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Abstract

This research presents a model and tests the performance of a credit approval determination model by using
principal component analysis with machine learning techniques. Four algorithms: Naive Bayes, Decision Tree,
Random Forest, and Support Vector Machine were tested with 441,335 examples of lending data. There are four
model performance test results: Accuracy, Precision, Recall, and F-Measure.

From the experiment, it was found that the random forest model provides the best accuracy performance of
92.90 percent, followed by support vector machine and decision tree is 87.00 percent, and Naive Bayes is 83.40
percent, respectively. It was found that reducing the data dimensions resulted in improved model performance by
eliminating insignificant features and solve the problem of the traditional credit approval model that considers the
old attribute variables. The model's performance has improved by considering new attribute variables. The results
of the completeness value (Recall) and the overall performance measurement value (F-Measure) from the
experiment found that Random forest model provides the best performance as well as accuracy values were 99.64
and 99.35 percent, respectively, and the highest precision value was 99.07 percent for the random forest model

and decision trees.
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