภาพ 
ซึ่งได้รับการน าเสนอเป็นครั้งแรกโดย Mirjalili และ Lewis ในปี 
ค.ศ. 2016 [9] ข้ันตอนวิธี WOA ได้รับการพัฒนาขึ้นจากพฤติกรรม
การล่าเหยื่อของวาฬหลังค่อม (humpback whales) ที่อาศัย
เทคนิคการปล่อยเกลียวฟองอากาศเพื่อต้อนให้ฝูงปลา (เหยื่อ) 
มารวมกลุ่มกันบนผิวน้ าเพื่อกินเหยื่อ กลไกส าคัญของขั้นตอนวิธี 
WOA คือการค้นหาเหยื่อ (searching for prey), การล้อมเหยื่อ 
(encircling prey), และการโจมตีแบบฟองอากาศ (bubble-net 
attacking) ขั้นตอนวิธี WOA ได้รับการทดสอบสมรรถนะกับ
ปัญหาการหาค่าเหมาะที่สุดมาตรฐานแล้ว พบว่ามีสมรรถนะการ
ค้นหาผลเฉลยวงกว้าง (global solution) ที่เหนือกว่าขั้นตอน
วิธีการค้นหาเชิงแรงโน้มถ่วง (gravitational search algorithm: 
GSA), วิธีวิวัฒนาการเชิงผลต่าง (Differential Evolution: DE), 
วิธีกลยุทธ์เชิงวิวัฒนาการ (Evolution Strategy: ES), โปรแกรม
เชิงวิวัฒนาการ (Evolutionary Programing: EP), ขั้นตอนวิธี
เชิงพันธุกรรม (Genetic Algorithm: GA) และการหาค่าเหมาะ
ที่สุดแบบฝูงอนุภาค (particle swarm optimization) [9] และ
เนื่องจากขั้นตอนวิธี WOA เป็นเทคนิคการค้นหาแบบเมตาฮิวริสติก
ที่ค่อนข้างใหม่ และมีกลไกการค้นหาที่ไม่ซับซ้อน ขั้นตอนวิธี WOA 
จึงได้รับการประยุกต์ใช้ เพื่อแก้ปัญหาการหาค่าเหมาะที่สุดทาง
วิศวกรรมที่หลากหลาย อาทิเช่น การแก้ปัญหาการหาค่าเหมาะ
ที่สุดทางวิศวกรรมไฟฟ้า [10], [12] วิศวกรรมคอมพิวเตอร์ [13], 
[14] วิศวกรรมอากาศยาน [15], [16] วิศวกรรมเครื่องกล [17], 
[18] และวิศวกรรมโยธา [19], [20] เป็นต้น ดังที่ได้รับการปริทัศน์
ไว้ใน [21], [22] จากผลการส ารวจงานวิจัยที่เกี่ยวข้อง จะเห็นได้
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ว่า ยังไม่มีการประยุกต์ขั้นตอนวิธี WOA เพื่อออกแบบตัวควบคุม 
2DOF-PID อย่างเหมาะสม 

บทความวิจัยนี้ได้ประยุกต์ขั้นตอนวิธี WOA เพื่อออกแบบ 
ตัวควบคุม 2DOF-PID อย่างเหมาะสม ส าหรับระบบที่มีเวลา
ประวิงซึ่งมีผลตอบสนองล่าช้า และระบบเซอร์โวซึ่งมีผลตอบสนอง
รวดเร็ว ผลการออกแบบตัวควบคุม 2DOF-PID ด้วยขั้นตอนวิธี 
WOA จะถูกน าไปเปรียบเทียบกับตัวควบคุม 1DOF-PID เพื่อ
ตรวจสอบสมรรถนะในการควบคุมระบบล าดับถัดไปจะน าเสนอ
ทฤษฎีที่เกี่ยวข้อง, วิธีด าเนินการวิจัย, ผลการวิจัยและการ
อภิปราย และสรุปผลการวิจัย ตามล าดับ 

 
2) ทฤษฎีที่เกี่ยวข้อง 

2.1) ระดับขั้นความเสรี 
ระดับขั้นความเสรี จะพิจารณาจากจ านวนฟังก์ชันถ่ายโอน 

วงปิด (closed-loop transfer function) ที่สามารถปรับแต่งได้
อย่างอิสระ [4]–[6] ยกตัวอย่างเช่น ระบบมีฟังก์ชันถ่ายโอนวงปิด 
C(s)/R(s) ส าหรับวัตถุประสงค์ด้านการตามรอยสัญญาณอินพุต 
และมีฟังก์ชันถ่ายโอนวงปิด C(s )/D(s) ส าหรับวัตถุประสงค์ด้าน
การคุมค่าโหลด ถ้าฟังก์ชันถ่ายโอนวงปิด C(s)/R(s) และ C(s )/D(s) 
สามารถปรับจูนได้อย่างอิสระต่อกัน ระบบดังกล่าวจะถูกพิจารณา
เป็นระบบสองระดับขั้นความเสรี (ระบบ 2DOF) แต่ถ้าฟังก์ชัน
ถ่ายโอนวงปิด C(s)/R(s) และ C(s )/D(s) ไม่สามารถปรับจูนได้
อย่างอิสระต่อกัน ระบบดังกล่าวจะถูกพิจารณาเป็นระบบหนึ่ง
ระดับขั้นความเสรี (ระบบ 1DOF)  

โครงสร้างของระบบ 1DOF เมื่อใช้ตัวควบคุม PID แบบดั้งเดิม 
ซึ่งจะพิจารณาเป็นตัวควบคุม 1DOF-PID ดังรูปที่ 1 เมื่อ R(s) คือ
สัญญาณอินพุต, E(s) คือสัญญาณความคลาดเคลื่อน, U(s) คือ
สัญญาณควบคุม, D(s) คือสัญญาณรบกวนหรือโหลด, และ C(s) 
คือสัญญาณเอาต์พุต หรือผลตอบสนองของระบบ ก าหนดให้ 
พลานต์ (plant) มีฟังก์ชันถ่ายโอนเป็น Gp(s) และตัวควบคุม 
1DOF-PID มีฟังก์ชันถ่ายโอนเป็น Gc(s) ดังแสดงในสมการที่ (1) 

เมื่อ Kc คืออัตราขยายตัวควบคุม (controller gain), i คือค่าคง

ตัวเวลาเชิงปริพันธ์ (integral time constant), และ d คือค่า
คงตัวเวลาเชิงอนุพันธ์ (derivative time constant) 
 

1DOF-PID

R(s)

+
–

C(s)

Gp(s)Gc(s)

      

E(s) U(s)

D(s)

+

+

 
 

รูปที่ 1 : ระบบ 1DOF 
 

1DOF-PID

1
( ) 1c c d

i

G s K s
s




 
= + + 

   
(1) 

ส าหรับโครงสร้างของระบบ 2DOF เมื่อใช้ตัวควบคุม 2DOF-
PID แสดงดังรูปที่ 2 และฟังก์ชันถ่ายโอนของตัวควบคุม 2DOF-

PID แสดงดังสมการที่ (2) เมื่อ  และ  คือค่าตัวประกอบการ
ลดทอน (attenuation factors) [4], [5], [6], [7]  

 

+
–

C(s)

Gp(s)Gc1(s)

      

D(s)

+

+

+

+

Gc2(s)

U(s)E(s)R(s)

2DOF-PID

 
 

รูปที่ 2 : ระบบ 2DOF 
 

1 2DOF-PID

2 2DOF-PID

1
( ) 1

( ) ( )

c c d
i

c c d

G s K s
s

G s K s




 

 
= + +  

 


= − +   

(2) 

 

2.2) หลักเกณฑ์การปรับจูน 
การออกแบบตัวควบคุม 2DOF-PID แบบดั้งเดิม จะอาศัย

หลักเกณฑ์การปรับจูน AT (Araki-Taguchi tuning rules) [5], [6] 
ซึ่งพัฒนามาจากหลักเกณฑ์การปรับจูน ZN (Ziegler-Nichols 
tuning rule) วิธีที่ 1 [23], [24] โดยจะใช้ประโยชน์จากค่าเวลา
ประวิง L และค่าคงตัวเวลา T ที่ได้จากเส้นโค้งปฏิกิริยาของ 
พลานต์ ซึ่งให้ผลตอบสนองต่อสัญญาณอินพุตแบบขั้นบันไดหนึ่ง
หน่วย (unit-step input) เป็นรูปทรงตัวอักษร S เมื่อทราบค่า L 
และ T จากเส้นโค้งปฏิกิริยาแล้ว การออกแบบตัวควบคุม 2DOF-
PID ด้วยหลักเกณฑ์การปรับจูน AT จะอาศัยความสัมพันธ์ตาม
สูตรส าเร็จทางคณิตศาสตร์ ดังแสดงในตารางที่ 1 
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ตารางที่ 1 : หลักเกณฑ์การปรับจูน AT 

Ratio L/T 
2DOF–PID parameters 

Kc i/T d/T   
0.1 12.57 0.22 0.04 0.64 0.66 

0.2 6.32 0.40 0.08 0.61 0.64 

0.4 3.21 0.69 0.16 0.56 0.61 

0.8 1.68 1.09 0.30 0.47 0.54 

 

หลักเกณฑ์การปรับจูน AT มีข้อดีคือไม่ซับซ้อน สามารถ
ด าเนินการได้โดยสะดวกและรวดเร็ว แต่มีข้อจ ากัดคือไม่สามารถ
ใช้กับพลานต์ที่มีผลตอบสนองไม่เป็นรูปทรงตัวอักษร S และ

อัตราส่วนระหว่าง L/T ต้องอยู่ในช่วง 0.1  L/T  0.8 [5-6] 
 

2.3) ขั้นตอนวิธี WOA 
ขั้นตอนวิธี WOA ได้รับการพัฒนาขึ้นจากกลไกการล่าเหยื่อ

ของวาฬหลังค่อม โดยอาศัยพฤติกรรมการปล่อยเกลียวฟอง 
อากาศเพื่อต้อนให้ฝูงปลา (เหยื่อ) มารวมกลุ่มกัน ดังแสดง ในรูป
ที่ 3 วาฬหลังค่อมจะด าน้ าลงไปและเริ่มสร้างเกลียวฟองอากาศ
รอบตัวเหยื่อ และค่อย ๆ ว่ายขึ้นไปบนผิวน้ าเพื่อกินเหยื่อ [9]  

 

 
 

รูปที่ 3 : การปล่อยเกลยีวฟองอากาศของวาฬหลังค่อมเพื่อล่าเหยือ่ [9] 
 

กลไกส าคัญของขั้นตอนวิธี WOA คือการค้นหาเหยื่อการล้อม
เหยื่อ และการโจมตีแบบฟองอากาศ ส าหรับกลไกการล้อมเหยื่อ 
จะอาศัยความสัมพันธ์ทางคณิตศาสตร์ ดังแสดงในสมการที่ (3) 

และ (4) เมื่อ t คือจ านวนรอบการค้นหา, *X  คือต าแหน่ง (ผล

เฉลย) ที่ดีที่สุด , X  คือต าแหน่ง (ผลเฉลย) ปัจจุบัน , D  คือ

เวกเตอร์ต าแหน่ง, A  และ C  คือเวกเตอร์สัมประสิทธิ์, a  คือ

ค่าสัมประสิทธิ์ที่ลดลงจาก 2 → 0 แบบเชิงเส้น ตามจ านวน

รอบการค้นหา t, และ 1 2,r r  คือค่าสุ่ม (random) ที่มีการแจก

แจงแบบเอกรูป (uniform distribution) ในช่วง [0, 1] เวกเตอร์

สัมประสิทธิ์ A  และ C  ในสมการที่ (3)-(4) สามารถค านวณได้
จากสมการที่ (5) และ (6) ตามล าดับ 

*| ( ) ( ) |D C X t X t=  −  (3) 
*( 1) ( )X t X t A D+ = −   (4) 

12A a r a=   −  (5) 

22C r=   (6) 
กลไกการโจมตีแบบฟองอากาศ จะมีกลไกที่แบ่งออกเป็น 2 

ลักษณะ คือการบีบวงล้อม (shrinking encircling) และการปรับ
ต าแหน่งแบบเกลียวก้นหอย (spiral updating positions) ซึ่งวาฬ
หลังค่อมจะว่ายไปรอบ ๆ เหยื่อเป็นวงเกลียวที่บีบตัวไปพร้อม ๆ กัน 
โดยก าหนดให้มีค่าความน่าจะเป็นเท่ากับ 50%–50% ระหว่าง
การบีบวงล้อมและการปรับต าแหน่งแบบเกลียวก้นหอย ดังแสดง
ในสมการที่ (7) และรูปที่ 4 

*

*

0.5 (shrinking encircling),

( )
( 1)

0.5 (spiral updating positions),

cos(2 ) ( )bl

if p

X t A D
X t

if p

D e l X t




− 
+ = 


    +  

(7) 

 

 
 

รูปที่ 4 : กลไกการโจมตีแบบฟองอากาศ [9] 
 

เมื่อ 
*| ( ) ( ) |D X t X t = − , b  คือค่าคงตัวส าหรับการ

ก าหนดรูปแบบการเคลื่อนที่รูปเกลียว, และ ,l p  คือค่าสุ่มทีม่ี
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การแจกแจงแบบเอกรูปในช่วง [0, 1] การโจมตีแบบฟองอากาศ
เปรียบเสมือนคุณสมบัติความเขม้ข้น (intensification property) 
ในการค้นหาผลเฉลยเฉพาะที่ (local solution) ของขั้นตอนวิธ ี
WOA 

กลไกการค้นหาเหยื่อ จะอาศัยความสัมพันธ์ทางคณิตศาสตร์ 
ดังแสดงในสมการที่ (8) และ (9) 

| ( ) ( ) |randD C X t X t=  −  (8) 
( 1) ( )randX t X t A D+ = −   (9) 

เมื่อ ( )randX t  คือค่าสุ่มที่มีการแจกแจงแบบเอกรูปในช่วง 
[0, 1] การค้นหาเหยื่อเปรียบเสมือนคุณสมบัติความหลากหลาย 
(diversification property) ในการค้นหาผลเฉลยวงกว้าง ของ
ขั้นตอนวิธี WOA 

ขั้นตอนวิธี WOA สามารถแสดงด้วยรหัสเทียม (pseudo code) 
ดังแสดงในรูปที่ 5 

 

Initialize:

- Initialize the objective function f(x) and search spaces

- Initialize the whales population Xi (i =       n)

- Evaluate each search agent Xi via  f(x)

- Define X* = the best search agent 

- Define the initial iteration t = 1, and maximum number 

  of iterations Max_Iter

while (t  Max_Iter)

      for each search agent

           - Update a, A, C, l, and p

           if1 (p < 0.5)

                if2 (|A| < 1)

                    - Update the position of the current search agent 

                      by the Eq. (3)

                else if2 (|A|  1)

                    - Select a random search agent (Xrand) 

                    - Update the position of the current search agent 

                      by the Eq. (9)

                end if2      

           else if1 (p  0.5)   

                - Update the position of the current search agent 

                   by the Eq. (7) 

           end if1

      end for

      - Check if any search agent goes beyond the search space 

        and amend it

      - Evaluate each search agent Xi via  f(x)

      - Update X* if there is a better solution

      - t = t + 1

end while

- Report the optimal solution X*
 

 
รูปที่ 5 : ขั้นตอนวิธ ีWOA  

 
 
 

3) วิธีด าเนินการวิจัย 
3.1) พลานต์ 

งานวิจัยนี้จะประยุกต์ขั้นตอนวิธี WOA เพื่อออกแบบตัว
ควบคุม 2DOF-PID ส าหรับระบบที่มีเวลาประวิงซึ่งมีผลตอบสนอง
ล่าช้า ดังแสดงด้วยฟังก์ชันถ่ายโอน Gp1(s) ในสมการที่ (10) [7] 
และระบบเซอร์โวซึ่งมีผลตอบสนองรวดเร็ว ดังแสดงด้วยฟังก์ชัน
ถ่ายโอน Gp2(s) ในสมการที่ (11) [25] 

1

6
( )

( 1)( 2)( 3)
pG s

s s s
=

+ + +  
(10) 

2 3 3 4

2.24
( )

(5.55 10 1)(1.78 10 1)(1.78 10 1)
pG s

s s s− − −
=

 +  +  +  
(11) 

 
3.2) การออกแบบตัวควบคุม 2DOF-PID ด้วยขั้นตอนวิธี WOA 

การออกแบบตัวควบคุม 2DOF-PID ด้วยขั้นตอนวิธี WOA  
มีกรอบงานดังแสดงในรูปที่ 6 ฟังก์ชันวัตถุประสงค์ (objective 
function) J แสดงดังสมการที่ (12) เมื่อ Obj1 คือผลตอบสนอง
แบบตามรอยสัญญาณอินพุต และ Obj2 คือผลตอบสนองแบบ

คุมค่าโหลด ค่า 0  1, 2  1 คือตัวประกอบการปรับโทษ 

(penalty factors) ซึ่งในงานวิจัยนี้ก าหนดให้ 1 = 2 = 0.5 
เนื่องจากให้ความส าคัญเท่ากัน ระหว่างผลตอบสนองแบบตาม
รอยสัญญาณอินพุตและผลตอบสนองแบบคุมค่าโหลด 

จากรูปที่ 6 ฟังก์ชันวัตถุประสงค์ J จะถูกป้อนให้กับขั้นตอน
วิธี WOA เพื่อท าให้มีค่าน้อยที่สุด (minimization) ด้วยการ
ค้นหาค่าพารามิเตอร์ที่เหมาะสมของตัวควบคุม 2DOF-PID ใน
สมการที่ (2) ภายใต้ปริภูมิการค้นหาและเง่ือนไขการออกแบบ 
ดังแสดงในสมการที่ (13) เมื่อ tr คือช่วงเวลาขึ้น (rise time), tr_max 
คือ tr สูงสุดที่ยอมให้เกิดขึ้นได้, Mp คือเปอร์เซ็นต์การพุ่งเกินสูงสดุ 
(maximum percent overshoot), Mp_max คือ Mp สูงสุดที่ยอม
ให้เกิดขึ้นได้, ts คือช่วงเวลาเข้าที่ (settling time), ts_max คือ ts 
สูงสุดที่ยอมให้เกิดขึ้นได้, ess คือความคลาดเคลื่อนในสถานะ 
อยู่ตัว (steady-state error), ess_max คือ ess สูงสุดที่ยอมให้เกิด 
ขึ้นได้, Mpreg คือเปอร์เซ็นต์การพุ่งเกินสูงสุดเนื่องจากการคุมค่าโหลด 
(maximum percent overshoot of load regulation), Mpreg_max 
คือ Mpreg สูงสุดที่ยอมให้เกิดขึ้นได้, treg คือช่วงเวลาคุมค่าโหลด 
(load regulating time), treg_max คือ treg สูงสุดที่ยอมให้เกิดขึ้น

ได้, [Kc_min, Kc_max] คือปริภูมิการค้นหาของ Kc, [i_min, i_max] 

คือปริภูมิการค้นหาของ i, [d_min, d_max] คือปริภูมิการค้นหา
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ของ d, [min, max] คือปริภูมิการค้นหาของ , และ [min, 

max] คือปริภูมิการค้นหาของ  
 

+
–

C(s)

Gp(s)

      

D(s)

+

+

+

+ U(s)E(s)R(s)

2DOF-PID

Gc2(s)

Gc1(s)

WOA
Obj1(·) Obj2(·)

 
 

รูปที่ 6 : การออกแบบตัวควบคุม 2DOF-PID ด้วยขั้นตอนวิธ ีWOA 
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(13) 

ในกรณีการออกแบบตัวควบคุม 1DOF-PID ด้วยขั้นตอนวิธี 
WOA สามารถด าเนินการได้ตามแนวทางที่กล่าวมาข้างต้น 
โดยการปรับค่า   และ   ในสมการที่ (13) ให้เท่ากับศูนย์ 
ตัวควบคุม 2DOF-PID จะกลายเป็นตัวควบคุม 1DOF-PID 

 
3.3) การจ าลองสถานการณ์และการเปรียบเทียบผล 

การจ าลองสถานการณ์เพื่อตรวจสอบผลตอบสนองของระบบ
ควบคุมจะด าเนินการโดยอาศัยโปรแกรม MATLAB version 
2017b (License No. #40637337) เพื่อประมวลผลบนเครื่อง
คอมพิวเตอร์ Intel(R) Core (TM) i7-10510U CPU@2.3 GHz, 
8.0GB-RAM ขั้นตอนวิธี WOA ในรูปที่ 5 จะได้รับการพัฒนาเป็น
โปรแกรมการค้นหาด้วยโปรแกรม MATLAB เพื่อออกแบบตัว
ควบคุม 2DOF-PID  

ส าหรับระบบที่มีเวลาประวิง Gp1(s) ในสมการที่ (10) ซึ่งมี
ผลตอบสนองที่เป็นเส้นโค้งปฏิกิริยาในลักษณะเป็นรูปทรงตัวอักษร 
S ตัวควบคุม 2DOF-PID ที่ออกแบบด้วยขั้นตอนวิธี WOA จะถูก

น าไปเปรียบเทียบกับตัวควบคุม 2DOF-PID ที่ออกแบบด้วย
หลักเกณฑ์การปรับจูน AT, ตัวควบคุม 1DOF-PID ที่ออกแบบ
ด้วยหลักเกณฑ์การปรับจูน ZN, และตัวควบคุม 1DOF-PID ที่
ออกแบบด้วยขั้นตอนวิธี WOA 

ส าหรับระบบเซอร์โว Gp2(s) ในสมการที่ (11) ซึ่งมีผลตอบสนอง
ไม่เป็นรูปทรงตัวอักษร S ตัวควบคุม 2DOF-PID ที่ออกแบบด้วย
ขั้นตอนวิธี WOA จะถูกเปรียบเทียบกับตัวควบคุม 1DOF-PID ที่
ออกแบบด้วยวิธี Modulus optimum (MO) [25] และตัวควบคุม 
1DOF-PID ที่ออกแบบด้วยขั้นตอนวิธี WOA 
 

4) ผลการวิจัยและการอภิปราย 
4.1) ผลการออกแบบตัวควบคุมส าหรับระบบท่ีมีเวลาประวิง 

ระบบที่มีเวลาประวิง Gp1(s) ในสมการที่ (10) ให้ผลตอบสนอง
เป็นเส้นโค้งปฏิกิริยาในลักษณะเป็นรูปทรงตัวอักษร Sดังแสดงใน
รูปที่ 7 โดยมีค่า L = 0.4211 วินาที และ T = 2.3157 วินาที 

 

 
 

รูปที่ 7 : ผลตอบสนองของระบบที่มีเวลาประวิง Gp1(s) 
 

การออกแบบตัวควบคุม 1DOF-PID ส าหรับพลานต์ Gp1(s) 
ด้วยหลักเกณฑ์การปรับจูน ZN [12-13] อาศัยความสัมพันธ์ Kc 

= 1.2T/L = 6.599, i = 2L = 0.8422 วินาที , และd = 0.5L 
= 0.2105 วินาท ีตัวควบคุม 1DOF-PID ที่ออกแบบด้วยหลักเกณฑ์
การปรับจูน ZN แสดงดังสมการที่ (14) และให้ผลตอบสนอง ดัง
แสดงในรูปที่ 7 

1DOF-PID-ZN

7.84
( ) 6.60 1.39cG s s

s
= + +

 
(14) 

การออกแบบตัวควบคุม 2DOF-PID ส าหรับพลานต์ Gp1(s) 
ด้วยหลักเกณฑ์การปรับจูน AT [5-6] จะพบว่า อัตราส่วน L/T  

= 0.1818  0.2 ดังนั้น จากตารางที่ 1 จะได้ Kc = 6.32, i = 

0.4T = 0.9263 วินาท,ี d = 0.08T = 0.1853 วินาท,ี  = 0.61 
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และ  = 0.64 ตัวควบคุม 2DOF-PID ที่ออกแบบด้วยหลักเกณฑ์
การปรับจูน AT แสดงดังสมการที่ (15) และให้ผลตอบสนอง ดัง
แสดงในรูปที่ 7 

1 2DOF-PID-AT

2 2DOF-PID-AT

6.82
( ) 6.32 1.17

( ) (3.86 0.75 )

c

c

G s s
s

G s s


= + + 


= − +   

(15) 

การออกแบบตัวควบคุม 1DOF-PID และ 2DOF-PID ส าหรับ 
พลานต์ Gp1(s) ด้วยขั้นตอนวิธี WOA เริ่มต้นจากการทดสอบเพื่อ
หาจ านวนวาฬที่เหมาะสม โดยการปรับจ านวนวาฬ n = 5, 10,…,50 
ซึ่งพบว่า n = 30 คือค่าท่ีเหมาะสมส าหรับการออกแบบ ก าหนด 
ให้เกณฑ์ยุติการค้นหา (Termination Criteria: TC) คือจ านวน
รอบการค้นหาสูงสุด Max_Iter = 100 เนื่องจากเป็นจ านวนรอบ
สูงสุดที่สามารถรับประกันได้ว่าการค้นหาสามารถลู่เข้าหาผล
เฉลยได้อย่างแน่นอน และด าเนินการค้นหาทั้งหมด 50 ครั้ง 
(trials) เพื่อออกแบบตัวควบคุม 1DOF-PID และ 2DOF-PID ที่
เหมาะสม อันจะส่งผลท าให้ฟังก์ชันวัตถุประสงค์ J ในสมการที่ 
(12) มีค่าน้อยที่สุด โดยก าหนดให้ปริภูมิการค้นหาและเง่ือนไข
การออกแบบในสมการที่ (13) แสดงดังสมการที่ (16) 

Subject to 2.00 s, 15%,

                   7.50 s, 0.01%,

                   30%, 5.00 s,

                   0 10.00,

                   0 5.00 s,

                   0 5.00 s,

 

r p

s ss

preg reg

c

i

d

t M

t e

M t

K





 

 

 

 

 

 

                  0 2.50,

                   0 2.50















 


    

(16) 

 

 
 

รูปที่ 8 : เส้นโค้งการลู่เข้าของฟังก์ชันวตัถุประสงค์ในการออกแบบ 
ตัวควบคุม 2DOF-PID ส าหรับพลานต ์Gp1(s) ด้วยขั้นตอนวิธ ีWOA 

 

รูปที่ 8 แสดงเส้นโค้งการลู่เข้าของฟังก์ชันวัตถุประสงค์ J  
ในการออกแบบตัวควบคุม 2DOF-PID ส าหรับพลานต์ Gp1(s) 

ด้วยขั้นตอนวิธี WOA จากการด าเนินการค้นหาทั้งหมด 50 ครั้ง
จากรูปที่ 8 จะพบว่า ขั้นตอนวิธี WOA สามารถออกแบบตัวควบคุม 
2DOF-PID ได้อย่างมีประสิทธิภาพ ซึ่งมีค่าเฉลี่ยเท่ากับ 118.02 
และค่าเบี่ยงเบนมาตรฐานเท่ากับ 1.26×10-6 ส าหรับเส้นโค้งการ
ลู่เข้าของฟังก์ชันวัตถุประสงค์ J ในการออกแบบตัวควบคุม 
1DOF-PID มีค่าเฉลี่ยเท่ากับ 124.73 และค่าเบี่ยงเบนมาตรฐาน
เท่ากับ 3.58×10-5 และจะมีลักษณะเช่นเดียวกับรูปที่ 8 จึงไม่ขอ
น าเสนอในที่น้ี ขั้นตอนวิธี WOA ใช้เวลาเฉลี่ยในการออกแบบตัว
ควบคุม 1DOF-PID และ 2DOF-PID ส าหรับพลานต์  Gp1(s) 
เท่ากับ 7.12 วินาที และ 9.46 วินาที ตัวควบคุม 1DOF-PID และ 
2DOF-PID ที่ออกแบบด้วยขั้นตอนวิธี WOA ส าหรับพลานต์ 
Gp1(s) แสดงดังสมการที่ (17) และ (18) และให้ผลตอบสนองดัง
รูปที่ 7 

1DOF-PID-WOA

1.45
( ) 2.11 0.76cG s s

s
= + +

 
(17) 

1 2DOF-PID-WOA

2 2DOF-PID-WOA

6.28
( ) 6.24 2.13

( ) (1.98 0.83 )

c

c

G s s
s

G s s


= + + 


= − +   

(18) 

 
ตารางที่ 2 : การเปรียบเทียบผลตอบสนองของระบบที่มีเวลาประวิง  

ตัว
ควบคุม 

ผลตอบสนอง 

ตามรอยสัญญาณอินพุต คุมค่าโหลด 
IAE_Total tr 

(s) 
Mp 

(%) 
ts 
(s) 

ess 

(%) 
IAE1 

Mpreg 

(%) 
treg 
(s) 

IAE2 

ไม่มีตัว
ควบคุม 

3.37 0.00 5.00 0.00 58.51 ไม่สามารถคุมค่าได้ 

1DOF-
PID-ZN 

0.62 55.04 6.83 0/00 49.39 14.65 3.69 1.87 51.26 

1DOF-
PID-
WOA 

1.72 3.05 2.94 0.00 47.81 29.50 4.73 5.05 52.86 

2DOF-
PID-AT 

1.20 9.70 5.21 0.00 48.87 15.71 3.83 2.06 50.93 

2DOF-
PID-
WOA 

1.01 3.42 2.11 0.00 41.11 13.48 2.17 1.59 42.70 

 

จากรูปที่ 7 ผลตอบสนองแบบตามรอยสัญญาณอินพุตแสดง
ในช่วงเวลา 0–20 วินาที และผลตอบสนองแบบคุมค่าโหลด 
แสดงในช่วงเวลา 20–40 วินาที การเปรียบเทียบผลตอบสนอง
ของระบบท่ีมีเวลาประวิง Gp1(s) แสดงดังตารางที่ 2 ซึ่งพบว่า ตัว
ควบคุม 2DOF-PID ที่ออกแบบด้วยขั้นตอนวิธี WOA สามารถ
ควบคุมระบบ Gp1(s) ได้อย่างมีประสิทธิภาพ สอดคล้องกับเง่ือนไข
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การออกแบบที่ก าหนดในสมการที่ (16) และให้ผลตอบสนอง
แบบตามรอยสัญญาณอินพุตและผลตอบสนองแบบคุมค่าโหลดที่
รวดเร็วและราบเรียบกว่าตัวควบคุม 2DOF-PID ที่ออกแบบด้วย
หลักเกณฑ์การปรับจูน AT, ตัวควบคุม 1DOF-PID ที่ออกแบบ
ด้วยหลักเกณฑ์การปรับจูน ZN, และตัวควบคุม 1DOF-PID ที่
ออกแบบด้วยขั้นตอนวิธี WOA อย่างน่าพึงพอใจ 

สมรรถนะด้านการตามรอยสัญญาณอินพุตและการคุมค่าโหลด 
ของตัวควบคุม 1DOF-PID-ZN, 1DOF-PID-WOA, 2DOF-PID-
AT และ 2DOF-PID-WOA ส าหรับระบบที่มีเวลาประวิง ในรูปที่ 
7 สามารถแสดงด้วยค่าปริพันธ์ของค่าความคลาดเคลื่อนสัมบูรณ์ 
( Integral of Absolute Error: IAE) ระหว่าง สัญญาณอินพุต
อ้างอิงและสัญญาณเอาต์พุตของระบบ ดังแสดงในตารางที่ 2 
เมื่อ IAE1 คือค่า IAE ของการตามรอยสัญญาณอินพุต, IAE2 คือ
ค่า IAE ของการคุมค่าโหลด และ IAE_Total คือผลรวมของค่า 
IAE1 และ IAE2 ซึ่งพบว่า ตัวควบคุม 2DOF-PID-WOA สามารถ
ลดค่า IAE_Total ลงได้ 19.22%, 16.70% และ 16.16% เมื่อ
เปรียบเทียบกับตัวควบคุม 1DOF-PID-WOA, 1DOF-PID-ZN 
และ 2DOF-PID-AT ตามล าดับ แสดงให้เห็นว่า ตัวควบคุม 2DOF-
PID-WOA สามารถผลิตผลตอบสนองแบบตามรอยสัญญาณอินพุต
และผลตอบสนองแบบคุมค่าโหลดได้อย่างเหมาะสมและสมดุล 
ท าให้ผลตอบสนองในภาพรวมความรวดเร็วและราบเรียบกว่าตัว
ควบคุม 1DOF-PID-WOA, 1DOF-PID-ZN และ 2DOF-PID-AT 
ตามล าดับ 

 
4.2) ผลการออกแบบตัวควบคุมส าหรับระบบเซอร์โว  

ระบบเซอร์โว Gp2(s) ในสมการที่ (11) ให้ผลตอบสนองไม่เป็น
รูปทรงตัวอักษร S ดังแสดงในรูปที่ 9 ตัวควบคุม 1DOF-PID ที่

ออกแบบด้วยวิธี MO [14] ส าหรับ พลานต์ Gp2(s) แสดงดังสมการ
ที ่(19)  

1DOF-PID-MO

1,256.22
( ) 9.20 0.01cG s s

s
= + +

 
(19) 

การออกแบบตัวควบคุม 1DOF-PID และ 2DOF-PID ส าหรับ 
พลานต์ Gp2(s) ด้วยขั้นตอนวิธี WOA ก าหนดให้จ านวนวาฬ n = 
30 TC คือ Max_Iter = 100 และด าเนินการค้นหาทั้งหมด 50 
ครั้ง เพื่อออกแบบตัวควบคุม 1DOF-PID และ 2DOF-PID ที่
เหมาะสม อันจะส่งผลท าให้ฟังก์ชันวัตถุประสงค์ J ในสมการที่ 
(12) มีค่าน้อยที่สุด โดยก าหนดให้ปริภูมิการค้นหาและเง่ือนไข
การออกแบบในสมการที่ (13) แสดงดังสมการที่ (20) 

Subject to 10.00 s, 20%,

                   0.50 ms, 0.01%,

                   50%, 0.75 ms,

                   0 10.00,

                   0 5.00 s,

                   0 5.00

r p

s ss

preg reg

c

i

d

t M

t e

M t

K







 

 

 

 

 

   s,

                   0 2.50,

                   0 2.50















 


    

(20) 

 

 
 

รูปที่ 9 : ผลตอบสนองของระบบเซอร์โว Gp2(s) 
 

ตารางที่ 3 : การเปรียบเทียบผลตอบสนองของระบบเซอร์โว 

ตัวควบคุม 

ผลตอบสนอง 

ตามรอยสญัญาณอินพุต คุมค่าโหลด 
IAE_Total tr 

(ms) 
Mp 

(%) 
ts 

(ms) 
ess 
(%) 

IAE1 
Mpreg 

(%) 
treg 
(ms) 

IAE2 

ไม่มีตัวควบคุม 0.015 0.00 0.024 124.0 146.77 ไม่สามารถคุมค่าได้ 

1DOF-PID-MO 1.2910-3 73.85 0.032 0.00 19.18 15.15 0.016 1.18 20.36 

1DOF-PID-WOA 3.8510-3 14.27 0.014 0.00 15.65 48.24 0.034 6.41 22.06 

2DOF-PID-WOA 3.0710-3 15.98 0.026 0.00 15.96 29.72 0.012 2.32 18.28 
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เส้นโค้งการลู่เข้าของฟังก์ชันวัตถุประสงค์ J ในการออกแบบ
ตัวควบคุม 1DOF-PID ส าหรับพลานต์ Gp2(s) ด้วยขั้นตอนวิธี WOA 
จะมีค่าเฉลี่ยเท่ากับ 136.67 และค่าเบี่ยงเบนมาตรฐานเท่ากับ 
4.06×10-5 และส าหรับตัวควบคุม 2DOF-PID จะมีค่าเฉลี่ยเท่ากับ 
122.58 และค่าเบี่ยงเบนมาตรฐานเท่ากับ 2.02×10-6 ซึ่งจะมี
ลักษณะเป็นเส้นโค้งเช่นเดียวกับรูปท่ี 8 จึงไม่ขอน าเสนอในที่น้ี  

ขั้นตอนวิธี WOA ใช้เวลาเฉลี่ยในการออกแบบตัวควบคุม 
1DOF-PID และ 2DOF-PID ส าหรับพลานต์ Gp2(s) เท่ากับ 7.14 
วินาที และ 9.52 วินาที ตัวควบคุม 1DOF-PID และ 2DOF-PID 
ที่ออกแบบด้วยด้วยขั้นตอนวิธี WOA ส าหรับพลานต์ Gp2(s) 
แสดงดังสมการที่ (21) และ (22) และให้ผลตอบสนองดังรูปที่ 9 

1DOF-PID-WOA

192.85
( ) 1.74 0.001cG s s

s
= + +

 
(21) 

1 2DOF-PID-WOA

2 2DOF-PID-WOA

796.45
( ) 2.67 0.01

( ) (0.83 0.02 )

c

c

G s s
s

G s s


= + + 


= − +   

(22) 

จากรูปที่ 9 ผลตอบสนองแบบตามรอยสัญญาณอินพุตแสดง
ในช่วงเวลา 0–0.1 มิลลิวินาที และผลตอบสนองแบบคุมค่าโหลด
แสดงในช่วงเวลา 0.1–0.2 มิลลิวินาท ีการเปรียบเทียบผลตอบสนอง
ของระบบที่มีเวลาประวิง Gp2(s) ดังตารางที่ 3 ซึ่งพบว่า ตัวควบคุม 
2DOF-PID ที่ออกแบบด้วยขั้นตอนวิธี WOA สามารถควบคุม
ระบบ Gp2(s) ได้อย่างมีประสิทธิภาพ สอดคล้องกับเง่ือนไขการ
ออกแบบที่ก าหนดในสมการที่ (20) และให้ผลตอบสนองแบบ
ตามรอยสัญญาณอินพุตและผลตอบสนองแบบคุมค่าโหลดที่
รวดเร็วและราบเรียบกว่าตัวควบคุม 1DOF-PID ที่ออกแบบด้วย
วิธี MO และขั้นตอนวิธี WOA อย่างน่าพึงพอใจ 

สมรรถนะด้านการตามรอยสัญญาณอินพุตและการคุม
ค่าโหลด ของตัวควบคุม 1DOF-PID-MO, 1DOF-PID-WOA และ 
2DOF-PID-WOA ส าหรับระบบเซอร์โว ในรูปที่ 9 สามารถแสดง
ด้วยค่า IAE ระหว่างสัญญาณอินพุตอ้างอิงและสัญญาณเอาต์พุต
ของระบบ ดังแสดงในตารางที่ 3 เมื่อ IAE1 คือค่า IAE ของการ
ตามรอยสัญญาณอินพุต, IAE2 คือค่า IAE ของการคุมค่าโหลด
และ IAE_Total คือผลรวมของค่า IAE1 และ IAE2 ซึ่งพบว่า 
ตัวควบคุม 2DOF-PID-WOA สามารถลดค่า IAE_Total ลงได้ 
17.14% และ 10.22% เมื่อเปรียบเทียบกับตัวควบคุม 1DOF-
PID-WOA และ 1DOF-PID-MO ตามล าดับ นั่นหมายความว่า 
ตัวควบคุม 2DOF-PID-WOA สามารถผลิตผลตอบสนองแบบ
ตามรอยสัญญาณอินพุตและผลตอบสนองแบบคุมค่าโหลดไดอ้ย่าง
เหมาะสมและสมดุล ท าให้ผลตอบสนองในภาพรวมมีความรวดเร็ว

และราบเรียบกว่าตัวควบคุม 1DOF-PID-WOA และ 1DOF-PID-
MO ตามล าดับ 
 

5) สรุป 
บทความนี้น าเสนอการออกแบบตัวควบคุม 2DOF-PID อย่าง

เหมาะสม ส าหรับระบบที่มีเวลาประวิงและระบบเซอร์โว โดยใช้
ขั้นตอนวิธีการหาค่าเหมาะที่สุดแบบวาฬ (WOA) จากผลการ
ออกแบบและการจ าลองสถานการณ์ พบว่า ขั้นตอนวิธี WOA 
สามารถออกแบบตัวควบคุม 2DOF-PID ได้อย่างมีประสิทธิภาพ 
สอดคล้องกับเง่ือนไขการออกแบบที่ก าหนด ในกรณีของระบบ 
ที่มีเวลาประวิง พบว่า ตัวควบคุม 2DOF-PID ที่ออกแบบด้วย
ขั้นตอนวิธี WOA ให้ผลตอบสนองแบบตามรอยสัญญาณอินพุต
และผลตอบสนองแบบคุมค่าโหลดที่รวดเร็วและราบเรียบกว่า 
ตัวควบคุม 2DOF-PID ที่ออกแบบด้วยหลักเกณฑ์การปรับจูน AT, 
ตัวควบคุม 1DOF-PID ที่ออกแบบด้วยหลักเกณฑ์การปรับจูน ZN, 
และตัวควบคุม 1DOF-PID ที่ออกแบบด้วยขั้นตอนวิธี WOA และ
ในกรณีของระบบเซอร์ โว พบว่า ตัวควบคุม 2DOF-PID ที่
ออกแบบด้วยขั้นตอนวิธี WOA ให้ผลตอบสนองแบบตามรอย
สัญญาณอินพุตและผลตอบสนองแบบคุมค่าโหลด ที่รวดเร็วและ
ราบเรียบกว่าตัวควบคุม 1DOF-PID ที่ออกแบบด้วยวิธี MO และ
ขั้นตอนวิธี WOA เมื่อพิจารณาจากผลการออกแบบในภาพรวม
ของงานวิจัยนี้ พบว่า ตัวควบคุม 2DOF-PID สามารถควบคุมให้
ระบบมีผลตอบสนองที่น่าพึงพอใจทั้งผลตอบสนองแบบตามรอย
สัญญาณอินพุตและผลตอบสนองแบบคุมค่าโหลด ในขณะที่ 
ตัวควบคุม 1DOF-PID สามารถควบคุมให้ระบบมีผลตอบสนองที่
น่าพึงพอใจเฉพาะผลตอบสนองแบบตามรอยสัญญาณอินพุต
เท่านั้น แต่จะให้ผลตอบสนองแบบคุมค่าโหลดที่มีคุณภาพต่ า 
จากการวิเคราะห์ผลในภาพรวม การที่ตัวควบคุม 2DOF-PID 
สามารถผลิตผลตอบสนองได้ตามวัตถุประสงค์ ทั้งในด้านการตาม
รอยสัญญาณอินพุตและด้านการคุมค่าโหลดไปพร้อมกันได้ดีกว่า
ตัวควบคุม 1DOF-PID เนื่องมาจากตัวควบคุม 2DOF-PID มีส่วน
ของตัวควบคุม Gc1(s) และ Gc2(s) ดังแสดงในสมการที่ (2) ที่
สามารถแยกการควบคุมได้อย่างอิสระ เมื่อน าขั้นตอนวิธี WOA 
ซึ่งเป็นเทคนิคการค้นหาค่าเหมาะที่สุดแบบเมตาฮิวริสติกที่ทรง
ประสิทธิภาพ มาช่วยในการออกแบบค่าพารามิเตอร์ที่เหมาะสม 
จึงท าให้ตัวควบคุม 2DOF-PID สามารถให้ผลตอบสนองที่เหนือ 
กว่าตัวควบคุม 2DOF-PID และตัวควบคุม 1DOF-PID ที่ออกแบบ
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ด้วยหลักเกณฑ์ การปรับจูน และให้ผลตอบสนองที่เหนือกว่าตัว
ควบคุม 1DOF-PID ที่ออกแบบด้วยขั้นตอนวิธี WOA 

แนวทางการด าเนินงานวิจัยในอนาคต สามารถแบ่งออกได้
หลายแนวทาง ดังนี้ แนวทางแรก คือการน าผลการออกแบบ 
ตัวควบคุมในบทความนี้ไปอนุวัต (implementation) เพื่อน าผล
การทดสอบจริงมาเปรียบเทียบกับผลการจ าลองสถานการณ์ 
แนวทางต่อมา คือการพัฒนาขั้นตอนวิธี WOA ให้มีประสิทธิภาพ
ในการค้นหาผลเฉลยวงกว้างที่รวดเร็วยิ่งขึ้น และแนวทางสุดท้าย
คือการประยุกต์ขั้นตอนวิธี WOA เพื่อการระบุเอกลักษณ์ระบบ 
(system identification) และออกแบบตัวควบคุมให้กับระบบ
จริงที่มีความซับซ้อนและหลากหลายมากยิ่งขึ้น 
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