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Abstract

Current cyber threats have a wide impact on security agencies. Therefore, it is absolutely necessary to have an
intrusion detection system. One of the factors that affect the efficiency of an intrusion detection is that the Royal
Thai Air Force (RTAF) must have his own cyber threat dataset used in training and develop the model. Therefore,
the purposes of this research were to present studying, collecting and analyzing of cyber threats within the RTAF
in order to respond to cyber threats and to develop a cyber threats model by using machine learning techniques
imported into the process of valuing accuracy of cyber threat detection within the RTAF by using RapidMiner Studio
to analyze with five models: Naive Bayes, Decision Tree, Random Forest, Gradient Boosted Trees and Support
Vector Machines. The researchers used the cyber threat data set which consists of attacks within the RTAF network
in which the main threats were caused by 7-type malicious softwares, totaling 38,642 attacks, each contains
computer traffic data (Traffic Log) used as the training data for the model. The Naive Bayes and Random Forest
models were chosen to increase efficiency. Both models gave the highest accuracy of 98.01% and a detailed
assessment of the mixed model (Hybrid) gave the accuracy of 98.01 %, the precision of 96.07%, the recall of

98.17 % and the mean (F1 Score) of 97.04 %.
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Accuracy : 98.01%

True True True True True True True Class

Worm Backdoor PUA Virus Dropper Spyware Ransomware Precision
Pred. Worm 614 15 3 3 12 2 1 94.32%
Pred. Backdoor 1 1395 24 8 51 7 8 93.37%
Pred. PUA 1 2 7083 7 32 7 6 99.23%
Pred. Virus 0 0 28 5184 61 8 5 98.07%
Pred. Dropper 0 0 0 0 8002 0 0 100.00%
Pred. Spyware 0 3 10 18 42 2647 3 97.21%
Pred. 1 43 11 3 108 4 1585 90.31%
Ransomware
Class recall 99.51% 95.68% 98.94% | 99.25% 96.31% 98.95% 98.57%
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